Novel Mn4+-Activated K2Nb1−xMoxF7 (0 ≤ x ≤ 0.15) Solid Solution Red Phosphors with Superior Moisture Resistance and Good Thermal Stability
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phase Structure, Morphology and Composition
2.2. Luminescence Properties
2.3. Moisture Resistance Properties
2.4. Performances of WLEDs
3. Materials and Methods
3.1. Materials
3.2. Synthesis of K2MnF6 Precursor
3.3. Preparation of K2Nb1−xMoxF7: Mn4+
3.4. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Dong, Q.; Guo, C.; He, L.; Lu, X.; Yin, J. Improving the moisture resistance and luminescent properties of K2TiF6: Mn4+ by coating with CaF2. Mater. Res. Bull. 2019, 115, 98–104. [Google Scholar] [CrossRef]
- Senden, T.; van Dijk-Moes, R.J.A.; Meijerink, A. Quenching of the red Mn4+ luminescence in Mn4+-doped fluoride LED phosphors. Light Sci. Appl. 2018, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Ha, J.; Im, W.B. Towards green synthesis of Mn4+-doped fluoride phosphors: A review. J. Mater. Res. Technol. 2021, 11, 181–195. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Luo, L.; Xiong, Y.; Jiang, L.; Guo, R.; Meng, L. A facile two-step synthesis of an efficient narrow-band red-emitting K2NbF7: Mn4+ phosphor for warm white LEDs and its thermal quenching behavior. J. Alloys Compd. 2021, 863, 158058. [Google Scholar] [CrossRef]
- Ming, H.; Liu, S.; Liu, L.; Peng, J.; Fu, J.; Du, F.; Ye, X. Highly regular, uniform K3ScF6: Mn4+ phosphors: Facile synthesis, microstructures, photoluminescence properties, and application in light-emitting diode Devices. ACS Appl. Mater. Interfaces 2018, 10, 19783–19795. [Google Scholar] [CrossRef]
- Cao, R.; Wang, W.; Zhang, J.; Jiang, S.; Chen, Z.; Li, W.; Yu, X. Synthesis and luminescence properties of Li2SnO3: Mn4+ red-emitting phosphor for solid-state lighting. J. Alloys Compd. 2017, 704, 124–130. [Google Scholar] [CrossRef]
- Deng, T.T.; Song, E.H.; Su, J.; Zhou, Y.Y.; Wang, L.Y.; Ye, S.; Zhang, Q.Y. Stable narrowband red emission in fluorotellurate KTeF5: Mn4+via Mn4+ noncentral-site occupation. J. Mater. Chem. C 2018, 6, 4418–4426. [Google Scholar] [CrossRef]
- Ji, H.; Huang, Z.; Xia, Z.; Molokeev, M.S.; Atuchin, V.V.; Fang, M.; Huang, S. New yellow-emitting whitlockite-type structure Sr1.75Ca1.25(PO4)2: Eu2+ phosphor for near-UV pumped white light-emitting devices. Inorg. Chem. 2014, 53, 5129–5135. [Google Scholar] [CrossRef]
- Lin, C.C.; Liu, R.-S. Advances in phosphors for light-emitting diodes. J. Phys. Chem. Lett. 2011, 2, 1268–1277. [Google Scholar] [CrossRef]
- Hong, F.; Xu, H.; Pang, G.; Liu, G.; Dong, X.; Yu, W. Moisture resistance, luminescence enhancement, energy transfer and tunable color of novel core-shell structure BaGeF6: Mn4+ phosphor. Chem. Eng. J. 2020, 390, 124579. [Google Scholar] [CrossRef]
- Xiang, J.; Chen, J.; Zhang, N.; Yao, H.; Guo, C. Far red and near infrared double-wavelength emitting phosphor Gd2ZnTiO6: Mn4+, Yb3+ for plant cultivation LEDs. Dye. Pigment. 2018, 154, 257–262. [Google Scholar] [CrossRef]
- Huang, X.; Guo, H. Finding a novel highly efficient Mn4+-activated Ca3La2W2O12 far-red emitting phosphor with excellent responsiveness to phytochrome PFR: Towards indoor plant cultivation application. Dye. Pigment. 2018, 152, 36–42. [Google Scholar] [CrossRef]
- Jia, Y.; Pan, Y.; Li, Y.; Zhang, L.; Lian, H.; Lin, J. Improved moisture-resistant and luminescence properties of a red phosphor based on dodec-fluoride K3RbGe2F12: Mn4+ through surface modification. Inorg. Chem. 2021, 60, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.Y.; Song, E.H.; Brik, M.G.; Wang, Y.J.; Hu, T.; Xia, Z.G.; Zhang, Q.Y. Non-equivalent Mn4+ doping into A2NaScF6 (A = K, Rb, Cs) hosts toward short fluorescence lifetime for backlight display application. J. Mater. Chem. C 2019, 7, 9203–9210. [Google Scholar] [CrossRef]
- Pust, P.; Schmidt, P.J.; Schnick, W. A revolution in lighting. Nat. Mater. 2015, 14, 454–458. [Google Scholar] [CrossRef]
- Xu, W.; Chen, D.; Yuan, S.; Zhou, Y.; Li, S. Tuning excitation and emission of Mn4+ emitting center in Y3Al5O12 by cation substitution. Chem. Eng. J. 2017, 317, 854–861. [Google Scholar] [CrossRef]
- Gao, J.; Zhu, H.; Li, R.; Huang, D.; Luo, B.; You, W.; Ke, J.; Yi, X.; Shang, X.; Xu, J.; et al. Moisture-resistant and highly efficient narrow-band red-emitting fluoride phosphor K2NaGaF6: Mn4+ for warm white LED application. J. Mater. Chem. C 2019, 7, 7906–7914. [Google Scholar] [CrossRef]
- Shang, M.; Li, C.; Lin, J. How to produce white light in a single-phase host? Chem. Soc. Rev. 2014, 43, 1372–1386. [Google Scholar] [CrossRef]
- Song, E.; Wang, J.; Shi, J.; Deng, T.; Ye, S.; Peng, M.; Wang, J.; Wondraczek, L.; Zhang, Q. Highly efficient and thermally stable K3AlF6: Mn4+ as a red phosphor for ultra-high-performance warm white light-emitting diodes. ACS Appl. Mater. Interfaces 2017, 9, 8805–8812. [Google Scholar] [CrossRef]
- Fang, S.; Han, T.; Lang, T.; Zhong, Y.; Liu, B.; Cao, S.; Peng, L.; Yakovlev, A.N.; Korepanov, V.I. Synthesis of a novel red phosphor K2xBa1-xTiF6: Mn4+ and its enhanced luminescence performance, thermal stability and waterproofness. J. Alloys Compd. 2019, 808, 151697. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, Z.; Hu, G.; Cao, R.; Liang, X.; Xiang, W. A novel deep red phosphor Ca14Zn6Ga10O35: Mn4+ as color converter for warm W-LEDs: Structure and luminescence properties. J. Alloys Compd. 2017, 694, 1201–1208. [Google Scholar] [CrossRef]
- Li, Q.; Yu, L.; Wu, W.; Liu, C.; Liu, M.; Huang, L.; Zhao, Y.; Lai, X.; Bi, J.; Gao, D. Novel BaGe1-xSixF6: Mn4+ (0 ≤ x ≤ 1) red phosphors for warm white LEDs: Hydrothermal synthesis and photoluminescence properties. J. Alloys Compd. 2021, 852, 156995. [Google Scholar] [CrossRef]
- Park, J.Y.; Joo, J.S.; Yang, H.K.; Kwak, M. Deep red-emitting Ca14Al10Zn6O35: Mn4+ phosphors for WLED applications. J. Alloys Compd. 2017, 714, 390–396. [Google Scholar] [CrossRef]
- Fang, M.-H.; Hsu, C.-S.; Su, C.; Liu, W.; Wang, Y.-H.; Liu, R.-S. Integrated surface modification to enhance the luminescence properties of K2TiF6: Mn4+ phosphor and Its application in white-light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 29233–29237. [Google Scholar] [CrossRef]
- Li, Q.; Luo, R.; Feng, L.; Dong, C.; Ning, Z.; Liu, M.; Zhao, Y.; Lai, X.; Bi, J.; Gao, D. A novel red phosphor of BaGe(1−x)TixF6: Mn4+ solid solution: Facile hydrothermal controlled synthesis, microstructures and luminescent properties. J. Mater. Chem. C 2019, 7, 11265–11275. [Google Scholar] [CrossRef]
- Song, E.H.; Wang, J.Q.; Ye, S.; Jiang, X.F.; Peng, M.Y.; Zhang, Q.Y. Room-temperature synthesis and warm-white LED applications of Mn4+ ion doped fluoroaluminate red phosphor Na3AlF6: Mn4+. J. Mater. Chem. C 2016, 4, 2480–2487. [Google Scholar] [CrossRef]
- Deng, T.T.; Song, E.H.; Zhou, Y.Y.; Wang, L.Y.; Zhang, Q.Y. Tailoring photoluminescence stability in double perovskite red phosphors A2BAlF6: Mn4+ (A = Rb, Cs; B = K, Rb) via neighboring-cation modulation. J. Mater. Chem. C 2017, 5, 12422–12429. [Google Scholar] [CrossRef]
- Zhu, Y.; Cao, L.; Brik, M.G.; Zhang, X.; Huang, L.; Xuan, T.; Wang, J. Facile synthesis, morphology and photoluminescence of a novel red fluoride nanophosphor K2NaAlF6: Mn4+. J. Mater. Chem. C 2017, 5, 6420–6426. [Google Scholar] [CrossRef]
- Zhou, Y.; Ming, H.; Zhang, S.; Deng, T.; Song, E.; Zhang, Q. Unveiling Mn4+ substitution in oxyfluoride phosphor Rb2MoO2F4: Mn4+ applied to wide-gamut fast-response backlight displays. Chem. Eng. J. 2021, 415, 128974. [Google Scholar] [CrossRef]
- Xi, L.; Pan, Y.; Huang, S.; Liu, G. Mn4+ doped (NH4)2TiF6 and (NH4)2SiF6 micro-crystal phosphors: Synthesis through ion exchange at room temperature and their photoluminescence properties. RSC Adv. 2016, 6, 76251–76258. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, Y.; Zhang, X.; Zou, R.; Pan, F.; Wang, J.; Wu, M. HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1–xF6: xMn4+ for warm white light-emitting diodes. Chem. Mater. 2016, 28, 1495–1502. [Google Scholar] [CrossRef]
- Wu, W.-L.; Fang, M.-H.; Zhou, W.; Lesniewski, T.; Mahlik, S.; Grinberg, M.; Brik, M.G.; Sheu, H.-S.; Cheng, B.-M.; Wang, J.; et al. High color eendering index of Rb2GeF6: Mn4+ for light-emitting diodes. Chem. Mater. 2017, 29, 935–939. [Google Scholar] [CrossRef]
- Tang, F.; Su, Z.; Ye, H.; Wang, M.; Lan, X.; Phillips, D.L.; Cao, Y.; Xu, S. A set of manganese ion activated fluoride phosphors (A2BF6: Mn4+, A = K, Na, B = Si, Ge, Ti): Synthesis below 0 °C and efficient room-temperature photoluminescence. J. Mater. Chem. C 2016, 4, 9561–9568. [Google Scholar] [CrossRef]
- Zhong, J.S.; Chen, D.Q.; Wang, X.; Chen, L.F.; Yu, H.; Ji, Z.G.; Xiang, W.D. Synthesis and optical performance of a new red-emitting ZnTiF6·6H2O: Mn4+ phosphor for warm white-light-emitting diodes. J. Alloys Compd. 2016, 662, 232–239. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, Q.; Liu, Y.; Wang, Z.; Yang, H.; Wang, Q. Hydrothermal synthesis and luminescent properties of BaTiF6: Mn4+ red phosphor for LED backlighting. Mater. Res. Bull. 2016, 73, 14–20. [Google Scholar] [CrossRef]
- Setlur, A.A.; Radkov, E.V.; Henderson, C.S.; Her, J.-H.; Srivastava, A.M.; Karkada, N.; Kishore, M.S.; Kumar, N.P.; Aesram, D.; Deshpande, A.; et al. Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors. Chem. Mater. 2010, 22, 4076–4082. [Google Scholar] [CrossRef]
- Lin, C.C.; Meijerink, A.; Liu, R.-S. Critical red components for next-generation white LEDs. J. Phys. Chem. Lett. 2016, 7, 495–503. [Google Scholar] [CrossRef]
- Nguyen, H.-D.; Liu, R.-S. Narrow-band red-emitting Mn4+-doped hexafluoride phosphors: Synthesis, optoelectronic properties, and applications in white light-emitting diodes. J. Mater. Chem. C 2016, 4, 10759–10775. [Google Scholar] [CrossRef]
- Zhu, H.; Lin, C.C.; Luo, W.; Shu, S.; Liu, Z.; Liu, Y.; Kong, J.; Ma, E.; Cao, Y.; Liu, R.-S.; et al. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nat. Commun. 2014, 5, 4312. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Hu, T.; Huang, Q.; Cheng, Y.; Wang, B.; Xu, J.; Wang, J.; Wang, Y. Non-Rare-Earth K2XF7: Mn4+ (X = Ta, Nb): A Highly-Efficient Narrow-Band Red Phosphor Enabling the Application in Wide-Color-Gamut LCD. Laser Photonics Rev. 2017, 11, 1700148. [Google Scholar] [CrossRef]
- Kumada, N.; Yanagida, S.; Takei, T.; Hong, B. Hydrothermal synthesis and crystal structure of new red phosphors, KNaMF7: Mn4+ (M: Nb, Ta). Mater. Res. Bull. 2019, 115, 170–175. [Google Scholar] [CrossRef]
- Jansen, T.; Baur, F.; Jüstel, T. Red emitting K2NbF7: Mn4+ and K2TaF7: Mn4+ for warm-white LED applications. J. Lumin. 2017, 192, 644–652. [Google Scholar] [CrossRef]
- Hong, F.; Pang, G.; Diao, L.; Fu, Z.; Liu, G.; Dong, X.; Yu, W.; Wang, J. Local structure modulation of Mn4+-doped Na2Si1-yGeyF6 red phosphors for enhancement of emission intensity, moisture resistance, thermal stability and application in warm pc-WLEDs. Dalton Trans. 2020, 49, 13805–13817. [Google Scholar] [CrossRef] [PubMed]
- Dat, L.Q.; Lan, N.T.; Lien, N.T.K.; Quang, N.V.; Anh, C.V.; Tinh, N.H.; Duyen, N.T.; Thoa, V.T.K.; Hanh, N.T.; Huong, P.T.L.; et al. Excellent hydrophobic property of K3AlF6: Mn4+ phosphor by coating with reduction graphene oxide on the surface of materials. Opt. Mater. 2022, 129, 112552. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Z.; Huang, L.; Brik, M.G.; Si, S.; Lin, L.; Xuan, T.; Liang, H.; Qiu, J.; Wang, J. High-performance and moisture-resistant red-emitting Cs2SiF6: Mn4+ for high-brightness LED backlighting. J. Mater. Chem. C 2019, 7, 2401–2407. [Google Scholar] [CrossRef]
- Zhou, Y.; Song, E.; Deng, T.; Wang, Y.; Xia, Z.; Zhang, Q. Surface passivation toward highly stable Mn4+-activated red-emitting fluoride phosphors and enhanced photostability for white LEDs. Adv. Mater. Interfaces 2019, 6, 1802006. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Y.; Jiang, C.; Milićević, B.; Molokeev, M.S.; Brik, M.G.; Bobrikov, I.A.; Yan, J.; Li, J.; Wu, M. High moisture resistance of an efficient Mn4+-activated red phosphor Cs2NbOF5: Mn4+ for WLEDs. Chem. Eng. J. 2021, 405, 126678. [Google Scholar] [CrossRef]
- Beuter, A.; Kuhlmnn, W.; Sawodny, W. Vibrational spectra of hepta- and octafluorocomplexes of molybdenum (VI), tungsten (VI) and rhenium (VI). J. Fluor. Chem. 1975, 6, 367–378. [Google Scholar] [CrossRef]
- Peng, D.; He, S.; Zhang, Y.; Yao, L.; Nie, W.; Liao, Z.; Cai, W.; Ye, X. Blue light-induced rare-earth free phosphors for the highly sensitive and selective imaging of latent fingerprints based on enhanced hydrophobic interaction. J. Mater. 2022, 8, 229–238. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.; Yang, Z.; Wei, Q.; Zhou, Q.; Ma, L.; Wang, X. Red phosphor Rb2NbOF5: Mn4+ for warm white light-emitting diodes with a high color-rendering index. Inorg. Chem. 2019, 58, 456–461. [Google Scholar] [CrossRef]
- Jiang, C.; Brik, M.G.; Srivastava, A.M.; Li, L.; Peng, M. Significantly conquering moisture-induced luminescence quenching of red line-emitting phosphor Rb2SnF6: Mn4+ through H2C2O4 triggered particle surface reduction for blue converted warm white light-emitting diodes. J. Mater. Chem. C 2019, 7, 247–255. [Google Scholar] [CrossRef]
- Gao, X.; Song, Y.; Liu, G.; Dong, X.; Wang, J.; Yu, W. Narrow-band red emitting phosphor BaTiF6: Mn4+: Preparation, characterization and application for warm white LED devices. Dalton Trans. 2016, 45, 17886–17895. [Google Scholar] [CrossRef] [PubMed]
- Pang, G.; Hong, F.; Liu, X.; Zhang, Y.; Zhang, C.; Dong, T.; Fu, Z.; Liu, G.; Wang, J.; Li, D.; et al. Moisture-resistant Nb-based fluoride K2NbF7: Mn4+ and oxyfluoride phosphor K3(NbOF5)(HF2): Mn4+: Synthesis, improved luminescence performance and application in warm white LEDs. Dalton Trans. 2021, 50, 17290–17300. [Google Scholar] [CrossRef] [PubMed]
K2Nb1−xMoxF7: Mn4+ | x = 0 | x = 3% | x = 5% | x = 7% | x = 10% | x = 15% |
---|---|---|---|---|---|---|
Rwp (%) | 7.10 | 7.33 | 6.95 | 7.58 | 6.83 | 5.47 |
Rp (%) | 5.01 | 5.23 | 5.01 | 5.27 | 5.10 | 4.10 |
χ2 | 3.612 | 3.889 | 3.537 | 4.360 | 3.429 | 2.193 |
a (Å) | 5.8452 | 5.8466 | 5.8469 | 5.8480 | 5.8476 | 5.8470 |
b (Å) | 12.6922 | 12.6913 | 12.6910 | 12.6911 | 12.6924 | 12.6947 |
c (Å) | 8.5138 | 8.5134 | 8.5138 | 8.5138 | 8.5144 | 8.5156 |
Cell volume (Å3) | 631.624 | 631.697 | 631.752 | 631.871 | 631.930 | 632.067 |
The Designed K2Nb1−xMoxF7: Mn4+ Samples | Actual Molar Ratio of Mo6+ in K2Nb1−xMoxF7: Mn4+ Crystals (%) | Actual Molar Ratio of Mn4+ in K2Nb1−xMoxF7: Mn4+ Crystals (%) |
---|---|---|
x = 0 | 0 | 1.21 |
x = 3% | 0.24 | 1.19 |
x = 5% | 0.39 | 1.19 |
x = 7% | 0.91 | 1.21 |
x = 10% | 1.05 | 1.24 |
x = 15% | 1.46 | 1.48 |
K2Nb1−xMoxF7: Mn4+ | CIE (x, y) | Color Purity (%) | CCT (K) |
---|---|---|---|
x = 0 | (0.6759, 0.3223) | 93.60 | 3533 |
x = 3% | (0.6755, 0.3226) | 93.50 | 3513 |
x = 5% | (0.6779, 0.3206) | 94.11 | 3645 |
x = 7% | (0.6770, 0.3214) | 93.88 | 3592 |
x = 10% | (0.6771, 0.3213) | 93.90 | 3599 |
x = 15% | (0.6775, 0.3210) | 94.00 | 3619 |
Samples | PL Normalized Intensity | Activation Energy (eV) | Ref. |
---|---|---|---|
K2Nb1−xMoxF7: Mn4+ (x = 0.05) | 69.95%@353 K | 0.74 | This work |
K2NbF7: Mn4+ | 70%@348 K | 0.66 | [4] |
K2TiF6: Mn4+ | / | 0.70 | [4] |
K2LiAlF6: Mn4+ | / | 0.62 | [4] |
K2NaGaF6: Mn4+ | 76%@398 K | / | [17] |
BaTiF6: Mn4+ | 44%@425 K | 0.628 | [20] |
K0.07Ba0.965TiF6: Mn4+ | 60%@425 K | 0.940 | [20] |
Cs2KAlF6: Mn4+ | 59.8%@423 K | / | [27] |
Cs2RbAlF6: Mn4+ | 72.1%@423 K | / | [27] |
K2LiAlF6: Mn4+ | 51.5%@423 K | / | [27] |
(NH4)2TiF6: Mn4+ | 50%@343 K | 0.3123 | [30] |
(NH4)2SiF6: Mn4+ | 64%@323 K | 0.4619 | [30] |
K2TaF7: Mn4+ | 70.9%@343 K | / | [40] |
BaTiF6: Mn4+ | 70%@425 K | 0.84 | [52] |
Samples | Immersion Time | Intensity | Reference |
---|---|---|---|
K2Nb1-xMoxF7: Mn4+ (x = 0.05) | 1440 min | 86.37% | This work |
K2NbF7: Mn4+ | 1440 min | 69.88% | This work |
K2TiF6: Mn4+ | 120 min | 6.8% | [1] |
K2TiF6: Mn4+@CaF2 | 120 min | 86.4% | [1] |
BaGeF6: Mn4+ | 7200 min | 15% | [10] |
BaGeF6: Mn4+@PPG | 7200 min | 35% | [10] |
K3RbGe2F12: Mn4+ | 600 min | 40% | [13] |
K2NaGaF6: Mn4+(2.04 at%) | 420 min | 83% | [17] |
K2SiF6: Mn4+(3.31 at%) | 420 min | 23% | [17] |
K2TiF6: Mn4+ | 150min | 20% | [20] |
BaTiF6: Mn4+ | 150 min | 50% | [20] |
K0.07Ba0.965TiF6: Mn4+ | 150 min | 65% | [20] |
Cs2KAlF6: Mn4+ | 4320 min | 65% | [27] |
Na2SiF6: 0.06Mn4+ | 300 min | 32% | [43] |
Na2GeF6: 0.06Mn4+ | 300 min | 33% | [43] |
Na2Si0.5Ge0.5F6: 0.06Mn4+ | 300 min | 71% | [43] |
Rb2SnF6: Mn4+ | 30 min | 10.3% | [51] |
K3(NbOF5)(HF2): Mn4+ | 360 min | 74% | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Feng, L.; Wang, L.; Zheng, J.; Ren, F.; Liu, S.; Ning, Z.; Zhou, T.; Wu, X.; Lai, X.; et al. Novel Mn4+-Activated K2Nb1−xMoxF7 (0 ≤ x ≤ 0.15) Solid Solution Red Phosphors with Superior Moisture Resistance and Good Thermal Stability. Molecules 2023, 28, 4566. https://doi.org/10.3390/molecules28114566
Gao Y, Feng L, Wang L, Zheng J, Ren F, Liu S, Ning Z, Zhou T, Wu X, Lai X, et al. Novel Mn4+-Activated K2Nb1−xMoxF7 (0 ≤ x ≤ 0.15) Solid Solution Red Phosphors with Superior Moisture Resistance and Good Thermal Stability. Molecules. 2023; 28(11):4566. https://doi.org/10.3390/molecules28114566
Chicago/Turabian StyleGao, Yuhan, Lei Feng, Linglin Wang, Jun Zheng, Feiyao Ren, Siyu Liu, Zhanglei Ning, Ting Zhou, Xiaochun Wu, Xin Lai, and et al. 2023. "Novel Mn4+-Activated K2Nb1−xMoxF7 (0 ≤ x ≤ 0.15) Solid Solution Red Phosphors with Superior Moisture Resistance and Good Thermal Stability" Molecules 28, no. 11: 4566. https://doi.org/10.3390/molecules28114566