Spectrally Selective Full-Color Single-Component Organic Photodetectors Based on Donor-Acceptor Conjugated Molecules
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the Materials
2.2. Optical Properties of the Materials
2.3. Charge Transport
2.4. Responsivity Spectra
2.5. Time-Resolved Response
2.6. Photodetectors Specific Detectivity
3. Materials and Methods
3.1. Photodetectors Fabrication and Characterization
3.2. ChargeCarrier Mobility Measurements
3.3. Time-Resolved Response of Photodetectors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ren, H.; Chen, J.; Li, Y.; Tang, J. Recent Progress in Organic Photodetectors and Their Applications. Adv. Sci. 2021, 8, 2002418. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Y.; Wen, H.; Bao, Q.; Shen, L.; Ding, L. Organic Photodetectors: Materials, Structures, and Challenges. Sol. RRL 2020, 4, 2000139. [Google Scholar] [CrossRef]
- Feron, K.; Lim, R.; Sherwood, C.; Keynes, A.; Brichta, A.; Dastoor, P. Organic Bioelectronics: Materials and Biocompatibility. Int. J. Mech. Sci. 2018, 19, 2382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martino, N.; Ghezzi, D.; Benfenati, F.; Lanzani, G.; Antognazza, M.R. Organic Semiconductors for Artificial Vision. J. Mater. Chem. B 2013, 1, 3768. [Google Scholar] [CrossRef] [PubMed]
- Shaposhnik, P.A.; Zapunidi, S.A.; Shestakov, M.V.; Agina, E.V.; Ponomarenko, S.A. Modern Bio and Chemical Sensors and Neuromorphic Devices Based on Organic Semiconductors. Russ. Chem. Rev. 2020, 89, 1483–1506. [Google Scholar] [CrossRef]
- Skhunov, M.; Solodukhin, A.N.; Giannakou, P.; Askew, L.; Luponosov, Y.N.; Balakirev, D.O.; Kalinichenko, N.K.; Marko, I.P.; Sweeney, S.J.; Ponomarenko, S.A. Pixelated Full-Colour Small Molecule Semiconductor Devices towards Artificial Retinas. J. Mater. Chem. C 2021, 9, 5858–5867. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A.; et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; et al. 18% Efficiency Organic Solar Cells. Sci. Bull. 2020, 65, 272–275. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.; Dyadishchev, I.; Sun, R.; Wu, Q.; Wu, Y.; Zhang, M.; Peregudova, S.; Ponomarenko, S.; Luponosov, Y.; Min, J. High-Performance Ternary Solar Cells by Introducing a Medium Bandgap Acceptor with Complementary Absorption, Reducing Energy Disorder and Enhancing Glass Transition Temperature. J. Mater. Chem. A 2022, 10, 17122–17131. [Google Scholar] [CrossRef]
- Lee, S.-H.; Yusoff, A.R.b.M.; Lee, C.; Yoon, S.C.; Noh, Y.-Y. Toward Color-Selective Printed Organic Photodetectors for High-Resolution Image Sensors: From Fundamentals to Potential Commercialization. Mater. Sci. Eng. R Rep. 2022, 147, 100660. [Google Scholar] [CrossRef]
- Liu, J.; Gao, M.; Kim, J.; Zhou, Z.; Chung, D.S.; Yin, H.; Ye, L. Challenges and Recent Advances in Photodiodes-Based Organic Photodetectors. Mater. Today 2021, 51, 475–503. [Google Scholar] [CrossRef]
- Ihama, M.; Hayashi, M.; Maehara, Y.; Mitsui, T.; Takada, S. CMOS Color Image Sensor with Overlaid Organic Photoelectric Conversion Layers Having Narrow Absorption Band: Depression of Dark Current. In Proceedings of the Organic Photovoltaics VIII, San Diego, CA, USA, 12 November 2007; Volume 6656. [Google Scholar] [CrossRef]
- Seo, H.; Aihara, S.; Namba, M.; Watabe, T.; Ohtake, H.; Kubota, M.; Egami, N.; Hiramatsu, T.; Matsuda, T.; Furuta, M.; et al. Stacked Color Image Sensor Using Wavelength-Selective Organic Photoconductive Films with Zinc-Oxide Thin Film Transistors as a Signal Readout Circuit. In Proceedings of the Sensors, Cameras, and Systems for Industrial/Scientific Applications XI, San Jose, CA, USA, 25 January 2010; Volume 7536. [Google Scholar] [CrossRef]
- Jansen-van Vuuren, R.D.; Armin, A.; Pandey, A.K.; Burn, P.L.; Meredith, P. Organic Photodiodes: The Future of Full Color Detection and Image Sensing. Adv. Mater. 2016, 28, 4766–4802. [Google Scholar] [CrossRef] [PubMed]
- Roncali, J.; Grosu, I. The Dawn of Single Material Organic Solar Cells. Adv. Sci. 2019, 6, 1801026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Li, N.; Brabec, C.J. Single-Component Organic Solar Cells with Competitive Performance. Org. Mater. 2021, 03, 228–244. [Google Scholar] [CrossRef]
- Canjeevaram Balasubramanyam, R.K.; Kandjani, A.E.; Harrison, C.J.; Abdul Haroon Rashid, S.S.A.; Sabri, Y.M.; Bhargava, S.K.; Narayan, R.; Basak, P.; Ippolito, S.J. 1,4-Dihydropyrrolo[3,2- b ]Pyrroles as a Single Component Photoactive Layer: A New Paradigm for Broadband Detection. ACS Appl. Mater. Interfaces 2017, 9, 27875–27882. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.-Z.; Chen, H.-C.; Liu, C.-W.; Chen, Y.-S.; Lo, Y.-C.; Tsao, C.-S.; Huang, Y.-C.; Liu, S.-W.; Wong, K.-T.; et al. Unveiling the Underlying Mechanism of Record-High Efficiency Organic near-Infrared Photodetector Harnessing a Single-Component Photoactive Layer. Mater. Horiz. 2020, 7, 1171–1179. [Google Scholar] [CrossRef]
- Pal, A.; Gedda, M.; Goswami, D.K. PTCDI-Ph Molecular Layer Stack-Based Highly Crystalline Microneedles As Single-Component Efficient Photodetector. ACS Appl. Electron. Mater. 2022, 4, 946–954. [Google Scholar] [CrossRef]
- Antoniou, G.; Yuan, P.; Koutsokeras, L.; Athanasopoulos, S.; Fazzi, D.; Panidi, J.; Georgiadou, D.G.; Prodromakis, T.; Keivanidis, P.E. Low-Power Supralinear Photocurrent Generation via Excited State Fusion in Single-Component Nanostructured Organic Photodetectors. J. Mater. Chem. C 2022, 10, 7575–7585. [Google Scholar] [CrossRef]
- Mannanov, A.L.; Savchenko, P.S.; Luponosov, Y.N.; Solodukhin, A.N.; Ponomarenko, S.A.; Paraschuk, D.Y. Charge Photogeneration and Recombination in Single-Material Organic Solar Cells and Photodetectors Based on Conjugated Star-Shaped Donor-Acceptor Oligomers. Org. Electron. 2020, 78, 105588. [Google Scholar] [CrossRef]
- Balakirev, D.O.; Luponosov, Y.N.; Mannanov, A.L.; Savchenko, P.S.; Minenkov, Y.; Paraschuk, D.Y.; Ponomarenko, S.A. Star-Shaped Benzotriindole-Based Donor-Acceptor Molecules: Synthesis, Properties and Application in Bulk Heterojunction and Single-Material Organic Solar Cells. Dye. Pigment. 2020, 181, 108523. [Google Scholar] [CrossRef]
- Solodukhin, A.N.; Luponosov, Y.N.; Mannanov, A.L.; Savchenko, P.S.; Bakirov, A.V.; Shcherbina, M.A.; Chvalun, S.N.; Paraschuk, D.Y.; Ponomarenko, S.A. Branched Electron-Donor Core Effect in D-π-A Star-Shaped Small Molecules on Their Properties and Performance in Single-Component and Bulk-Heterojunction Organic Solar Cells. Energies 2021, 14, 3596. [Google Scholar] [CrossRef]
- Luponosov, Y.N.; Solodukhin, A.N.; Mannanov, A.L.; Savchenko, P.S.; Raul, B.A.L.; Peregudova, S.M.; Surin, N.M.; Bakirov, A.V.; Shcherbina, M.A.; Chvalun, S.N.; et al. Effect of Oligothiophene π-Bridge Length in D-π-A Star-Shaped Small Molecules on Properties and Photovoltaic Performance in Single-Component and Bulk-Heterojunction Organic Solar Cells and Photodetectors. Mater. Today Energy 2021, 22, 100863. [Google Scholar] [CrossRef]
- Guerrero, A.; Garcia-Belmonte, G. Recent Advances to Understand Morphology Stability of Organic Photovoltaics. Nano-Micro Lett. 2017, 9, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, S.D.; Ran, N.A.; Heiber, M.C.; Nguyen, T.-Q. Small Is Powerful: Recent Progress in Solution-Processed Small Molecule Solar Cells. Adv. Energy Mater. 2017, 7, 1602242. [Google Scholar] [CrossRef]
- Roncali, J.; Leriche, P.; Blanchard, P. Molecular Materials for Organic Photovoltaics: Small Is Beautiful. Adv. Mater. 2014, 26, 3821–3838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalinichenko, N.K.; Balakirev, D.O.; Savchenko, P.S.; Mannanov, A.L.; Peregudova, S.M.; Paraschuk, D.Y.; Ponomarenko, S.A.; Luponosov, Y.N. Effects of Electron-Withdrawing Group and π-Conjugation Length in Donor-Acceptor Oligothiophenes on Their Properties and Performance in Non-Fullerene Organic Solar Cells. Dye. Pigment. 2021, 194, 109592. [Google Scholar] [CrossRef]
- Solodukhin, A.N.; Luponosov, Y.N.; Mannanov, A.L.; Dmitryakov, P.V.; Peregudova, S.M.; Chvalun, S.N.; Parashchuk, D.Y.; Ponomarenko, S.A. Effect of Branching on the Physical and Photovoltaic Properties of Donor–Acceptor Oligomers Based on Triphenylamine. Mendeleev Commun. 2019, 29, 385–387. [Google Scholar] [CrossRef]
- Luponosov, Y.N.; Solodukhin, A.N.; Mannanov, A.L.; Savchenko, P.S.; Minenkov, Y.; Paraschuk, D.Y.; Ponomarenko, S.A. Effect of Fused Triphenylamine Core in Star-Shaped Donor-π-Acceptor Molecules on Their Physicochemical Properties and Performance in Bulk Heterojunction Organic Solar Cells. Dye. Pigment. 2020, 177, 108260. [Google Scholar] [CrossRef]
- Bowmaker, J.K.; Dartnall, H.J. Visual Pigments of Rods and Cones in a Human Retina. J. Physiol. 1980, 298, 501–511. [Google Scholar] [CrossRef]
- Min, J.; Luponosov, Y.N.; Baran, D.; Chvalun, S.N.; Shcherbina, M.A.; Bakirov, A.V.; Dmitryakov, P.V.; Peregudova, S.M.; Kausch-Busies, N.; Ponomarenko, S.A.; et al. Effects of Oligothiophene π-Bridge Length on Physical and Photovoltaic Properties of Star-Shaped Molecules for Bulk Heterojunction Solar Cells. J. Mater. Chem. A 2014, 2, 16135–16147. [Google Scholar] [CrossRef] [Green Version]
- Min, J.; Luponosov, Y.N.; Gerl, A.; Polinskaya, M.S.; Peregudova, S.M.; Dmitryakov, P.V.; Bakirov, A.V.; Shcherbina, M.A.; Chvalun, S.N.; Grigorian, S.; et al. Alkyl Chain Engineering of Solution-Processable Star-Shaped Molecules for High-Performance Organic Solar Cells. Adv. Energy Mater. 2014, 4, 1301234. [Google Scholar] [CrossRef]
- Feriancová, L.; Dmitry, O.B.; Roman, S.F.; Alexey, V.K.; Vasiliy, A.T.; Eugenia, A.S.; Svetlana, M.P.; Petr, V.D.; Martin, P.; Sergey, A.P.; et al. Novel Low-Bandgap Donor–Acceptor Thiophene-Phenylene Co-Oligomers for Organic Light-Emitting Transistors. Dye. Pigment. 2022. submitted. [Google Scholar]
- Min, J.; Luponosov, Y.N.; Ameri, T.; Elschner, A.; Peregudova, S.M.; Baran, D.; Heumüller, T.; Li, N.; Machui, F.; Ponomarenko, S.; et al. A Solution-Processable Star-Shaped Molecule for High-Performance Organic Solar Cells via Alkyl Chain Engineering and Solvent Additive. Org. Electron. 2013, 14, 219–229. [Google Scholar] [CrossRef]
- Dartnall, H.J.A.; Bowmaker, J.K.; Mollon, J.D. Human Visual Pigments: Microspectrophotometric Results from the Eyes of Seven Persons. Proc. R. Soc. London Ser. B Biol. Sci. 1983, 220, 115–130. [Google Scholar]
- Yang, D.; Ma, D. Development of Organic Semiconductor Photodetectors: From Mechanism to Applications. Adv. Opt. Mater. 2019, 7, 1800522. [Google Scholar] [CrossRef]
- Baeg, K.-J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y.-Y. Organic Light Detectors: Photodiodes and Phototransistors. Adv. Mater. 2013, 25, 4267–4295. [Google Scholar] [CrossRef]
- Kielar, M.; Dhez, O.; Pecastaings, G.; Curutchet, A.; Hirsch, L. Long-Term Stable Organic Photodetectors with Ultra Low Dark Currents for High Detectivity Applications. Sci. Rep. 2016, 6, 39201. [Google Scholar] [CrossRef] [Green Version]
- Kao, Y.-W.; Lee, W.-H.; Jeng, R.-J.; Huang, C.-F.; Wu, J.Y.; Lee, R.-H. Peripheral Group Effects on the Photophysical and Photovoltaic Properties of Bulk-Heterojunction Type Solar Cells Based on Star-Shaped Conjugate Molecules with Triphenylamine Core. Mater. Chem. Phys. 2015, 163, 138–151. [Google Scholar] [CrossRef]
- Liu, P.; Sharmoukh, W.; Xu, B.; Li, Y.Y.; Boschloo, G.; Sun, L.; Kloo, L. Novel and Stable D–A−π–A Dyes for Efficient Solid-State Dye-Sensitized Solar Cells. ACS Omega 2017, 2, 1812–1819. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhou, Y.; He, Q.; He, C.; Yang, C.; Bai, F.; Li, Y. Solution-Processable Red-Emission Organic Materials Containing Triphenylamine and Benzothiodiazole Units: Synthesis and Applications in Organic Light-Emitting Diodes. J. Phys. Chem. B 2009, 113, 7745–7752. [Google Scholar] [CrossRef]
Material | µh∙10−5, cm2V−1s−1 | µe∙10−5, cm2V−1s−1 | µh/µe |
---|---|---|---|
I | 7.0 ± 1.1 | 1.5 ± 0.3 | 4.7 |
II | 15 ± 4 | 1.15 ± 0.12 | 13 |
III | 9.2 ± 1.4 | 5.4 ± 0.8 | 1.7 |
IV+PC71BM (10%) | 15.5 ± 2.7 | 19 ± 4 | 0.82 |
Photoactive Material | R, mA/W | , nm | τ*, µs |
---|---|---|---|
I | 37 | 525 | 0.85 ± 0.10 |
II | 52 | 555 | 0.74 ± 0.05 |
III | 53 | 590 | 0.60 ± 0.08 |
IV+PC71BM (10%) | 2.6 | 425 | 0.74 ± 0.08 |
Photoactive Material | Rbias, mA/W | Jdark, nA/cm2 | D*·1011, cm·Hz1/2W−1 |
---|---|---|---|
I | 32 | 1200 | 0.52 |
II | 68 | 81 | 4.2 |
III | 50 | 500 | 1.3 |
IV+PC71BM (10%) | 3.0 | 46 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mannanov, A.L.; Balakirev, D.O.; Papkovskaya, E.D.; Solodukhin, A.N.; Luponosov, Y.N.; Paraschuk, D.Y.; Ponomarenko, S.A. Spectrally Selective Full-Color Single-Component Organic Photodetectors Based on Donor-Acceptor Conjugated Molecules. Molecules 2023, 28, 368. https://doi.org/10.3390/molecules28010368
Mannanov AL, Balakirev DO, Papkovskaya ED, Solodukhin AN, Luponosov YN, Paraschuk DY, Ponomarenko SA. Spectrally Selective Full-Color Single-Component Organic Photodetectors Based on Donor-Acceptor Conjugated Molecules. Molecules. 2023; 28(1):368. https://doi.org/10.3390/molecules28010368
Chicago/Turabian StyleMannanov, Artur L., Dmitry O. Balakirev, Elizaveta D. Papkovskaya, Alexander N. Solodukhin, Yuriy N. Luponosov, Dmitry Yu. Paraschuk, and Sergey A. Ponomarenko. 2023. "Spectrally Selective Full-Color Single-Component Organic Photodetectors Based on Donor-Acceptor Conjugated Molecules" Molecules 28, no. 1: 368. https://doi.org/10.3390/molecules28010368
APA StyleMannanov, A. L., Balakirev, D. O., Papkovskaya, E. D., Solodukhin, A. N., Luponosov, Y. N., Paraschuk, D. Y., & Ponomarenko, S. A. (2023). Spectrally Selective Full-Color Single-Component Organic Photodetectors Based on Donor-Acceptor Conjugated Molecules. Molecules, 28(1), 368. https://doi.org/10.3390/molecules28010368