Thermochemical Activity of Single- and Dual-Phase Oxide Compounds Based on Ceria, Ferrites, and Perovskites for Two-Step Synthetic Fuel Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Ni-Ferrite (NiFe2O4) Foam
2.2. Iron-Doped Ceria (Ce0.9Fe0.1O2)
2.3. Perovskites
2.4. Dual-Phase Composite Materials
2.4.1. Dual-Phase CeO2/NiFe2O4
2.4.2. Dual-Phase CeO2/Perovskite
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Funk, J.; Reinstrom, R. Energy requirements in the production of hydrogen from water. Ind. Eng. Chem. Process Des. Dev. 1966, 5, 336–342. [Google Scholar] [CrossRef]
- Han, S.; Kang, T.; Joo, O.; Jung, K. Water splitting for hydrogen production with ferrites. Sol. Energy 2007, 81, 623. [Google Scholar] [CrossRef]
- Fresno, F.; Saaverda, R.; Gomez-Mancebo, M.; Vidal, A.; Sanchez, M.; Rucandio, I.; Quejido, A.; Romero, M. Solar hydrogen production by two-step thermochemical cycles: Evaluation of the activity of commercial ferrites. Int. J. Hydrogen Energy 2009, 23, 1185–1191. [Google Scholar] [CrossRef]
- Kodama, T.; Gokon, N.; Yamamoto, R. Thermochemical two-step water splitting by ZrO2-supported NixFe3−xO4 for solar hydrogen production. Sol. Energy 2008, 82, 73–79. [Google Scholar] [CrossRef]
- Jung, Y.; Oh, S.; Han, G.; Chen, K.; Seo, T. Dish type solar thermal system for hydrogen production with two-step water-splitting reaction. In Proceedings of the Solar Paces Conference, Perpignan, France, 21–24 September 2010; Volume 179. [Google Scholar]
- Gokon, N.; Kondo, N.; Mataga, T.; Kodama, T. Internally circulating fluidized bed reactor with NiFe2O4 particles for thermochemical water-splitting. In Proceedings of the Solar Paces Conference, Berlin, Germany, 15–18 September 2009; pp. 46–56. [Google Scholar]
- Abanades, S.; Flamant, G. Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides. Sol. Energy 2006, 80, 1611–1623. [Google Scholar] [CrossRef]
- Marxer, D.; Furler, P.; Takacs, M.; Steinfeld, A. Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency. Energy Environ. Sci. 2017, 10, 1142–1149. [Google Scholar] [CrossRef]
- Schappi, R.; Rutz, D.; Dahler, F.; Muroyama, A.; Haueter, P.; Lilliestam, J.; Patt, A.; Furler, P.; Steinfeld, A. Drop-in fuels from sunlight and air. Nature 2022, 601, 63–68. [Google Scholar] [CrossRef]
- Chueh, W.; Falter, C.; Abbott, M.; Scipio, D.; Furler, P.; Haile, S. High flux solar driven thermochemical dissociation of CO2 and H2O using non-stoichiometric ceria. Science 2010, 330, 1797–1801. [Google Scholar] [CrossRef]
- Le Gal, A.; Abanades, S. Catalytic investigation of ceria-zirconia solid solutions for solar hydrogen production. Int. J. Hydrogen Energy 2011, 36, 4739–4748. [Google Scholar] [CrossRef]
- Arifin, D.; Ambrosini, A.; Wilson, S.; Mandal, B.; Muhich, C.; Weimer, A. Investigation of Zr, Gd/Zr, and Pr/Zr-doped ceria for the redox splitting of water. Int. J. Hydrogen Energy 2020, 45, 160–174. [Google Scholar] [CrossRef]
- Pullar, R.; Novais, R.; Caetano, A.; Barreiros, M.; Abanades, S.; Costa Oliveira, F. A review of solar thermochemical CO2 splitting using ceria-based ceramics with designed morphologies and microstructures. Front. Chem. 2019, 7, 601. [Google Scholar] [CrossRef] [PubMed]
- Furler, P.; Scheffe, J.; Steinfeld, A. Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reaction in a high-temperature solar reactor powered by a high flux solar simulator. Energy Environ. Sci. 2012, 5, 6098–6103. [Google Scholar] [CrossRef]
- Furler, P.; Scheffe, J.; Gorbar, M.; Moes, L.; Vogt, U.; Steinfeld, A. Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system. Energy Fuels 2012, 26, 7051–7059. [Google Scholar] [CrossRef]
- Haeussler, A.; Abanades, S.; Julbe, A.; Jouannaux, J.; Drobek, M.; Ayral, A.; Cartoixa, B. Remarkable Performance of Microstructured Ceria Foams for Thermochemical Splitting of H2O and CO2 in a Novel High–Temperature Solar Reactor. Chem. Eng. Res. Des. 2020, 156, 311–323. [Google Scholar] [CrossRef]
- Haeussler, A.; Abanades, S.; Costa Oliveira, F.A.; Barreiros, M.A.; Caetano, A.P.F.; Novais, R.M.; Pullar, R.C. Solar Redox Cycling of Ceria Structures Based on Fiber Boards, Foams, and Biomimetic Cork-Derived Ecoceramics for Two-Step Thermochemical H2O and CO2 Splitting. Energy Fuels 2020, 34, 9037–9049. [Google Scholar] [CrossRef]
- Venstrom, L.J.; Petkovich, N.; Rudisill, S.; Stein, A.; Davidson, J.H. The effects of morphology on the oxidation of ceria by water and carbon dioxide. J. Sol. Energy Eng. 2012, 134, 011005. [Google Scholar] [CrossRef]
- Abanades, S.; Haeussler, A. Two-Step Thermochemical Cycles Using Fibrous Ceria Pellets for H2 Production and CO2 Reduction in Packed-Bed Solar Reactors. Sustain. Mater. Technol. 2021, 29, e00328. [Google Scholar] [CrossRef]
- Gibbons, W.; Venstrom, L.; De Smith, R.; Davidson, J.; Jackson, G. Ceria-based electrospun fibers for renewable fuel production via two-step thermal redox cycles for carbon dioxide splitting. Phys. Chem. Chem. Phys. 2014, 16, 14271–14280. [Google Scholar] [CrossRef]
- Abanades, S.; Haeussler, A.; Julbe, A. Synthesis and thermochemical redox cycling of porous ceria microspheres for renewable fuels production from solar-aided water-splitting and CO2 utilization. Appl. Phys. Lett. 2021, 119, 023902. [Google Scholar] [CrossRef]
- Takalkar, G.; Bhosale, R.; AlMomani, F.; Rashid, S.; Qiblawey, H.; Saad, M.; Khraisheh, M.; Kumar, G.; Gupta, R.; Shende, R. Thermochemical splitting of CO2 using solution combustion synthesized lanthanum-strontium-manganese perovskites. Fuel 2021, 285, 119154. [Google Scholar] [CrossRef]
- Haeussler, A.; Julbe, A.; Abanades, S. Investigation of reactive perovskite materials for solar fuel production via two-step redox cycles: Thermochemical activity, thermodynamic properties and reduction kinetics. Mater. Chem. Phys. 2022, 276, 125358. [Google Scholar] [CrossRef]
- Barcellos, D.; Sanders, M.; Tong, J.; McDaniel, A.; O’Hayre, R. BaCe0.25Mn0.75O3—A promising perovskite type oxide for solar thermochemical hydrogen production. Energy Environ. Sci. 2018, 11, 3256–3265. [Google Scholar] [CrossRef]
- Zhang, D.; De Santiago, H.; Xu, B.; Liu, C.; Trindell, J.; Li, W.; Park, J.; Rodriguez, M.; Coker, E.; Sugar, J.; et al. Compositionally complex perovskite oxides for solar thermochemical water splitting. Chem. Mater. 2023, 35, 1901–1915. [Google Scholar] [CrossRef]
- Mao, Y.; Gao, Y.; Dong, W.; Wu, H.; Song, Z.; Zhao, X.; Sun, J.; Wang, W. Hydrogen production via two-step water splitting thermochemical cycle based on metal oxide—A review. Appl. Energy 2020, 267, 114860. [Google Scholar] [CrossRef]
- Abanades, S. Metal oxides applied to thermochemical water-splitting for hydrogen production using concentrated solar energy. Chem. Eng. 2019, 3, 63. [Google Scholar] [CrossRef]
- Abanades, S. Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review. Energies 2022, 15, 7061. [Google Scholar] [CrossRef]
- Gokon, N.; Murayama, H.; Nagasaki, A.; Kodama, T. Thermochemical two-step water-splitting cycles by monoclinic ZrO2-supported NiFe2O4 and Fe3O4 powders and ceramic foam devices. Sol. Energy 2009, 89, 527–537. [Google Scholar] [CrossRef]
- Gokon, N.; Takahashi, S.; Yamamoto, H.; Kodama, T. Thermochemical two-step water-splitting reactor with internally circulating fluidized bed for thermal reduction of ferrites particles. Int. J. Hydrogen Energy 2008, 33, 2189–2199. [Google Scholar] [CrossRef]
- Allendorf, M.; Diver, R.; Siegel, N.; Miller, J. Two-step water splitting using mixed metal ferrites: Thermodynamic analysis and characterization of synthesized materials. Energy Fuels 2008, 22, 4115–4124. [Google Scholar] [CrossRef]
- Lorentzou, S.; Zygogianni, A.; Pagkoura, C. Hydrosol-plant: Structured redox reactors for H2 production from solar thermochemical H2O splitting. AIP Conf. Proc. 2018, 2033, 130010. [Google Scholar] [CrossRef]
- Orfila, M.; Sanz, D.; Linares, M.; Molina, R.; Sanz, R.; Marugan, J.; Botas, J.A. H2 production by thermochemical water splitting with reticulated porous structures of ceria-based mixed oxide materials. Int. J. Hydrogen Energy 2021, 46, 17458–17471. [Google Scholar] [CrossRef]
- Al-Taweel, S.; Nadeem, M.; Idriss, H. A study of CexFe1−xO2 as a reducible oxide for the thermal hydrogen production from water. Energy Technol. 2022, 10, 2100491. [Google Scholar] [CrossRef]
- Kümmerle, E.; Heger, G. The structures of C-Ce2O3+δ, Ce7O12, and Ce11O20. J. Solid-State Chem. 1999, 147, 485–500. [Google Scholar] [CrossRef]
- Jouannaux, J.; Haeussler, A.; Drobek, M.; Ayral, A.; Abanades, S.; Julbe, A. Lanthanum manganite perovskite ceramic powders for CO2 splitting: Influence of Pechini synthesis parameters on sinterability and reactivity. Ceram. Int. 2019, 45, 15636–45648. [Google Scholar] [CrossRef]
- Barcellos, D.; Coury, F.; Emery, A.; Sanders, M.; Tong, J.; McDaniel, A.; Wolverton, C.; Kaufman, M.; O’Hayre, R. Phase identification of the layered perovskite CexSr2−xMnO4 and application for solar thermochemical water splitting. Inorg. Chem. 2019, 58, 7705–7714. [Google Scholar] [CrossRef] [PubMed]
- Bergeson-Keller, A.; Sanders, M.; O’Hayre, R. Reduction thermodynamics of Sr1−xCexMnO3 and CexSr2−xMnO4 perovskites for solar thermochemical hydrogen production. Energy Technol. 2022, 10, 2100515. [Google Scholar] [CrossRef]
- Bagherisereshki, E.; Tran, J.; Lei, F.; Au Yeung, N. Investigation into SrO/SrCO3 for high temperature thermochemical energy storage. Sol. Energy 2018, 160, 85–93. [Google Scholar] [CrossRef]
- Gautam, G.; Stetchel, E.; Carter, E. Exploring Ca-Ce-M-O (M=3d transition metal) oxide perovskites for solar thermochemical applications. Chem. Mater. 2020, 32, 9964–9982. [Google Scholar] [CrossRef]
- Dukic, J.; Boscovic, S.; Matovic, B. Crystal structure of Ce-doped CaMnO3 perovskite. Ceram. Int. 2009, 35, 787–790. [Google Scholar] [CrossRef]
- Gao, K.; Liu, X.; Jiang, Z.; Zheng, H.; Song, C.; Wang, X.; Tian, C.; Dang, C.; Sun, N.; Xuan, Y. Direct solar thermochemical CO2 splitting based on Ca- and Al-doped SmMnO3 perovskites: Ultrahigh CO yield within small temperature swing. Renew. Energy 2022, 194, 482–494. [Google Scholar] [CrossRef]
- Bork, A.; Carrillo, A.; Hood, Z.; Yildiz, B.; Rupp, J. Oxygen exchange in dual-phase La0.66Sr0.35MnO3-CeO2 composites for solar thermochemical fuel production. Appl. Mater. Interfaces 2020, 12, 32622–32632. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ni, C.; Zhao, G.; Irvine, J. Oxygen storage capacity and thermal stability of the CuMnO2-CeO2 composite system. J. Mater. Chem. A 2015, 3, 12958–12964. [Google Scholar] [CrossRef]
- Zhang, D.; Kawada, T.; Yoshioka, F.; Machida, M. Oxygen gateway effect of CeO2/La2O2SO4 composite oxygen storage materials. ACS Omega 2016, 1, 789–798. [Google Scholar] [CrossRef]
- Machida, M.; Kawada, T.; Fujii, H.; Hinokuma, S. The role of CeO2 as a gateway for oxygen storage over CeO2 grafted Fe2O3 composite materials. J. Phys. Chem. C 2015, 119, 24932–24941. [Google Scholar] [CrossRef]
- Haeussler, A.; Abanades, S.; Julbe, A.; Jouannaux, J.; Cartoixa, B. Two-step CO2 and H2O splitting using perovskite coated ceria foam for enhanced green fuel production in a porous volumetric solar reactor. J. CO2 Util. 2020, 41, 101257. [Google Scholar] [CrossRef]
- Sunde, T.; Grande, T.; Einarsrud, M. Modified Pechini synthesis of oxide powders and thin films. In Handbook of Sol-Gel Science and Technology; Klein, L., Aparicio, M., Jitianu, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1089–1118. [Google Scholar] [CrossRef]
- Schwartzwalder, K.; Somers, H.; Somers, V. Method of Making Porous Ceramic Articles. U.S. Patent 3090094A, 21 May 1963. [Google Scholar]
Perovskite Composition | Synthesis Method | 1st Cycle | 2nd Cycle | ||||
---|---|---|---|---|---|---|---|
O2 Yield | CO Yield | CO Peak Production Rate | O2 Yield | CO Yield | CO Peak Production Rate | ||
(µmol/g) | (µmol/g) | (µmol/min.g) | (µmol/g) | (µmol/g) | (µmol/min.g) | ||
La0.5Sr0.5Mn0.9Mg0.1O3 | Pechini | 254 | 246 | 15.3 | 203 | 249 | 12.7 |
Ce0.2Sr1.8MnO4 | Evaporation-to-dryness | 201 | 219 | - | 114 | 224 | - |
Ce0.2Sr1.8MnO4 | Mecano-synthesis | 197 | 184 | 15.7 | 121 | 199 | 6.9 |
Ca0.5Ce0.5MnO3 | Pechini | 260 (1300 °C) | 53 | 1.6 | 48 (1300 °C) | 76 | 2.2 |
Sm0.6Ca0.4Mn0.8Al0.2O3 | Pechini | 206 | 213 | 25.4 | 180 | 212 | 6.4 |
Powder Composition | 1st Cycle | 2nd Cycle | ||||
---|---|---|---|---|---|---|
O2 Yield | CO Yield | CO Peak Production Rate | O2 Yield | CO Yield | CO Peak Production Rate | |
(µmol/g) | (µmol/g) | (µmol/min.g) | (µmol/g) | (µmol/g) | (µmol/min.g) | |
CeO2/NiFe2O4 (50/50 wt%) | 226 | 85 | 7.5 | 76 | 104 | 9.1 |
CeO2 | 55 | 95 | 39.5 | 54 | 98 | 43.7 |
NiFe2O4 | 201 | 172 | 6.2 | 106 | 158 | 6.2 |
Powder Composition | 1st Cycle | 2nd Cycle | ||||
---|---|---|---|---|---|---|
O2 Yield | CO Yield | CO Peak Production Rate | O2 Yield | CO Yield | CO Peak Production Rate | |
(µmol/g) | (µmol/g) | (µmol/min.g) | (µmol/g) | (µmol/g) | (µmol/min.g) | |
CeO2 | 55 | 95 | 39.5 | 54 | 98 | 43.7 |
LSMMg | 254 | 246 | 15.3 | 203 | 249 | 12.7 |
CeO2-10% YSM | 117 | 123 | 15.0 | 71 | 129 | 16.7 |
CeO2-10% LSMMg | 45 | 83 | 14.1 | 57 | 98 | 12.3 |
CeO2-50% LSMMg | 120 | 178 | 25.7 | 124 | 163 | 6.6 |
CeO2-10% CSM | 172 | 129 | 13.1 | 74 | 137 | 15.5 |
CeO2-50% CSM | 652 | 151 | 5.1 | 93 | 168 | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Gal, A.; Julbe, A.; Abanades, S. Thermochemical Activity of Single- and Dual-Phase Oxide Compounds Based on Ceria, Ferrites, and Perovskites for Two-Step Synthetic Fuel Production. Molecules 2023, 28, 4327. https://doi.org/10.3390/molecules28114327
Le Gal A, Julbe A, Abanades S. Thermochemical Activity of Single- and Dual-Phase Oxide Compounds Based on Ceria, Ferrites, and Perovskites for Two-Step Synthetic Fuel Production. Molecules. 2023; 28(11):4327. https://doi.org/10.3390/molecules28114327
Chicago/Turabian StyleLe Gal, Alex, Anne Julbe, and Stéphane Abanades. 2023. "Thermochemical Activity of Single- and Dual-Phase Oxide Compounds Based on Ceria, Ferrites, and Perovskites for Two-Step Synthetic Fuel Production" Molecules 28, no. 11: 4327. https://doi.org/10.3390/molecules28114327
APA StyleLe Gal, A., Julbe, A., & Abanades, S. (2023). Thermochemical Activity of Single- and Dual-Phase Oxide Compounds Based on Ceria, Ferrites, and Perovskites for Two-Step Synthetic Fuel Production. Molecules, 28(11), 4327. https://doi.org/10.3390/molecules28114327