Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = reticulated foams

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6133 KiB  
Article
Chemical Looping CH4 Reforming Through Isothermal Two-Step Redox Cycling of SrFeO3 Oxygen Carrier in a Tubular Solar Reactor
by Stéphane Abanades, Xinhe Wang and Srirat Chuayboon
Molecules 2025, 30(5), 1076; https://doi.org/10.3390/molecules30051076 - 26 Feb 2025
Viewed by 667
Abstract
The chemical looping reforming of methane using an SrFeO3 oxygen carrier to produce synthesis gas from solar energy was experimentally investigated and validated. High-temperature solar heat was used to provide the reaction enthalpy, and therefore the methane feedstock was entirely dedicated to [...] Read more.
The chemical looping reforming of methane using an SrFeO3 oxygen carrier to produce synthesis gas from solar energy was experimentally investigated and validated. High-temperature solar heat was used to provide the reaction enthalpy, and therefore the methane feedstock was entirely dedicated to producing syngas. The two-step isothermal process encompassed partial perovskite reduction with methane (partial oxidation of CH4) and exothermic oxidation of SrFeO3-δ with CO2 or H2O splitting under the same operating temperature. The oxygen carrier material was shaped in the form of a reticulated porous foam structure for enhancing heat and mass transfer, and it was cycled in a solar-heated tubular reactor under different operating parameters (temperature: 950–1050 °C, methane mole fraction: 5–30%, and type of oxidant gas: H2O vs. CO2). This study aimed to assess the fuel production capacity of the two-step process and to demonstrate the potential of using strontium ferrite perovskite during solar cycling for the first time. The maximum H2 and CO production rates during CH4-induced reduction were 70 and 25 mL/min at 1000 °C and 15% CH4 mole fraction. The increase in both the cycle temperature and the methane mole fraction promoted the reduction step, thereby enhancing syngas yields up to 569 mL/g during reduction at 1000 °C under 30% CH4 (778 mL/g including both cycle steps), and thus outperforming the performance of the benchmark ceria material. In contrast, the oxidation step was not significantly affected by the experimental conditions and the material’s redox performance was weakly dependent on the nature of the oxidizing gas. The syngas yield remained above 200 mL/g during the oxidation step either with H2O or CO2. Twelve successive redox cycles with stable patterns in the syngas production yields validated material stability. Combining concentrated solar energy and chemical looping reforming was shown to be a promising and sustainable pathway toward carbon-neutral solar fuels. Full article
(This article belongs to the Special Issue 10th Anniversary of Green Chemistry Section)
Show Figures

Figure 1

12 pages, 2675 KiB  
Article
Thermal Shock Resistance of Commercial Oxide-Bonded Silicon Carbide Reticulated Foams under Concentrated Solar Radiation at PSA: A Feasibility Study
by Fernando de Almeida Costa Oliveira, José Galindo, José Rodríguez, Inmaculada Cañadas and Jorge Cruz Fernandes
Inorganics 2024, 12(9), 246; https://doi.org/10.3390/inorganics12090246 - 11 Sep 2024
Viewed by 1440
Abstract
Volumetric ceramic receivers can be regarded as a promising technology to heat air above 1000 °C for solar thermal electricity production. In this study, the thermal shock behavior of commercial 10 ppi (A) and 20 ppi (B) oxide-bonded silicon carbide (ob-SiC) reticulated porous [...] Read more.
Volumetric ceramic receivers can be regarded as a promising technology to heat air above 1000 °C for solar thermal electricity production. In this study, the thermal shock behavior of commercial 10 ppi (A) and 20 ppi (B) oxide-bonded silicon carbide (ob-SiC) reticulated porous ceramic (RPC) foams was evaluated using the SF60 solar furnace at Plataforma Solar de Almería. The foams were subjected to well-controlled temperature cycles ranging from 800 to 1000, 1200, 1300 or 1400 °C, for 25, 100, and 150 cycles. The extent of the damage after thermal shock was determined by crushing tests. The damage was found to be critically dependent on both the bulk density and cell size. Decreasing both the bulk density and cell size resulted in better thermal shock resistance. The B foam exhibited approximately half the stress degradation compared to the A foam when exposed to a temperature difference of 600 K (in the range of 800 to 1400 °C) and subjected to 150 cycles. Full article
(This article belongs to the Special Issue Featured Papers in Inorganic Materials 2024)
Show Figures

Graphical abstract

23 pages, 9172 KiB  
Article
Thermochemical Activity of Single- and Dual-Phase Oxide Compounds Based on Ceria, Ferrites, and Perovskites for Two-Step Synthetic Fuel Production
by Alex Le Gal, Anne Julbe and Stéphane Abanades
Molecules 2023, 28(11), 4327; https://doi.org/10.3390/molecules28114327 - 25 May 2023
Cited by 3 | Viewed by 2281
Abstract
This study focuses on the generation of solar thermochemical fuel (hydrogen, syngas) from CO2 and H2O molecules via two-step thermochemical cycles involving intermediate oxygen-carrier redox materials. Different classes of redox-active compounds based on ferrite, fluorite, and perovskite oxide structures are [...] Read more.
This study focuses on the generation of solar thermochemical fuel (hydrogen, syngas) from CO2 and H2O molecules via two-step thermochemical cycles involving intermediate oxygen-carrier redox materials. Different classes of redox-active compounds based on ferrite, fluorite, and perovskite oxide structures are investigated, including their synthesis and characterization associated with experimental performance assessment in two-step redox cycles. Their redox activity is investigated by focusing on their ability to perform the splitting of CO2 during thermochemical cycles while quantifying fuel yields, production rates, and performance stability. The shaping of materials as reticulated foam structures is then evaluated to highlight the effect of morphology on reactivity. A series of single-phase materials including spinel ferrite, fluorite, and perovskite formulations are first investigated and compared to state-of-the-art materials. NiFe2O4 foam exhibits a CO2-splitting activity similar to its powder analog after reduction at 1400 °C, surpassing the performance of ceria but with much slower oxidation kinetics. On the other hand, although identified as high-performing materials in other studies, Ce0.9Fe0.1O2, Ca0.5Ce0.5MnO3, Ce0.2Sr1.8MnO4, and Sm0.6Ca0.4Mn0.8Al0.2O3 are not found to be attractive candidates in this work (compared with La0.5Sr0.5Mn0.9Mg0.1O3). In the second part, characterizations and performance evaluation of dual-phase materials (ceria/ferrite and ceria/perovskite composites) are performed and compared to single-phase materials to assess a potential synergistic effect on fuel production. The ceria/ferrite composite does not provide any enhanced redox activity. In contrast, ceria/perovskite dual-phase compounds in the form of powders and foams are found to enhance the CO2-splitting performance compared to ceria. Full article
(This article belongs to the Special Issue Renewable Fuel: Production, Optimization and Reactor Design)
Show Figures

Figure 1

19 pages, 5208 KiB  
Article
Improving the Insulating Capacity of Polyurethane Foams through Polyurethane Aerogel Inclusion: From Insulation to Superinsulation
by Beatriz Merillas, Fernando Villafañe and Miguel Ángel Rodríguez-Pérez
Nanomaterials 2022, 12(13), 2232; https://doi.org/10.3390/nano12132232 - 29 Jun 2022
Cited by 20 | Viewed by 5055
Abstract
A novel synthesis of polyurethane foam/polyurethane aerogel (PUF–PUA) composites is presented. Three different polyurethane reticulated foams which present the same density but different pore sizes (named S for small, M for medium, and L for large) have been used. [...] Read more.
A novel synthesis of polyurethane foam/polyurethane aerogel (PUF–PUA) composites is presented. Three different polyurethane reticulated foams which present the same density but different pore sizes (named S for small, M for medium, and L for large) have been used. After the characterization of the reference materials (either, foams, and pure aerogel), the obtained composites have been characterized in order to study the effect of the foam pore size on the final properties, so that density, shrinkage, porous structure, mechanical properties, and thermal conductivity are determined. A clear influence of the pore size on the density and shrinkage was found, and the lowest densities are those obtained from L composites (123 kg/m3). Moreover, the aerogel density and shrinkage have been significantly reduced through the employment of the polyurethane (PU) foam skeleton. Due to the enhanced mechanical properties of polyurethane aerogels, the inclusion of polyurethane aerogel into the foam skeleton helps to increase the elastic modulus of the foams from 0.03 and 0.08 MPa to 0.85 MPa, while keeping great flexibility and recovery ratios. Moreover, the synthesized PUF–PUA composites show an excellent insulating performance, reducing the initial thermal conductivity values from 34.1, 40.3, and 50.6 mW/(m K) at 10 °C for the foams S, M, and L, to 15.8, 16.6, and 16.1 mW/(m K), respectively. Additionally, the effect of the different heat transfer mechanisms to the total thermal conductivity is herein analyzed by using a theoretical model as well as the influence of the measurement temperature. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

18 pages, 5942 KiB  
Article
Silica-Based Aerogel Composites Reinforced with Reticulated Polyurethane Foams: Thermal and Mechanical Properties
by Beatriz Merillas, Alyne Lamy-Mendes, Fernando Villafañe, Luisa Durães and Miguel Ángel Rodríguez-Pérez
Gels 2022, 8(7), 392; https://doi.org/10.3390/gels8070392 - 21 Jun 2022
Cited by 24 | Viewed by 4941
Abstract
In this work, silica aerogel composites reinforced with reticulated polyurethane (PU) foams have been manufactured having densities in the range from 117 to 266 kg/m3 and porosities between 85.7 and 92.3%. Two different drying processes were employed (ambient pressure drying and supercritical [...] Read more.
In this work, silica aerogel composites reinforced with reticulated polyurethane (PU) foams have been manufactured having densities in the range from 117 to 266 kg/m3 and porosities between 85.7 and 92.3%. Two different drying processes were employed (ambient pressure drying and supercritical drying) and a surface modification step was applied to some of the silica formulations. These composites, together with the reference PU foam and the monolithic silica aerogels, were fully characterized in terms of their textural properties, mechanical properties and thermal conductivities. The surface modification with hexamethyldisilazane (HMDZ) proved to improve the cohesion between the reticulated foam and the silica aerogels, giving rise to a continuous network of aerogel reinforced by a polyurethane porous structure. The samples dried under supercritical conditions showed the best interaction between matrixes as well as mechanical and insulating properties. These samples present better mechanical properties than the monolithic aerogels having a higher elastic modulus (from 130 to 450 kPa), a really exceptional flexibility and resilience, and the capacity of being deformed without breaking. Moreover, these silica aerogel-polyurethane foam (Sil-PU) composites showed an excellent insulating capacity, reaching thermal conductivities as low as 14 mW/(m·K). Full article
(This article belongs to the Special Issue Current Research and Technological Advances on Aerogels)
Show Figures

Graphical abstract

15 pages, 5329 KiB  
Article
Experimental Evaluation and Modeling of Air Heating in a Ceramic Foam Volumetric Absorber by Effective Parameters
by Carlos E. Arreola-Ramos, Omar Álvarez-Brito, Juan Daniel Macías, Aldo Javier Guadarrama-Mendoza, Manuel A. Ramírez-Cabrera, Armando Rojas-Morin, Patricio J. Valadés-Pelayo, Heidi Isabel Villafán-Vidales and Camilo A. Arancibia-Bulnes
Energies 2021, 14(9), 2506; https://doi.org/10.3390/en14092506 - 27 Apr 2021
Cited by 2 | Viewed by 2535
Abstract
Reticulate porous ceramic reactors use foam-type absorbers in their operation which must fulfill two essential functions: favoring the volumetric effect and increasing the mass and heat transfer by acting as a support for the reactive materials. Heating these absorbers with highly inhomogeneous concentrate [...] Read more.
Reticulate porous ceramic reactors use foam-type absorbers in their operation which must fulfill two essential functions: favoring the volumetric effect and increasing the mass and heat transfer by acting as a support for the reactive materials. Heating these absorbers with highly inhomogeneous concentrate irradiation induces high thermal gradients that affect their thermal performance. Owing to the critical function of these component in the reactor, it is necessary to define a selection criterion for the foam-type absorbers. In this work, we performed an experimental and numerical thermal analysis of three partially stabilized zirconia (PSZ) foam-type absorbers with pore density of 10, 20, and 30 PPI (pores per inch) used as a volumetric absorber. A numerical model and an analytical approximation were developed to reproduce experimental results, and calculate the thermal conductivity, as well as volumetric heat transfer coefficient. The results show that an increase in pore density leads to an increase in the temperature difference between the irradiated face and the rear face of the absorber, this occurs because when pore density increases the concentrated energy no longer penetrates in the deepest space of the absorber and energy is absorbed in areas close to the surface; therefore, temperature gradients are created within the porous medium. The opposite effect occurs when the airflow rate increases; the temperature gradient between the irradiated face and the rear face is reduced. This behavior is more noticeable at low pore densities, but at high pore densities, the effect is less relevant because the internal structure of porous absorbers with high pore density is more complex, which offers obstructions or physical barriers to airflow and thermal barriers to heat transfer. When the steady state is reached, the temperature difference between the two faces of the absorber remains constant if the concentrate irradiation changes slightly, even changing the airflow rate. The results obtained in this work allow us to establish a selection criterion for porous absorbers that operate within solar reactors; this criterion is based on knowledge of the physical properties of the porous absorber, the environment, the working conditions, and the results expected. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

18 pages, 5512 KiB  
Article
A Facile and Scalable Approach in the Fabrication of Tailored 3D Graphene Foam via Freeze Drying
by Tony Thomas and Arvind Agarwal
Materials 2021, 14(4), 864; https://doi.org/10.3390/ma14040864 - 11 Feb 2021
Cited by 20 | Viewed by 4984
Abstract
One of the challenges in the processing of advanced composite materials with 2D reinforcement is their extensive agglomeration in the matrix. 3D architecture of 2D graphene sheets into a Graphene Foam (GrF) assembly has emerged as an effective way to overcome agglomeration. The [...] Read more.
One of the challenges in the processing of advanced composite materials with 2D reinforcement is their extensive agglomeration in the matrix. 3D architecture of 2D graphene sheets into a Graphene Foam (GrF) assembly has emerged as an effective way to overcome agglomeration. The highly reticulated network of branches and nodes of GrF offers a seamless pathway for photon and electron conduction in the matrix along with improved mechanical properties. 3D GrF nano-filler is often fabricated by chemical vapor deposition (CVD) technique, which demands high energy, slow deposition rate, and restricting production to small scale. This work highlights freeze-drying (FD) technique to produce 3D graphene nanoplatelets (GNP) foam with a similar hierarchical structure to the CVD GrF. The FD technique using water as the main chemical in 3D GNP foam production is an added advantage. The flexibility of the FD in producing GNP foams of various pore size and morphology is elucidated. The simplicity with which one can engineer thermodynamic conditions to tailor the pore shape and morphology is presented here by altering the GNP solid loading and mold geometry. The FD 3D GNP foam is mechanically superior to CVD GrF as it exhibited 1280 times higher elastic modulus. However, thermal diffusivity of the FD GNP foam is almost 0.5 times the thermal diffusivity of the CVD GrF due to the defects in GNP particles and pore architecture. The versatility in GNP foam scalability and compatibility to form foam of other 1D and 2D material systems (e.g., carbon nanotubes, boron nitride nanotubes, and boron nitride nanoplatelets) brings a unique dimensionality to FD as an advanced engineering foam development process. Full article
(This article belongs to the Special Issue Graphene Foam Based Composites)
Show Figures

Graphical abstract

14 pages, 2899 KiB  
Article
Highly Porous Polymer-Derived Bioceramics Based on a Complex Hardystonite Solid Solution
by Hamada Elsayed, Michele Secco, Federico Zorzi, Katharina Schuhladen, Rainer Detsch, Aldo R. Boccaccini and Enrico Bernardo
Materials 2019, 12(23), 3970; https://doi.org/10.3390/ma12233970 - 30 Nov 2019
Cited by 11 | Viewed by 3095
Abstract
Highly porous bioceramics, based on a complex hardystonite solid solution, were developed from silicone resins and micro-sized oxide fillers fired in air at 950 °C. Besides CaO, SrO, MgO, and ZnO precursors, and the commercial embedded silicone resins, calcium borate was essential in [...] Read more.
Highly porous bioceramics, based on a complex hardystonite solid solution, were developed from silicone resins and micro-sized oxide fillers fired in air at 950 °C. Besides CaO, SrO, MgO, and ZnO precursors, and the commercial embedded silicone resins, calcium borate was essential in providing the liquid phase upon firing and favouring the formation of an unprecedented hardystonite solid solution, corresponding to the formula (Ca0.70Sr0.30)2(Zn0.72Mg0.15Si0.13) (Si0.85B0.15)2O7. Silicone-filler mixtures could be used in the form of thick pastes for direct ink writing of reticulated scaffolds or for direct foaming. The latter shaping option benefited from the use of hydrated calcium borate, which underwent dehydration, with water vapour release, at a low temperature (420 °C). Both scaffolds and foams confirmed the already-obtained phase assemblage, after firing, and exhibited remarkable strength-to-density ratios. Finally, preliminary cell tests excluded any cytotoxicity that could be derived from the formation of a boro-silicate glassy phase. Full article
(This article belongs to the Special Issue Advances in Additive Manufacturing of Bioceramics)
Show Figures

Figure 1

14 pages, 3889 KiB  
Article
Squeeze Flow of Bingham Fluids through Reticulated, Compressed Foams
by Petrică Turtoi, Mircea D. Pascovici and Traian Cicone
Lubricants 2019, 7(10), 86; https://doi.org/10.3390/lubricants7100086 - 27 Sep 2019
Cited by 1 | Viewed by 3951
Abstract
The paper presents experimental and theoretical results for the planar squeeze flow of a finite volume of viscoplastic material through a highly deformable porous layer. The central zone of an annular disc made of a reticulated polyurethane foam with high porosity (ε [...] Read more.
The paper presents experimental and theoretical results for the planar squeeze flow of a finite volume of viscoplastic material through a highly deformable porous layer. The central zone of an annular disc made of a reticulated polyurethane foam with high porosity (ε > 0.97) was fully filled with tooth paste. The porous disc placed between two flat, impermeable, parallel, and rigid discs was subjected to compression and the normal force was recorded. After compression, the radial extension of the squeezed fluid was measured. The visualisation of the compressed disc managed to provide evidence of a tortuous flow inside the porous structure. An original analytical model is proposed for the prediction of the front of the flow inside the porous layer and corresponding resistant normal force. The model combines the Covey and Stanmore (1981) model for squeeze flow of a Bingham fluid inside the central zone, with an original approach for flow through the reticulated foams, based on the concept of “equivalent flow tubes” with variable tortuosity. This explorative investigation is of interest for innovative shock absorbers. The model validity covers both low and high plasticity numbers and was experimentally validated for low speed. Full article
(This article belongs to the Special Issue Fluid-Film Lubrication II)
Show Figures

Graphical abstract

23 pages, 6894 KiB  
Article
Refitting of Zirconia Toughening into Open-Cellular Alumina Foams by Infiltration with Zirconyl Nitrate
by Ulf Betke, Marcel Scheunemann and Michael Scheffler
Materials 2019, 12(12), 1886; https://doi.org/10.3390/ma12121886 - 12 Jun 2019
Cited by 14 | Viewed by 3939
Abstract
The present work describes the combination of the well-established dispersion infiltration of the hollow struts in reticulated porous ceramics (RPCs) and the salt solution infiltration of the remaining strut porosity. This approach is applied on alumina foams, which are loaded subsequently with a [...] Read more.
The present work describes the combination of the well-established dispersion infiltration of the hollow struts in reticulated porous ceramics (RPCs) and the salt solution infiltration of the remaining strut porosity. This approach is applied on alumina foams, which are loaded subsequently with a dispersion of sub-micrometer alumina particles and a ZrO(NO3)2 solution. The zirconyl nitrate is converted into a ZrO2 transformation toughening phase during the final sintering step. As a consequence of the complex microstructure evolution during the consecutive infiltration cycles, the reinforcement phase concentrates selectively at the weak spots of RPC structures—namely, the hollow strut cavities and longitudinal cracks along the struts. As a consequence, a severe improvement of the compressive strength is observed: The average compressive strength, normalized to a porosity of 91.6 vol.%, is 1.47 MPa for the Al2O3/ZrO2 infiltrated foams, which is an improvement by 40% with respect to alumina-only loaded foams (1.05 MPa) or by 206% compared to uninfiltrated alumina RPCs (0.48 MPa). The compressive strength results are correlated to infiltration parameters and the properties of the infiltration fluids, for example the rheological behavior and the size of the Zr solute species in the respective ZrO(NO3)2 solution. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

7 pages, 2828 KiB  
Communication
Synthesis of α-Fe2O3 and Fe-Mn Oxide Foams with Highly Tunable Magnetic Properties by the Replication Method from Polyurethane Templates
by Yuping Feng, Jordina Fornell, Huiyan Zhang, Pau Solsona, Maria Dolors Barό, Santiago Suriñach, Eva Pellicer and Jordi Sort
Materials 2018, 11(2), 280; https://doi.org/10.3390/ma11020280 - 11 Feb 2018
Cited by 12 | Viewed by 4434
Abstract
Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU) templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at [...] Read more.
Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU) templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N2 atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe2O3) foams are obtained from the metallic iron slurry independently of the N2 flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N2 flow. While the main phases for a N2 flow rate of 180 L/h are α-Fe2O3 and FeMnO3, the predominant phase for high N2 flow rates (e.g., 650 L/h) is Fe2MnO4. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe2MnO4 foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N2 flow rate (i.e., the amount of Fe2MnO4) is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids. Full article
Show Figures

Figure 1

15 pages, 19786 KiB  
Article
Improving the Strength of ZTA Foams with Different Strategies: Immersion Infiltration and Recoating
by Xiaodong Chen, Ulf Betke, Stefan Rannabauer, Paul Clemens Peters, Gerrit Maximilian Söffker and Michael Scheffler
Materials 2017, 10(7), 735; https://doi.org/10.3390/ma10070735 - 1 Jul 2017
Cited by 13 | Viewed by 5360
Abstract
The combination of high strength and toughness, excellent wear resistance and moderate density makes zirconia-toughened alumina (ZTA) a favorable ceramic, and the foam version of it may also exhibit excellent properties. Here, ZTA foams were prepared by the polymer sponge replication method. We [...] Read more.
The combination of high strength and toughness, excellent wear resistance and moderate density makes zirconia-toughened alumina (ZTA) a favorable ceramic, and the foam version of it may also exhibit excellent properties. Here, ZTA foams were prepared by the polymer sponge replication method. We developed an immersion infiltration approach with simple equipment and operations to fill the hollow struts in as-prepared ZTA foams, and also adopted a multiple recoating method (up to four cycles) to strengthen them. The solid load of the slurry imposed a significant influence on the properties of the ZTA foams. Immersion infiltration gave ZTA foams an improvement of 1.5 MPa in compressive strength to 2.6 MPa at 87% porosity, only resulting in a moderate reduction of porosity (2–3%). The Weibull modulus of the infiltrated foams was in the range of 6–9. The recoating method generated an increase in compression strength to 3.3–11.4 MPa with the reduced porosity of 58–83%. The recoating cycle dependency of porosity and compression strength is nearly linear. The immersion infiltration strategy is comparable to the industrially-established recoating method and can be applied to other reticulated porous ceramics (RPCs). Full article
(This article belongs to the Special Issue Porous Ceramics)
Show Figures

Figure 1

19 pages, 8379 KiB  
Article
High Temperature Epoxy Foam: Optimization of Process Parameters
by Samira El Gazzani, Valérie Nassiet, Jean-Pierre Habas, Christian Freydier and Aline Hilleshein
Polymers 2016, 8(6), 215; https://doi.org/10.3390/polym8060215 - 7 Jun 2016
Cited by 25 | Viewed by 9548
Abstract
For many years, reduction of fuel consumption has been a major aim in terms of both costs and environmental concerns. One option is to reduce the weight of fuel consumers. For this purpose, the use of a lightweight material based on rigid foams [...] Read more.
For many years, reduction of fuel consumption has been a major aim in terms of both costs and environmental concerns. One option is to reduce the weight of fuel consumers. For this purpose, the use of a lightweight material based on rigid foams is a relevant choice. This paper deals with a new high temperature epoxy expanded material as substitution of phenolic resin, classified as potentially mutagenic by European directive Reach. The optimization of thermoset foam depends on two major parameters, the reticulation process and the expansion of the foaming agent. Controlling these two phenomena can lead to a fully expanded and cured material. The rheological behavior of epoxy resin is studied and gel time is determined at various temperatures. The expansion of foaming agent is investigated by thermomechanical analysis. Results are correlated and compared with samples foamed in the same temperature conditions. The ideal foaming/gelation temperature is then determined. The second part of this research concerns the optimization of curing cycle of a high temperature trifunctional epoxy resin. A two-step curing cycle was defined by considering the influence of different curing schedules on the glass transition temperature of the material. The final foamed material has a glass transition temperature of 270 °C. Full article
Show Figures

Graphical abstract

9 pages, 763 KiB  
Article
Open-Cellular Co-Base and Ni-Base Superalloys Fabricated by Electron Beam Melting
by Lawrence Murr, Shujun Li, Yuxing Tian, Krista Amato, Edwin Martinez and Frank Medina
Materials 2011, 4(4), 782-790; https://doi.org/10.3390/ma4040782 - 14 Apr 2011
Cited by 23 | Viewed by 9279
Abstract
Reticulated mesh samples of Co-29Cr-6Mo alloy and Ni-21Cr-9Mo-4Nb alloy (625) and stochastic foam samples of Co-29Cr-6Mo alloy fabricated by electron beam melting were characterized by optical metallography, and the dynamic stiffness (Young’s modulus) was measured by resonant frequency analysis. The relative stiffness (E/E [...] Read more.
Reticulated mesh samples of Co-29Cr-6Mo alloy and Ni-21Cr-9Mo-4Nb alloy (625) and stochastic foam samples of Co-29Cr-6Mo alloy fabricated by electron beam melting were characterized by optical metallography, and the dynamic stiffness (Young’s modulus) was measured by resonant frequency analysis. The relative stiffness (E/Es) versus relative density (ρ/ρs) plotted on a log-log basis resulted in a fitted straight line with a slope n ≅ 2, consistent with that for ideal open cellular materials. Full article
(This article belongs to the Special Issue Aerospace Materials)
Show Figures

Figure 1

Back to TopTop