Isolation of Garlic Bioactives by Pressurized Liquid and Subcritical Water Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Subcritical Water Extraction
2.2. Pressurized-Liquid Extraction
2.2.1. Model Adequacy
2.2.2. Impact of PLE Variables on Targeted Responses
2.2.3. Multi-Response Optimization of PLE
3. Materials and Methods
3.1. Chemicals
3.2. Plant Material
3.3. Sample Preparation
3.4. Pressurized Liquid Extraction and Subcritical Water Extraction
3.5. Total Phenols Content (TP)
3.6. DPPH· Scavenging Assay
3.7. Ferric Reducing Antioxidant Power (FRAP) Assay
3.8. ABTS+· Scavenging Assay
3.9. Allicin Determination by LC-MS/MS
3.10. Experimental Design and Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zaini, A.S.; Putra, N.R.; Idham, Z.; Md Norodin, N.S.; Mohd Rasidek, N.A.; Che Yunus, M.A. Mini Review: Extraction of Allicin from Allium sativum using Subcritical Water Extraction. IOP Conf. Ser. Mater. Sci. Eng. 2020, 932, 012023. [Google Scholar] [CrossRef]
- Liu, J.; Ji, F.; Chen, F.; Guo, W.; Yang, M.; Huang, S.; Zhang, F.; Liu, Y. Determination of garlic phenolic compounds using supercritical fluid extraction coupled to supercritical fluid chromatography/tandem mass spectrometry. J. Pharm. Biomed. Anal. 2018, 159, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Ibañez, E.; Kubátová, A.; Señoráns, F.J.; Cavero, S.; Reglero, U.; Hawthorne, S.B. Subcritical water extraction of antioxidant compounds from rosemary plants. J. Agric. Food Chem. 2003, 51, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.T.; Kheirkhah, H.; Baroutian, S.; Quek, S.Y.; Young, B.R. Subcritical water extraction of bioactive compounds from waste onion skin. J. Clean. Prod. 2018, 183, 487–494. [Google Scholar] [CrossRef]
- Jokić, S.; Aladić, K.; Šubarić, D. Subcritical Water Extraction Laboratory Plant Design and Application. Annu. Croat. Acad. Eng. 2017, 1, 247–258. [Google Scholar]
- Pavlić, B.; Vidović, S.; Vladić, J.; Radosavljević, R.; Cindrić, M.; Zeković, Z. Subcritical water extraction of sage (Salvia officinalis L.) by-products—Process optimization by response surface methodology. J. Supercrit. Fluids 2016, 116, 36–45. [Google Scholar] [CrossRef]
- Castro-Puyana, M.; Marina, M.L.; Plaza, M. Water as green extraction solvent: Principles and reasons for its use. Curr. Opin. Green Sustain. Chem. 2017, 5, 31–36. [Google Scholar] [CrossRef]
- Ko, M.-J.J.; Cheigh, C.-I.I.; Chung, M.-S.S. Relationship analysis between flavonoids structure and subcritical water extraction (SWE). Food Chem. 2014, 143, 147–155. [Google Scholar] [CrossRef]
- Tomšik, A.; Pavlić, B.; Vladić, J.; Cindrić, M.; Jovanov, P.; Sakač, M.; Mandić, A.; Vidović, S. Subcritical water extraction of wild garlic (Allium ursinum L.) and process optimization by response surface methodology. J. Supercrit. Fluids 2017, 128, 79–88. [Google Scholar] [CrossRef]
- Gbashi, S.; Adebo, O.A.; Piater, L.; Madala, N.E.; Njobeh, P.B. Subcritical Water Extraction of Biological Materials. Sep. Purif. Rev. 2016, 46, 21–34. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, H.; Dzah, C.S.; Zhang, J.; Diao, C.; Ma, H.; Duan, Y. Subcritical water extraction, identification, antioxidant and antiproliferative activity of polyphenols from lotus seedpod. Sep. Purif. Technol. 2020, 236, 116217. [Google Scholar] [CrossRef]
- Asl, A.H.; Khajenoori, M.; Asl, A.H.; Khajenoori, M. Subcritical Water Extraction. In Mass Transfer—Advances in Sustainable Energy and Environment Oriented Numerical Modeling; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Rovio, S.; Hartonen, K.; Holm, Y.; Hiltunen, R.; Riekkola, M.-L. Extraction of clove using pressurized hot water. Flavour Fragr. J. 1999, 14, 399–404. [Google Scholar] [CrossRef]
- Lachos-Perez, D.; Baseggio, A.M.; Mayanga-Torres, P.C.; Maróstica, M.R.; Rostagno, M.A.; Martínez, J.; Forster-Carneiro, T. Subcritical water extraction of flavanones from defatted orange peel. J. Supercrit. Fluids 2018, 138, 7–16. [Google Scholar] [CrossRef]
- Smith, R.M. Extractions with superheated water. J. Chromatogr. A 2002, 975, 31–46. [Google Scholar] [CrossRef]
- Ramos, L.; Kristenson, E.M.; Brinkman, U.A.T. Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. J. Chromatogr. A 2002, 975, 3–29. [Google Scholar] [CrossRef]
- Zhang, X.; Li, N.; Lu, X.; Liu, P.; Qiao, X. Effects of temperature on the quality of black garlic. J. Sci. Food Agric. 2016, 96, 2366–2372. [Google Scholar] [CrossRef]
- Herrero, M.; Castro-Puyana, M.; Rocamora-Reverte, L.; Ferragut, J.A.; Cifuentes, A.; Ibáñez, E. Formation and relevance of 5-hydroxymethylfurfural in bioactive subcritical water extracts from olive leaves. Food Res. Int. 2012, 47, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Wagner, W.; Pruß, A. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data 2002, 31, 387. [Google Scholar] [CrossRef] [Green Version]
- Curren, M.S.S.; King, J.W. Solubility of triazine pesticides in pure and modified subcritical water. Anal. Chem. 2001, 73, 740–745. [Google Scholar] [CrossRef]
- Tangkhavanich, B.; Kobayashi, T.; Adachi, S. Effects of repeated treatment on the properties of rice stem extract using subcritical water, ethanol, and their mixture. J. Ind. Eng. Chem. 2014, 20, 2610–2614. [Google Scholar] [CrossRef]
- Wiboonsirikul, J.; Kimura, Y.; Kadota, M.; Morita, H.; Tsuno, T.; Adachi, S. Properties of extracts from defatted rice bran by its subcritical water treatment. J. Agric. Food Chem. 2007, 55, 8759–8765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durling, N.E.; Catchpole, O.J.; Grey, J.B.; Webby, R.F.; Mitchell, K.A.; Foo, L.Y.; Perry, N.B. Extraction of phenolics and essential oil from dried sage (Salvia officinalis) using ethanol–water mixtures. Food Chem. 2007, 101, 1417–1424. [Google Scholar] [CrossRef]
- Khuwijitjaru, P.; Watsanit, K.; Adachi, S. Carbohydrate content and composition of product from subcritical water treatment of coconut meal. J. Ind. Eng. Chem. 2012, 18, 225–229. [Google Scholar] [CrossRef]
- Kim, W.J.; Veriansyah, B.; Lee, Y.W.; Kim, J.; Kim, J.D. Extraction of mangiferin from Mahkota Dewa (Phaleria macrocarpa) using subcritical water. J. Ind. Eng. Chem. 2010, 16, 425–430. [Google Scholar] [CrossRef]
- Mrkonjić, Ž.; Rakić, D.; Kaplan, M.; Teslić, N.; Zeković, Z.; Pavlić, B. Pressurized-liquid extraction as an efficient method for valorization of Thymus serpyllum herbal dust towards sustainable production of antioxidants. Molecules 2021, 26, 2548. [Google Scholar] [CrossRef]
- Maravić, N.; Teslić, N.; Nikolić, D.; Dimić, I.; Šereš, Z.; Pavlić, B. From agricultural waste to antioxidant-rich extracts: Green techniques in extraction of polyphenols from sugar beet leaves. Sustain. Chem. Pharm. 2022, 28, 100728. [Google Scholar] [CrossRef]
- Milić, A.; Daničić, T.; Horecki, A.T.; Šumić, Z.; Teslić, N.; Kovačević, D.B.; Putnik, P.; Pavlić, B. Sustainable Extractions for Maximizing Content of Antioxidant Phytochemicals from Black and Red Currants. Foods 2022, 11, 325. [Google Scholar] [CrossRef]
- Cvjetko Bubalo, M.; Vidović, S.; Radojčić Redovniković, I.; Jokić, S. New perspective in extraction of plant biologically active compounds by green solvents. Food Bioprod. Process. 2018, 109, 52–73. [Google Scholar] [CrossRef]
- Ignjatov, M.; Milosević, D.; Ivanović, Ž.; Karaman, M.; Vlajić, S.; Nikolić, Z.; Gvozdanović-Varga, J. Morphological and pathogenic properties of Fusarium proliferatum isolates: The causal agent of garlic (Allium sativum L.): Rot in Serbia. Ratar. Povrt. 2018, 55, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Cavalcanti, V.P.; Aazza, S.; Bertolucci, S.K.V.; Rocha, J.P.M.; Coelho, A.D.; Oliveira, A.J.M.; Mendes, L.C.; Pereira, M.M.A.; Morais, L.C.; Forim, M.R.; et al. Solvent Mixture Optimization in the Extraction of Bioactive Compounds and Antioxidant Activities from Garlic (Allium sativum L.). Molecules 2021, 26, 6026. [Google Scholar] [CrossRef]
- Zaini, A.S.; Putra, N.R.; Idham, Z.; Nurfaiz, A.; Faizal, M.; Azizi, M.; Yunus, C.; Mamat, H.; Hazim, A.; Aziz, A. Comparison of Alliin Recovery from Allium sativum L. Using Soxhlet Extraction and Subcritical Water Extraction. ChemEngineering 2022, 6, 73. [Google Scholar] [CrossRef]
- Ciric, A.; Krajnc, B.; Heath, D.; Ogrinc, N. Response surface methodology and artificial neural network approach for the optimization of ultrasound-assisted extraction of polyphenols from garlic. Food Chem. Toxicol. 2020, 135, 110976. [Google Scholar] [CrossRef] [PubMed]
- Songsungkan, J.; Chanthai, S. Determination of synergic antioxidant activity of the methanol/ethanol extract of allicin in the presence of total phenolics obtained from the garlic capsule compared with fresh and baked garlic clove. Int. Food Res. J. 2014, 21, 2377. [Google Scholar]
- Beato, V.M.; Orgaz, F.; Mansilla, F.; Montaño, A. Changes in Phenolic Compounds in Garlic (Allium sativum L.) Owing to the Cultivar and Location of Growth. Plant Foods Hum. Nutr. 2011, 66, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Farías-Campomanes, A.M.; Horita, C.N.; Pollonio, M.A.R.; Meireles, M.A.A. Allicin-rich extract obtained from garlic by pressurized liquid extraction: Quantitative determination of allicin in garlic samples. Food Public Health 2014, 4, 272–278. [Google Scholar]
- Del Valle, J.M.; Glatzel, V.; Martínez, J.L. Supercritical CO2 extraction of allicin from garlic flakes: Screening and kinetic studies. Food Res. Int. 2012, 45, 216–224. [Google Scholar] [CrossRef]
- Rybak, M.E.; Calvey, E.M.; Harnly, J.M. Quantitative Determination of Allicin in Garlic: Supercritical Fluid Extraction and Standard Addition of Alliin. J. Agric. Food Chem. 2004, 52, 682–687. [Google Scholar] [CrossRef]
- Zeković, Z.; Pintać, D.; Majkić, T.; Vidović, S.; Mimica-Dukić, N.; Teslić, N.; Versari, A.; Pavlić, B.; Pinta, D.; Versari, A.; et al. Utilization of sage by-products as raw material for antioxidants recovery—Ultrasound versus microwave-assisted extraction. Ind. Crops Prod. 2017, 99, 49–59. [Google Scholar] [CrossRef]
- Raymond, M.H.; Douglas, M.C.; Anderson-Cook, C.C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 978-1-118-91601-8. [Google Scholar]
- Marić, B.; Pavlić, B.; Čolović, D.; Abramović, B.; Zeković, Z.; Bodroža-Solarov, M.; Ilić, N.; Teslić, N. Recovery of high-content ω–3 fatty acid oil from raspberry (Rubus idaeus L.) seeds: Chemical composition and functional quality. LWT 2020, 130, 109627. [Google Scholar] [CrossRef]
- Saldana, M.D.A.; Ekaette, I.; Ramirez, C.S.V.; dos Reis Coimbra, J.S.; Cardozo-Filho, L. Pressurized Fluid Extraction of Phytochemicals from Fruits, Vegetables, Cereals, and Herbs. Fruit Veg. Phytochem. Chem. Hum. Health Second Ed. 2017, 1, 721–748. [Google Scholar] [CrossRef]
- Ciulu, M.; Quirantes-Piné, R.; Spano, N.; Sanna, G.; Borrás-Linares, I.; Segura-Carretero, A. Evaluation of new extraction approaches to obtain phenolic compound-rich extracts from Stevia rebaudiana Bertoni leaves. Ind. Crops Prod. 2017, 108, 106–112. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Quirantes-Piné, R.; Segura-Carretero, A. Optimization of drying process and pressurized liquid extraction for recovery of bioactive compounds from avocado peel by-product. Electrophoresis 2018, 39, 1908–1916. [Google Scholar] [CrossRef] [PubMed]
- Dobroslavić, E.; Elez Garofulić, I.; Šeparović, J.; Zorić, Z.; Pedisić, S.; Dragović-Uzelac, V. Pressurized Liquid Extraction as a Novel Technique for the Isolation of Laurus nobilis L. Leaf Polyphenols. Molecules 2022, 27, 5099. [Google Scholar] [CrossRef] [PubMed]
- Putnik, P.; Barba, F.J.; Španić, I.; Zorić, Z.; Dragović-Uzelac, V.; Bursać Kovačević, D. Green extraction approach for the recovery of polyphenols from Croatian olive leaves (Olea europea). Food Bioprod. Process. 2017, 106, 19–28. [Google Scholar] [CrossRef]
- Vakula, A.; Horecki-Tepić, A.; Šumić, Z.; Vidović, S.; Drinić, Z.; Pavlić, B. Optimization of garlic (Allium sativum L.) vacuum drying process by response surface methodology (RSM). J. Process. Energy Agric. 2016, 20, 114–121. [Google Scholar]
- Pavlić, B.; Teslić, N.; Vidaković, A.; Vidović, S.; Velićanski, A.; Versari, A.; Radosavljević, R.; Zeković, Z. Sage processing from by-product to high quality powder: I. Bioactive potential. Ind. Crops Prod. 2017, 107, 81–89. [Google Scholar] [CrossRef]
Run | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Responses | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ethanol Concentration [%] | Cycles | Extraction Time [min] | Temperature [°C] | TP [mg GAE/100 g] | DPPH [µmol TE/g] | FRAP [µmol Fe2+/g] | ABTS [µmol TE/g] | AC [mg/100 g] | |||||
1 | 0 | 60 | 1 | 3 | 0 | 2 | 0 | 90 | 173.96 | 2.75 | 6.14 | 5.93 | 21.40 |
2 | 0 | 60 | 0 | 2 | 0 | 2 | 0 | 90 | 172.24 | 2.74 | 6.65 | 5.69 | 23.18 |
3 | 0 | 60 | 0 | 2 | 0 | 2 | 0 | 90 | 164.90 | 2.81 | 6.30 | 5.88 | 22.13 |
4 | 1 | 75 | −1 | 1 | −1 | 1 | −1 | 70 | 92.36 | 2.35 | 4.54 | 4.66 | 17.66 |
5 | 1 | 75 | 1 | 3 | −1 | 1 | 1 | 110 | 153.75 | 2.72 | 6.81 | 6.06 | 21.76 |
6 | −1 | 45 | 1 | 3 | −1 | 1 | −1 | 70 | 146.33 | 2.52 | 4.83 | 4.94 | 21.41 |
7 | 1 | 75 | −1 | 1 | −1 | 1 | 1 | 110 | 149.63 | 2.85 | 7.02 | 6.55 | 16.03 |
8 | −1 | 45 | 1 | 3 | 1 | 3 | 1 | 110 | 353.71 | 3.28 | 8.06 | 7.38 | 19.33 |
9 | 1 | 75 | −1 | 1 | 1 | 3 | 1 | 110 | 130.54 | 3.12 | 8.95 | 5.99 | 20.09 |
10 | 0 | 60 | 0 | 2 | 0 | 2 | 1 | 110 | 284.16 | 3.41 | 8.64 | 7.06 | 17.71 |
11 | 0 | 60 | 0 | 2 | −1 | 1 | 0 | 90 | 146.78 | 2.50 | 5.53 | 5.18 | 19.60 |
12 | 1 | 75 | 1 | 3 | 1 | 3 | 1 | 110 | 194.77 | 3.92 | 10.17 | 7.63 | 21.49 |
13 | 0 | 60 | 0 | 2 | 0 | 2 | −1 | 70 | 118.56 | 2.49 | 5.09 | 4.87 | 21.79 |
14 | 0 | 60 | 0 | 2 | 0 | 2 | 0 | 90 | 181.52 | 3.15 | 7.53 | 4.87 | 22.09 |
15 | −1 | 45 | 1 | 3 | 1 | 3 | −1 | 70 | 136.98 | 2.51 | 4.99 | 6.12 | 19.09 |
16 | −1 | 45 | −1 | 1 | 1 | 3 | 1 | 110 | 391.45 | 3.44 | 8.61 | 5.02 | 21.29 |
17 | 0 | 60 | 0 | 2 | 0 | 2 | 0 | 90 | 198.59 | 3.14 | 7.50 | 6.50 | 22.18 |
18 | 0 | 60 | 0 | 2 | 1 | 3 | 0 | 90 | 172.61 | 2.92 | 7.47 | 6.15 | 20.53 |
19 | −1 | 45 | −1 | 1 | 1 | 3 | −1 | 70 | 194.32 | 2.97 | 5.88 | 5.89 | 21.66 |
20 | 1 | 75 | −1 | 1 | 1 | 3 | −1 | 70 | 114.37 | 3.07 | 7.04 | 5.99 | 23.71 |
21 | −1 | 45 | −1 | 1 | −1 | 1 | 1 | 110 | 200.87 | 2.53 | 4.53 | 5.50 | 22.08 |
22 | 0 | 60 | 0 | 2 | 0 | 2 | 0 | 90 | 154.27 | 2.79 | 5.49 | 4.98 | 23.11 |
23 | 0 | 60 | −1 | 1 | 0 | 2 | 0 | 90 | 158.69 | 2.99 | 6.20 | 5.62 | 19.11 |
24 | 1 | 75 | 1 | 3 | 1 | 3 | −1 | 70 | 141.32 | 3.38 | 7.54 | 5.91 | 21.08 |
25 | −1 | 45 | 0 | 2 | 0 | 2 | 0 | 90 | 184.74 | 2.81 | 4.64 | 5.97 | 18.33 |
26 | −1 | 45 | −1 | 1 | −1 | 1 | −1 | 70 | 130.24 | 2.71 | 3.81 | 5.50 | 17.47 |
27 | 1 | 75 | 1 | 3 | −1 | 1 | −1 | 70 | 98.57 | 2.37 | 4.59 | 4.74 | 24.04 |
28 | −1 | 45 | 1 | 3 | −1 | 1 | 1 | 110 | 265.75 | 3.13 | 5.99 | 4.55 | 20.80 |
29 | 1 | 75 | 0 | 2 | 0 | 2 | 0 | 90 | 139.52 | 2.76 | 6.30 | 6.68 | 21.54 |
Term | TP | DPPH | FRAP |
---|---|---|---|
β0 | 172.08 | 2.87 | 6.46 |
Linear | |||
β1 | −43.86 * | 0.0358 | 0.6456 * |
β2 | 5.70 | 0.0313 | 0.1417 |
β3 | 24.77 * | 0.2734 * | 1.17 * |
β4 | 52.87 * | 0.2241 * | 1.14 * |
Interaction | |||
β12 | 7.23 | 0.0749 | 0.0333 |
β13 | −15.41 ** | 0.1184 ** | 0.1483 |
β14 | −26.36 * | −0.0143 | 0.0975 |
β23 | −5.95 | 0.0126 | −0.1294 |
β24 | 6.47 | 0.0894 | 0.0778 |
β34 | 11.31 | 0.0331 | 0.2338 |
Quadratic | |||
β11 | −8.09 | −0.0283 | −0.7856 |
β22 | −3.90 | 0.0545 | −0.0887 |
β33 | −10.52 | −0.1041 | 0.2439 |
β44 | 31.14 | 0.1348 | 0.6092 |
R2 a | 0.898 | 0.760 | 0.882 |
CV b | 17.49 | 8.73 | 11.72 |
pm—Value c | 0.0001 | 0.0196 | 0.0003 |
pfit—Value d | 0.0847 | 0.3063 | 0.7177 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krstić, M.; Teslić, N.; Bošković, P.; Obradović, D.; Zeković, Z.; Milić, A.; Pavlić, B. Isolation of Garlic Bioactives by Pressurized Liquid and Subcritical Water Extraction. Molecules 2023, 28, 369. https://doi.org/10.3390/molecules28010369
Krstić M, Teslić N, Bošković P, Obradović D, Zeković Z, Milić A, Pavlić B. Isolation of Garlic Bioactives by Pressurized Liquid and Subcritical Water Extraction. Molecules. 2023; 28(1):369. https://doi.org/10.3390/molecules28010369
Chicago/Turabian StyleKrstić, Marko, Nemanja Teslić, Perica Bošković, Darija Obradović, Zoran Zeković, Anita Milić, and Branimir Pavlić. 2023. "Isolation of Garlic Bioactives by Pressurized Liquid and Subcritical Water Extraction" Molecules 28, no. 1: 369. https://doi.org/10.3390/molecules28010369
APA StyleKrstić, M., Teslić, N., Bošković, P., Obradović, D., Zeković, Z., Milić, A., & Pavlić, B. (2023). Isolation of Garlic Bioactives by Pressurized Liquid and Subcritical Water Extraction. Molecules, 28(1), 369. https://doi.org/10.3390/molecules28010369