Structured LDH/Bentonite Composites for Chromium Removal and Recovery from Aqueous Solutions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization
2.2. Sorption Study and Process Optimization
2.2.1. Screening Adsorption Performance and Sorbent Selection
2.2.2. Kinetic Study
2.2.3. Desorption Study and Process Optimization
2.2.4. Multicycle Process
3. Materials and Methods
3.1. Materials
3.2. Preparation of the Mg-Al LDH/Bentonite Adsorbents
3.3. Characterization
3.4. Sorption Study and Process Optimization
3.5. Desorption Optimization and Process Optimization
3.6. Multicycle Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Appendix A
Sample | Total Cumulative Volume (mm3/g) | Average Pore Radius (µm) | Total Porosity (%) |
---|---|---|---|
S80/20c 1–2 mm | 636 | 0.06 | 54 |
S80/20c 2–4 mm | 608 | 0.06 | 59 |
Appendix B
Sample | Concentration | pHinitial | pHfinal |
---|---|---|---|
S80/20c | 200 ppm Cr6+ | 8.21 | 11.74 |
S80/20c | 200 ppm Cr3+ | 3.27 | 10.35 |
S80/20c | 100 ppm Cr6+ and 100 ppm Cr3+ | 4.36 | 11.42 |
S50/50c | 200 ppm Cr6+ | 8.21 | 11.41 |
S50/50c | 200 ppm Cr3+ | 3.27 | 8.80 |
S50/50c | 100 ppm Cr6+ and 100 ppm Cr3+ | 4.36 | 9.53 |
S20/80c | 200 ppm Cr6+ | 8.21 | 10.26 |
S20/80c | 200 ppm Cr3+ | 3.27 | 8.83 |
S20/80c | 100 ppm Cr6+ and 100 ppm Cr3+ | 4.36 | 9.18 |
References
- Alcamo, J.; Henrichs, T.; Rösch, T. World Water in 2025: Global Modeling and Scenario Analysis for the World Commission on Water for the 21st Century; University of Kassel: Kassel, Germany, 2000. [Google Scholar]
- Rosegrant, M.W.; Cai, X.; Cline, S.A. Global Water Outlook to 2025: Averting an Impending Crisis; International Water Management Institute: Colombo, Sri Lanka, 2002. [Google Scholar]
- Hassan Al-Taai, S.H. Water pollution Its causes and effects. IOP Conf. Ser. Earth Environ. Sci. 2021, 790, 012026. [Google Scholar] [CrossRef]
- Haounati, R.; Ighnih, H.; Ouachtak, H.; Malekshah, R.E.; Hafid, N.; Jada, A.; Ait Addi, A. Z-Scheme g-C3N4/Fe3O4/Ag3PO4 @Sep magnetic nanocomposites as heterojunction photocatalysts for green malachite degradation and dynamic molecular studies. Colloids Surf. A Physicochem. Eng. Asp. 2023, 671, 131509. [Google Scholar] [CrossRef]
- Haounati, R.; Ighnih, H.; Malekshah, R.E.; Alahiane, S.; Alakhras, F.; Alabbad, E.; Alghamdi, H.; Ouachtak, H.; Addi, A.A.; Jada, A. Exploring ZnO/Montmorillonite photocatalysts for the removal of hazardous RhB Dye: A combined study using molecular dynamics simulations and experiments. Mater. Today Commun. 2023, 35, 105915. [Google Scholar] [CrossRef]
- Rachna; Gupta, S.K.; Singh, B.; Nema, A.K.; Pandey, V.C. Chapter 3—Integrated phytoremediation approaches for abatement of aquatic pollution and element recovery. In Algae and Aquatic Macrophytes in Cities; Pandey, V.C., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 39–64. [Google Scholar] [CrossRef]
- Ortúzar, M.; Esterhuizen, M.; Olicón-Hernández, D.R.; González-López, J.; Aranda, E. Pharmaceutical Pollution in Aquatic Environments: A Concise Review of Environmental Impacts and Bioremediation Systems. Front. Microbiol. 2022, 13, 869332. [Google Scholar] [CrossRef]
- Kapoor, D.; Singh, M.P. 10—Heavy metal contamination in water and its possible sources. In Heavy Metals in the Environment; Kumar, V., Sharma, A., Cerdà, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 179–189. [Google Scholar] [CrossRef]
- Barnhart, J. Occurrences, Uses, and Properties of Chromium. Regul. Toxicol. Pharmacol. 1997, 26, S3–S7. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Biomedical applications of cationic clay minerals. RSC Adv. 2015, 5, 29467–29481. [Google Scholar] [CrossRef]
- Singh, N.B. Clays and Clay Minerals in the Construction Industry. Minerals 2022, 12, 301. [Google Scholar] [CrossRef]
- Nadziakiewicza, M.; Kehoe, S.; Micek, P. Physico-Chemical Properties of Clay Minerals and Their Use as a Health Promoting Feed Additive. Animals 2019, 9, 714. [Google Scholar] [CrossRef] [Green Version]
- Moraes, J.D.D.; Bertolino, S.R.A.; Cuffini, S.L.; Ducart, D.F.; Bretzke, P.E.; Leonardi, G.R. Clay minerals: Properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes—A review. Int. J. Pharm. 2017, 534, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Liu, F.; Hu, L.; Reed, A.H.; Furukawa, Y.; Zhang, G. Evaluation of the particle sizes of four clay minerals. Appl. Clay Sci. 2017, 135, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, J.; Qu, C.; Tang, Y.; Slany, M. Synthesis of Mg-Al Hydrotalcite Clay with High Adsorption Capacity. Materials 2021, 14, 7231. [Google Scholar] [CrossRef]
- Foroutan, R.; Peighambardoust, S.J.; Mohammadi, R.; Omidvar, M.; Sorial, G.A.; Ramavandi, B. Influence of chitosan and magnetic iron nanoparticles on chromium adsorption behavior of natural clay: Adaptive neuro-fuzzy inference modeling. Int. J. Biol. Macromol. 2020, 151, 355–365. [Google Scholar] [CrossRef]
- Dehn, J.; McNutt, S.R. Volcanic Materials in Commerce and Industry. In The Encyclopedia of Volcanoes; Academic Press: Cambridge, MA, USA, 2015; pp. 1285–1294. [Google Scholar] [CrossRef]
- Radmilović, N.; Logar, M.; Luković, J.; Maletaskic, J.; Miljević, M.; Babic, B.; Radosavljevic-Mihajlovic, A. Characterization of bentonite clay from “Greda” deposit. Process. Appl. Ceram. 2011, 5, 97–101. [Google Scholar] [CrossRef]
- Mu’azu, N.D.; Jarrah, N.; Kazeem, T.S.; Zubair, M.; Al-Harthi, M. Bentonite-layered double hydroxide composite for enhanced aqueous adsorption of Eriochrome Black T. Appl. Clay Sci. 2018, 161, 23–34. [Google Scholar] [CrossRef]
- Guan, X.; Yuan, X.; Zhao, Y.; Bai, J.; Li, Y.; Cao, Y.; Chen, Y.; Xiong, T. Adsorption behaviors and mechanisms of Fe/Mg layered double hydroxide loaded on bentonite on Cd (II) and Pb (II) removal. J. Colloid Interface Sci. 2022, 612, 572–583. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zhao, Y.; Wei, M.; Duan, X. Preparation of Oriented Layered Double Hydroxide Film Using Electrophoretic Deposition and Its Application in Water Treatment. Ind. Eng. Chem. Res. 2011, 50, 2800–2806. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, F.; Peng, Q.; Xu, S.; Lei, X.; Evans, D.G.; Duan, X. Layered double hydroxide/eggshell membrane: An inorganic biocomposite membrane as an efficient adsorbent for Cr(VI) removal. Chem. Eng. J. 2011, 166, 81–87. [Google Scholar] [CrossRef]
- Khan, S.A.; ur Rehman, R.; Khan, M.A. Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite. J. Waste Manag. 1995, 15, 271–282. [Google Scholar] [CrossRef]
- Hashemi, K.; Zahiri, R.; Hashemi-Moghaddam, H. Removal of Cr6+ and Pb2+ from Aqueous Solutions by Natural Zeo-Bentonite. Asian J. Chem. 2013, 25, 9138–9140. [Google Scholar] [CrossRef]
- Yang, J.; Huang, B.; Lin, M. Adsorption of Hexavalent Chromium from Aqueous Solution by a Chitosan/Bentonite Composite: Isotherm, Kinetics, and Thermodynamics Studies. J. Chem. Eng. Data 2020, 65, 2751–2763. [Google Scholar] [CrossRef]
- Fritzen, M.B.; Souza, A.J.; Silva, T.A.G.; Souza, L.; Nome, R.A.; Fiedler, H.D.; Nome, F. Distribution of hexavalent Cr species across the clay mineral surface–water interface. J. Colloid Interface Sci. 2006, 296, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Barkat, M.; Chegrouche, S.; Mellah, A.; Bensmain, B.; Nibou, D.; Boufatit, M. Application of Algerian Bentonite in the Removal of Cadmium (II) and Chromium (VI) from Aqueous Solutions. JMST 2014, 4, 210–226. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, A.; Foroutan, R.; Esmaeili, H.; Tamjidi, S. The role of bentonite clay and bentonite clay@MnFe2O4 composite and their physico-chemical properties on the removal of Cr(III) and Cr(VI) from aqueous media. Environ. Sci. Pollut. Res. Int. 2020, 27, 14044–14057. [Google Scholar] [CrossRef]
- Foroutan, R.; Zareipour, R.; Mohammadi, R. Fast adsorption of chromium (VI) ions from synthetic sewage using bentonite and bentonite/bio-coal composite: A comparative study. Mater. Res. Express 2018, 6, 025508. [Google Scholar] [CrossRef]
- Srikacha, N.; Sriuttha, M.; Neeratanaphan, L.; Saiyasombat, C.; Tengjaroensakul, B.; Ponnusamy, S.K. The Improvement of Natural Thai Bentonite Modified with Cationic Surfactants on Hexavalent Chromium Adsorption from an Aqueous Solution. Adsorpt. Sci. Technol. 2022, 2022, 4444164. [Google Scholar] [CrossRef]
- Yue, X.; Liu, W.; Chen, Z.; Lin, Z. Simultaneous removal of Cu(II) and Cr(VI) by Mg–Al–Cl layered double hydroxide and mechanism insight. J. Environ. Sci. 2017, 53, 16–26. [Google Scholar] [CrossRef]
- Chao, H.-P.; Wang, Y.-C.; Tran, H.N. Removal of hexavalent chromium from groundwater by Mg/Al-layered double hydroxides using characteristics of in-situ synthesis. Environ. Pollut. 2018, 243, 620–629. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, X.; Meng, X. Preparation of a Mg/Al/Fe layered supramolecular compound and application for removal of Cr(vi) from laboratory wastewater. RSC Adv. 2017, 7, 34984–34993. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Son, Y.; Bae, S.; Kim, T.H.; Hwang, Y. Adsorption of Chromate Ions by Layered Double Hydroxide-Bentonite Nanocomposite for Groundwater Remediation. Nanomaterials 2022, 12, 1384. [Google Scholar] [CrossRef] [PubMed]
- Jarrah, N.; Mu’azu, N.D.; Zubair, M.; Al-Harthi, M. Enhanced adsorptive performance of Cr(VI) onto layered double hydroxide-bentonite composite: Isotherm, kinetic and thermodynamic studies. Sep. Sci. Technol. 2020, 55, 1897–1909. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, J.; Achari, G.; Yu, J.; Cai, W. Cr(VI) removal from aqueous solutions by hydrothermal synthetic layered double hydroxides: Adsorption performance, coexisting anions and regeneration studies. Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 33–40. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, Y.; Wang, J.; Zhou, C.; Tang, Q.; Rao, X. Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(VI) removal. Chem. Eng. J. 2013, 221, 204–213. [Google Scholar] [CrossRef]
- Kaneko, S.; Ogawa, M. Effective concentration of dichromate anions using layered double hydroxides from acidic solutions. Appl. Clay Sci. 2013, 75–76, 109–113. [Google Scholar] [CrossRef]
- Lazaridis, N.K.; Asouhidou, D.D. Kinetics of sorptive removal of chromium(VI) from aqueous solutions by calcined Mg–Al–CO3 hydrotalcite. Water Res. 2003, 37, 2875–2882. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, Y.; Zhou, J.; Chen, D.; Qian, G. Chromium (VI) and zinc (II) waste water co-treatment by forming layered double hydroxides: Mechanism discussion via two different processes and application in real plating water. J. Hazard. Mater. 2012, 205–206, 111–117. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, J.; Qian, G.; Ren, Z.; Xu, Z.P.; Wu, Y.; Liu, Q.; Qiao, S. Effective Cr(VI) Removal from Simulated Groundwater through the Hydrotalcite-Derived Adsorbent. Ind. Eng. Chem. Res. 2010, 49, 2752–2758. [Google Scholar] [CrossRef]
- Lazaridis, N.K.; Pandi, T.A.; Matis, K.A. Chromium(VI) Removal from Aqueous Solutions by Mg−Al−CO3 Hydrotalcite: Sorption−Desorption Kinetic and Equilibrium Studies. Ind. Eng. Chem. Res. 2004, 43, 2209–2215. [Google Scholar] [CrossRef]
- Bhattacharyya, K.G.; Sen Gupta, S. Adsorption of Chromium(VI) from Water by Clays. Ind. Eng. Chem. Res. 2006, 45, 7232–7240. [Google Scholar] [CrossRef]
- Zhang, B.; Luan, L.; Gao, R.; Li, F.; Li, Y.; Wu, T. Rapid and effective removal of Cr(VI) from aqueous solution using exfoliated LDH nanosheets. Colloids Surf. A Physicochem. Eng. Asp. 2017, 520, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, B.G.P.; Bieseki, L.; Mello, M.I.S.D.; Silva, D.R.D.; Rodella, C.B.; Pergher, S. Memory Effect on a LDH/zeolite A Composite: An XRD In Situ Study. Materials 2021, 14, 2102. [Google Scholar] [CrossRef]
- Schutz, A.; Biloen, P. Interlamellar chemistry of hydrotalcites: I. Polymerization of silicate anions. J. Solid State Chem. 1987, 68, 360–368. [Google Scholar] [CrossRef]
- Bookin, A.S.; Drits, V.A. Polytype Diversity of the Hydrotalcite-Like Minerals I. Possible Polytypes and their Diffraction Features. Clays Clay Miner. 1993, 41, 551–557. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, P.; Montavon, G.; Chen, Z.; Wang, D.; Tan, Z.; Jin, Q.; Wu, W.; Wang, J.; Guo, Z. Strengthened erosion resistance of compacted bentonite by layered double hydroxide: A new electrostatic interaction-based approach. Chemosphere 2022, 292, 133402. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Rodriguez, P.; de Ruiter, M.; Wijnands, T.; Ten Elshof, J.E. Porous Layered Double Hydroxides Synthesized using Oxygen Generated by Decomposition of Hydrogen Peroxide. Sci. Rep. 2017, 7, 481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damian, G.; Damian, F.; Szakács, Z.; Iepure, G.; Aştefanei, D. Mineralogical and Physico-Chemical Characterization of the Oraşu-Nou (Romania) Bentonite Resources. Minerals 2021, 11, 938. [Google Scholar] [CrossRef]
- Saeed, A.; Hanif, M.A.; Nawaz, H.; Qadri, R.W.K. The production of biodiesel from plum waste oil using nano-structured catalyst loaded into supports. Sci. Rep. 2021, 11, 24120. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro dos Santos, F.; de Oliveira Bruno, H.C.; Zelayaran Melgar, L. Use of bentonite calcined clay as an adsorbent: Equilibrium and thermodynamic study of Rhodamine B adsorption in aqueous solution. Environ. Sci. Pollut. Res. 2019, 26, 28622–28632. [Google Scholar] [CrossRef]
- Teixeira, T.P.F.; Pereira, S.I.; Aquino, S.F.; Dias, A. Calcined Layered Double Hydroxides for Decolorization of Azo Dye Solutions: Equilibrium, Kinetics, and Recycling Studies. Environ. Eng. Sci. 2012, 29, 685–692. [Google Scholar] [CrossRef]
- Mészáros, S.; Halász, J.; Kónya, Z.; Sipos, P.; Pálinkó, I. Reconstruction of calcined MgAl- and NiMgAl-layered double hydroxides during glycerol dehydration and their recycling characteristics. Appl. Clay Sci. 2013, 80–81, 245–248. [Google Scholar] [CrossRef]
- Unceta, N.; Seby, F.; Malherbe, J.; Donard, O.F. Chromium speciation in solid matrices and regulation: A review. Anal. Bioanal. Chem. 2010, 397, 1097–1111. [Google Scholar] [CrossRef]
- Bokare, A.D.; Choi, W. Advanced Oxidation Process Based on the Cr(III)/Cr(VI) Redox Cycle. Environ. Sci. Technol. 2011, 45, 9332–9338. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, J.D.; Xia, L.; Kendig, M.W.; McCreery, R.L. Raman spectroscopic analysis of the speciation of dilute chromate solutions. Corros. Sci. 2001, 43, 1557–1572. [Google Scholar] [CrossRef]
- Malchus, M.; Jansen, M. Studies on Tetramethylammonium Selenate(VI) and Chromate(VI). Z. Nat. B 1998, 53, 704–710. [Google Scholar] [CrossRef]
- Applications in Inorganic Chemistry. In Infrared and Raman Spectra of Inorganic and Coordination Compounds; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; Chapter 2; pp. 149–354. [CrossRef]
- Frost, R.L. Raman microscopy of selected chromate minerals. J. Raman Spectrosc. 2004, 35, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Mastorakis, N.; Vaskova, H.; Mladenov, V.; Bulucea, A. Raman microscopic detection of chromium compounds. MATEC Web Conf. 2016, 76, 05012. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Ye, Z.; Gong, N.; Qu, X.; Mercier, D.; Światowska, J.; Skeldon, P.; Marcus, P. Formation of a trivalent chromium conversion coating on AZ91D magnesium alloy. Corros. Sci. 2021, 186, 109459. [Google Scholar] [CrossRef]
- Frost, R.L.; Scholz, R.; López, A.; Theiss, F.L. Vibrational spectroscopic study of the natural layered double hydroxide manasseite now defined as hydrotalcite-2H—Mg6Al2(OH)16[CO3]⋅4H2O. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 118, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Frost, R.L.; Weier, M.L.; Kloprogge, J.T. Raman spectroscopy of some natural hydrotalcites with sulphate and carbonate in the interlayer. J. Raman Spectrosc. 2003, 34, 760–768. [Google Scholar] [CrossRef] [Green Version]
- Nur-E-Alam, M.; Mia, M.A.S.; Ahmad, F.; Rahman, M.M. An overview of chromium removal techniques from tannery effluent. Appl. Water Sci. 2020, 10, 205. [Google Scholar] [CrossRef]
- Bayuo, J.; Abukari, M.A.; Pelig-Ba, K.B. Desorption of chromium (VI) and lead (II) ions and regeneration of the exhausted adsorbent. Appl. Water Sci. 2020, 10, 171. [Google Scholar] [CrossRef]
- Otero, M.; Cutillas-Barreiro, L.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. Cr(VI) sorption/desorption on untreated and mussel-shell-treated soil materials: Fractionation and effects of pH and chromium concentration. Solid Earth 2015, 6, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Ateia, M.; Helbling, D.E.; Dichtel, W.R. Best Practices for Evaluating New Materials as Adsorbents for Water Treatment. ACS Mater. Lett. 2020, 2, 1532–1544. [Google Scholar] [CrossRef]
- Ali, I.; Gupta, V.K. Advances in water treatment by adsorption technology. Nat. Protoc. 2006, 1, 2661–2667. [Google Scholar] [CrossRef]
- Ishii, M.; Shimanouchi, T.; Nakahira, M. Far infra-red absorption spectra of layer silicates. Inorg. Chim. Acta 1967, 1, 387–392. [Google Scholar] [CrossRef]
- Frost, R.L.; Rintoul, L. Lattice vibrations of montmorillonite: An FT Raman and X-ray diffraction study. Appl. Clay Sci. 1996, 11, 171–183. [Google Scholar] [CrossRef]
- Wang, A.; Freeman, J.J.; Jolliff, B.L. Understanding the Raman spectral features of phyllosilicates. J. Raman Spectrosc. 2015, 46, 829–845. [Google Scholar] [CrossRef]
- Mora, M.; Jiménez-Sanchidrián, C.; Rafael Ruiz, J. Raman spectroscopy study of layered-double hydroxides containing magnesium and trivalent metals. Mater. Lett. 2014, 120, 193–195. [Google Scholar] [CrossRef]
- Kloprogge, J.T.; Hickey, L.; Frost, R.L. FT-Raman and FT-IR spectroscopic study of synthetic Mg/Zn/Al-hydrotalcites. J. Raman Spectrosc. 2004, 35, 967–974. [Google Scholar] [CrossRef] [Green Version]
- Burrueco, M.I.; Mora, M.; Jiménez-Sanchidrián, C.; Ruiz, J.R. Raman microspectroscopy of hydrotalcite-like compounds modified with sulphate and sulphonate organic anions. J. Mol. Struct. 2013, 1034, 38–42. [Google Scholar] [CrossRef]
- Paikaray, S.; Hendry, M.J. The role of trivalent cations and interlayer anions on the formation of layered double hydroxides in an oxic-CO2 medium. Appl. Surf. Sci. 2012, 263, 633–639. [Google Scholar] [CrossRef]
- Palmer, S.J.; Frost, R.L.; Spratt, H.J. Synthesis and Raman spectroscopic study of Mg/Al,Fe hydrotalcites with variable cationic ratios. J. Raman Spectrosc. 2009, 40, 1138–1143. [Google Scholar] [CrossRef] [Green Version]
- Palmer, S.J.; Frost, R.L.; Ayoko, G.; Nguyen, T. Synthesis and Raman spectroscopic characterisation of hydrotalcite with CO32− and (MoO4)2− anions in the interlayer. J. Raman Spectrosc. 2008, 39, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Frost, R.L.; Martens, W.; Ding, Z.; Kloprogge, J.T.; Johnson, T.E. The role of water in synthesised hydrotalcites of formula MgxZn6−xCr2(OH)16(CO3) · 4H2O and NixCo6−xCr2(OH)16(CO3) · 4H2O—An infrared spectroscopic study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2003, 59, 291–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, R.L.; Reddy, B.J. Thermo-Raman spectroscopic study of the natural layered double hydroxide manasseite. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2006, 65, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Kloprogge, J.T.; Hickey, L.; Frost, R.L. Synthesis and spectroscopic characterization of deuterated hydrotalcite. J. Mater. Sci. Lett. 2002, 21, 603–605. [Google Scholar] [CrossRef] [Green Version]
Adsorbent | Max. Cr3+ Adsorption (Units as Reported) | Max. Cr6+ Adsorption (Units as Reported) | Solid/Liquid Ratio S/L (g/L) | Reference |
---|---|---|---|---|
Bentonite | 100% (pH 7) | 40% (pH < 1.5) | 1/20 | [24] |
Zeo-bentonite | - | ±81% | 10 | [25] |
Chitosan/bentonite | - | 16.38 mg/g | 10 | [26] |
Montmorillonite | - | 785.14 mg/g | 40 | [27] |
Algerian bentonite | - | 12.61 mg/g | 25 | [28] |
Bentonite | 151.51 mg/g | 161.29 mg/g | 1 | [29] |
Bentonite@MnFe2O4 | 175.44 mg/g | 178.57 mg/g | 1 | [29] |
Bentonite | - | 59.523 mg/g | 1 | [30] |
Bentonite/bio-coal | - | 64.102 mg/g | 1 | [30] |
1CPC (modified bentonite) | - | 24.83 mg/g | 1 | [31] |
Mg-Al-Cl Layered double hydroxide (LDH) | - | 45.20 mg/g | 2 | [32] |
in-situ LDH | - | 339 mg/g | - | [33] |
Mg-Al-CO3 LDH | - | 246 mg/g | 2 | [33] |
Mg-Al-Fe LDO | - | 725.61 mg/g | 4 | [34] |
LDH-bentonite composite 50/50 | - | 6.705 mg/g | 1 | [35] |
Bentonite-Co-Al LDH | - | 101.06 mg/g | 0.125 | [36] |
Zn/Al-CO3 LDH | - | 68.07 mg/g | 0.2 | [37] |
MgAl LDH | - | 30.28 mg/g | 0.2 | [37] |
Calcined graphene- Mg/Al LDH | - | 172.55 mg/g | 0.1 | [38] |
Oriented Mg/Al–NO3-LDH | - | 8.2 mg/g | 0.85 | [22] |
Mg/Al-LDH/ESM | - | 27.9 mg/g | 5 | [23] |
Li/Al-LDH | - | 177 mg/g | 2 | [39] |
Calcined Mg/Al–CO3-LDH | - | 122 mg/g | 0.2 | [40] |
CaAl-Cl LDH after synthesis | - | 77.99 mg/g | 4 | [41] |
Calcined MgAl-CO3-HT | - | 34.3–44.7 mg/g | (column test) | [42] |
Mg-Al-CO3 hydrotalcite | - | 17 mg/g | 1 | [43] |
Acid-activated kaolinite | - | 13.9 mg/g | 2 | [44] |
Exfoliated LCT-LDH | - | 125.97 mg/g | 2 | [45] |
CS/Clay/Fe3O4 | - | 117.64 mg/g | 1 | [17] |
Property | Calcined LDH/Bentonite 80 wt%/20 wt% (S80/20(c)) | Calcined LDH/Bentonite 50 wt%/50 wt% (S50/50(c)) | Calcined LDH/Bentonite 20 wt%/80 wt% (S20/80(c)) | Calcined Bentonite | Calcined Mg-Al LDH |
---|---|---|---|---|---|
1 Mg-Al LDH, wt% | 51.7 | 32.4 | 13.4 | - | 100 |
1 Bentonite, wt% | 12.9 | 32.4 | 53.7 | 100 | - |
1 Colloidal silica, wt% | - | 2.0 | 2.0 | - | - |
1 Water, wt% | 35.4 | 33.2 | 30.9 | - | - |
1 Rotor speed, m/s | 3 | 4 | 3 | - | - |
1 Vessel speed, m/s | 0.5 | 0.5 | 0.5 | - | - |
1 Mixing time, s | 420 | 340 | 315 | - | - |
Specific surface area (SBET) (10−3 m2/kg) | 183 ± 18 | 104 ± 10 | 33 ± 3 | 38 ± 4 | 187 ± 19 |
Total pore volume (10−3 m3/g) | 0.23 ± 0.02 | 0.18 ± 0.02 | 0.10 ± 0.01 | 0.08 ± 0.01 | 0.07 ± 0.01 |
2 Pore radius (dp) range (Å) | 17–22 ± 2 | 15–23 ± 2 | 18–23 ± 2 | 17–23 ± 2 | 17–20 ± 2 |
Sample | 1 d(001) (nm) | 2 a (nm) | 1 c (nm) | 3 FWHM (°) | 4 d(003) (nm) | 5 a (nm) | 4 c (nm) | 6 FWHM (°) |
---|---|---|---|---|---|---|---|---|
Calcined Mg-Al LDH | - | - | - | - | - | - | - | - |
Calcined bentonite | 0.97 | 0.90 | 0.97 | 1.37 | - | - | - | - |
LDH/bentonite 80 wt%/20 wt% (S80/20) | 1.22 | 0.90 | 1.28 | 2.29 | 0.76 | 0.30 | 2.27 | 0.22 |
S80/20c | 1.00 | 0.91 | 1.00 | 0.84 | - | - | - | - |
LDH/bentonite 50 wt%/50 wt% (S50/50) | 1.28 | 0.90 | 1.28 | 1.87 | 0.75 | 0.30 | 2.26 | 0.21 |
S50/50c | 0.96 | 0.90 | 0.96 | 1.92 | - | - | - | - |
LDH/bentonite 20 wt%/80 wt% (S20/80) | 1.28 | 0.90 | 1.22 | 1.55 | 0.76 | 0.30 | 2.29 | 0.22 |
S20/80c | 1.00 | 0.90 | 1.00 | 2.26 | - | - | - | - |
Sample | Particle Diameter (mm) | |
---|---|---|
1–2 mm | 2–4 mm | |
S80/20c | 2.17 ± 1.0 | 2.61 ± 1.9 |
S50/50c | 1.55 ± 0.9 | 3.21 ± 2.0 |
S20/80c | 1.75 ± 0.8 | 2.72 ± 2.0 |
Model | Parameter | S80/20c 1–2 mm | S80/20c 2–4 mm |
---|---|---|---|
Experiment | Initial concentration (Ci) (ppm) | 215.6 ± 10.7 | 202.4 ± 10.1 |
Experimental equilibrium adsorption capacity (qe) (mg/g) | 35.5 ± 2.8 | 26.5 ± 5.0 | |
Pseudo-first order | Equilibrium adsorption capacity (qe) (mg/g) | 35.5 ± 2.8 | 26.5 ± 5.0 |
Reaction rate (k1) (1/s) | (2.3 ± 0.3) × 10−5 | (2.5 ± 0.3) × 10−5 | |
R2 | 0.86 | 0.86 | |
Pseudo-second order | Equilibrium adsorption capacity qe (mg/g) | 32.5 ± 2.6 | 41.3 ± 2.4 |
Reaction rate (k2) (g/s mg) | (8.7 ± 2.0) × 10−7 | (9.1 ± 1.9) × 10−7 | |
R2 | 0.93 | 0.95 | |
Elovich equation | Initial adsorption rate (α) (mg min−1 g−1) | 0.5 ± 0.3 | 0.3 ± 0.2 |
Desorption constant (β) (mg/g) | 0.15 ± 0.02 | 0.17 ± 0.03 | |
R2 | 0.96 | 0.89 | |
Intraparticle diffusion model | Reaction rate (k1) (mg s−1/2 g−1) | 0.2 ± 0.1 | −0.02 ± 0.0 |
Rate of diffusion (KID) (mg s−1/2 g−1) | 0.1 ± 0.0 | 0.1 ± 0.0 | |
External resistance (I) (mg/g) (step 2) | 9.2 ± 1.3 | 0.5 ± 1.7 | |
R2 (step 1) | 0.60 | 0.10 | |
R2 (step 2) | 0.97 | 0.96 |
Model | Parameter | S80/20c 1–2 mm |
---|---|---|
Experiment | Ci (ppm) | 100.6 ± 1.2 |
qe,des (exp) (mg/g) | 12.6 ± 0.3 | |
Pseudo-first order | qe,des (mg/g) | 12.58 ± 0.3 |
k1,des (1/s) | (3.16 ± 0.55) × 10−5 | |
R2 | 0.85 | |
Pseudo-second order | qe,des (mg/g) | 12.75 ± 0.16 |
k2,des (g/s mg) | (2.17 ± 0.21) × 10−5 | |
R2 | 1.00 | |
Elovich equation | αdes (mg min−1 g−1) | 2.08 ± 1.6 |
βdes (mg/g) | 1.94 ± 3.8 | |
R2 | 0.95 | |
Intraparticle diffusion model | k1,des (mg s−1/2 g−1) | 0.09 ± 0.0 |
KID,des (mg s−1/2 g−1) | 0.01 ± 0.0 | |
Ides (mg/g) (step 2) | 9.47 ± 0.53 | |
R2 (step 1) | 0.98 | |
R2 (step 2) | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Geest, M.; Michielsen, B.; Ciocarlan, R.-G.; Cool, P.; Seftel, E.M. Structured LDH/Bentonite Composites for Chromium Removal and Recovery from Aqueous Solutions. Molecules 2023, 28, 4879. https://doi.org/10.3390/molecules28124879
De Geest M, Michielsen B, Ciocarlan R-G, Cool P, Seftel EM. Structured LDH/Bentonite Composites for Chromium Removal and Recovery from Aqueous Solutions. Molecules. 2023; 28(12):4879. https://doi.org/10.3390/molecules28124879
Chicago/Turabian StyleDe Geest, Mitra, Bart Michielsen, Radu-G. Ciocarlan, Pegie Cool, and Elena M. Seftel. 2023. "Structured LDH/Bentonite Composites for Chromium Removal and Recovery from Aqueous Solutions" Molecules 28, no. 12: 4879. https://doi.org/10.3390/molecules28124879
APA StyleDe Geest, M., Michielsen, B., Ciocarlan, R. -G., Cool, P., & Seftel, E. M. (2023). Structured LDH/Bentonite Composites for Chromium Removal and Recovery from Aqueous Solutions. Molecules, 28(12), 4879. https://doi.org/10.3390/molecules28124879