Traveling across Life Sciences with Acetophenone—A Simple Ketone That Has Special Multipurpose Missions
Abstract
:1. Introduction
2. Historical Background
3. Acetophenone Is One of the Most Interesting Players in Skin Microbiota Manipulation by Vector-Borne Parasites Found in Animal-Feeding Insects
4. Acetophenone Is a Prolific Semiochemical for Plant-Feeding Insects in Complex Interspecific Communication
5. Biogenesis: How Can Acetophenone Be Formed In Vivo?
6. Industrial Production of Acetophenone: So Many Possibilities, but None Are Ideal and Sustainable
7. Natural and Synthetic Closely Related Acetophenone Cousins as Promising Agrochemicals
8. Acetophenone Skeleton for Developing Pharmacological Agents/Drugs
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clardy, J.; Walsh, C. Lessons from natural molecules. Nature 2004, 432, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta BBA Gen. Subj. 2013, 1830, 3670–3695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagare, S.; Bhatia, M.; Tripathi, N.; Pagare, S.; Bansal, Y.K. Secondary metabolites of plants and their role: Overview. Curr. Trends Biotechnol. Pharm. 2015, 9, 293–304. [Google Scholar]
- Khare, S.; Singh, N.B.; Singh, A.; Hussain, I.; Niharika, K.; Yadav, V.; Bano, C.; Yadav, R.K.; Amist, N. Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints. J. Plant Biol. 2020, 63, 203–216. [Google Scholar] [CrossRef]
- Sanders, H.J.; Keag, H.F.; McCullough, H.S. Acetophenone. Ind. Eng. Chem. 1953, 45, 2–14. [Google Scholar] [CrossRef]
- Siegel, H.; Eggersdorfer, M. Ketones. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2000; Volume 20, p. 202. [Google Scholar]
- Friedel, C.; Beilstein, F.K. Jahresber. Fortschritte der Chemie 1857, 270. In Handbuch der Organischen Chemie, 4th ed.; Prager, B., Jacobson, P., Schmidt, P., Stern, D., Eds.; Journal Springer: Berlin, Germany, 1925; Volume 7, p. 272. [Google Scholar]
- Granito, C.; Schultz, H.P. Decarboxylation studies. II. Preparation of alkyl phenyl ketones1, 2. J. Org. Chem. 1963, 28, 879–881. [Google Scholar] [CrossRef]
- Norman, C. Cases illustrating the Sedative Effects of Aceto-phenone (hypnone). J. Ment. Sci. 1887, 32, 519–525. [Google Scholar] [CrossRef]
- Limousin, S. Acetophenone, or hypnone, a new hypnotic agent. Am. J. Pharm. 1886, 58, 185. [Google Scholar]
- Zhang, H.; Zhu, Y.; Liu, Z.; Peng, Y.; Peng, W.; Tong, L.; Wang, J.; Liu, Q.; Wang, P.; Cheng, G. A volatile from the skin microbiota of flavivirus-infected hosts promotes mosquito attractiveness. Cell 2022, 185, 2510–2522.e16. [Google Scholar] [CrossRef]
- Leslie, M. Dengue and zika viruses turn people into mosquito bait. Science 2022, 377, 137. [Google Scholar] [CrossRef]
- Du Toit, A. An attractive scent. Nat. Rev. Genet. 2022, 20, 510. [Google Scholar] [CrossRef] [PubMed]
- Gul, L.; Korcsmaros, T.; Hall, N. Flaviviruses hijack the host microbiota to facilitate their transmission. Cell 2022, 185, 2395–2397. [Google Scholar] [CrossRef] [PubMed]
- Braks, M.; Anderson, R.; Knols, B. Infochemicals in Mosquito Host Selection: Human Skin Microflora and Plasmodium Parasites. Parasitol. Today 1999, 15, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Verhulst, N.O.; Andriessen, R.; Groenhagen, U.; Kiss, G.B.; Schulz, S.; Takken, W.; Van Loon, J.J.A.; Schraa, G.; Smallegange, R.C. Differential Attraction of Malaria Mosquitoes to Volatile Blends Produced by Human Skin Bacteria. PLoS ONE 2010, 5, e15829. [Google Scholar] [CrossRef] [Green Version]
- Verhulst, N.O.; Takken, W.; Dicke, M.; Schraa, G.; Smallegange, R.C. Chemical ecology of interactions between human skin microbiota and mosquitoes. FEMS Microbiol. Ecol. 2010, 74, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Verhulst, N.O.; Qiu, Y.T.; Beijleveld, H.; Maliepaard, C.; Knights, D.; Schulz, S.; Berg-Lyons, D.; Lauber, C.L.; Verduijn, W.; Haasnoot, G.W.; et al. Composition of Human Skin Microbiota Affects Attractiveness to Malaria Mosquitoes. PLoS ONE 2011, 6, e28991. [Google Scholar] [CrossRef] [Green Version]
- Guerenstein, P.G.; Lazzari, C.R. Host-seeking: How triatomines acquire and make use of information to find blood. Acta Trop. 2009, 110, 148–158. [Google Scholar] [CrossRef]
- Ortiz, M.I.; Molina, J. Preliminary evidence of Rhodnius prolixus (Hemiptera: Triatominae) attraction to human skin odour extracts. Acta Trop. 2010, 113, 174–179. [Google Scholar] [CrossRef]
- Omolo, M.O.; Ndiege, I.O.; Hassanali, A. Semiochemical signatures associated with differential attraction of Anopheles gambiae to human feet. PLoS ONE 2021, 16, e0260149. [Google Scholar] [CrossRef]
- Carraretto, D.; Soresinetti, L.; Rossi, I.; Malacrida, A.R.; Gasperi, G.; Gomulski, L.M. Behavioural Responses of Male Aedes albopictus to Different Volatile Chemical Compounds. Insects 2022, 13, 290. [Google Scholar] [CrossRef]
- Fawaz, E.Y.; Allan, S.A.; Bernier, U.R.; Obenauer, P.J.; Diclaro, J.W. Swarming mechanisms in the yellow fever mosquito: Aggregation pheromones are involved in the mating behavior of Aedes aegypti. J. Vector Ecol. 2014, 39, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Mozūraitis, R.; Hajkazemian, M.; Zawada, J.W.; Szymczak, J.; Pålsson, K.; Sekar, V.; Biryukova, I.; Friedländer, M.R.; Koekemoer, L.L.; Baird, J.K.; et al. Male swarming aggregation pheromones increase female attraction and mating success among multiple African malaria vector mosquito species. Nat. Ecol. Evol. 2020, 4, 1395–1401. [Google Scholar] [CrossRef] [PubMed]
- Torr, S.; Mangwiro, T.; Hall, D. Responses of Glossina pallidipes (Diptera: Glossinidae) to synthetic repellents in the field. Bull. Èntomol. Res. 1996, 86, 609–616. [Google Scholar] [CrossRef]
- Olaide, O.Y.; Tchouassi, D.P.; Yusuf, A.A.; Pirk, C.W.W.; Masiga, D.K.; Saini, R.K.; Torto, B. Zebra skin odor repels the savannah tsetse fly, Glossina pallidipes (Diptera: Glossinidae). PLOS Neglected Trop. Dis. 2019, 13, e0007460. [Google Scholar] [CrossRef] [Green Version]
- Kariithi, H.M.; Van Oers, M.M.; Vlak, J.M.; Vreysen, M.J.B.; Parker, A.G.; Abd-Alla, A.M.M. Virology, Epidemiology and Pathology of Glossina Hytrosavirus, and Its Control Prospects in Laboratory Colonies of the Tsetse Fly, Glossina pallidipes (Diptera; Glossinidae). Insects 2013, 4, 287–319. [Google Scholar] [CrossRef] [Green Version]
- Olaide, O.Y.; Tchouassi, D.P.; Yusuf, A.A.; Pirk, C.W.; Masiga, D.K.; Saini, R.K.; Torto, B. Effect of zebra skin-derived compounds on field catches of the human African trypanosomiasis vector Glossina fuscipes fuscipes. Acta Trop. 2020, 213, 105745. [Google Scholar] [CrossRef]
- De Moraes, C.M.; Stanczyk, N.M.; Betz, H.S.; Pulido, H.; Sim, D.G.; Read, A.F.; Mescher, M.C. Malaria-induced changes in host odors enhance mosquito attraction. Proc. Natl. Acad. Sci. USA 2014, 111, 11079–11084. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, K.; Boyse, E.A.; Bard, J.; Curran, M.; Kim, D.; Ross, S.R.; Beauchamp, G.K. Presence of mouse mammary tumor virus specifically alters the body odor of mice. Proc. Natl. Acad. Sci. USA 2002, 99, 5612–5615. [Google Scholar] [CrossRef] [Green Version]
- Vreysen, M.J.; Seck, M.T.; Sall, B.; Bouyer, J. Tsetse flies: Their biology and control using area-wide integrated pest management approaches. J. Invertebr. Pathol. 2012, 112, S15–S25. [Google Scholar] [CrossRef]
- Lindh, J.M.; Torr, S.J.; Vale, G.A.; Lehane, M.J. Improving the Cost-Effectiveness of Artificial Visual Baits for Controlling the Tsetse Fly Glossina fuscipes fuscipes. PLOS Neglected Trop. Dis. 2009, 3, e474. [Google Scholar] [CrossRef]
- Silvério, M.R.S.; Espindola, L.S.; Lopes, N.P.; Vieira, P.C. Plant Natural Products for the Control of Aedes aegypti: The Main Vector of Important Arboviruses. Molecules 2020, 25, 3484. [Google Scholar] [CrossRef] [PubMed]
- Dormont, L.; Mulatier, M.; Carrasco, D.; Cohuet, A. Mosquito Attractants. J. Chem. Ecol. 2021, 47, 351–393. [Google Scholar] [CrossRef] [PubMed]
- Kapsetaki, S.-E.; Tzelepis, I.; Avgousti, K.; Livadaras, I.; Garantonakis, N.; Varikou, K.; Apidianakis, Y. The bacterial metabolite 2-aminoacetophenone promotes association of pathogenic bacteria with flies. Nat. Commun. 2014, 5, 4401. [Google Scholar] [CrossRef] [Green Version]
- Fikrig, K.; Johnson, B.J.; Fish, D.; Ritchie, S.A. Assessment of synthetic floral-based attractants and sugar baits to capture male and female Aedes aegypti (Diptera: Culicidae). Parasites Vectors 2017, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lahondère, C.; Vinauger, C.; Okubo, R.P.; Wolff, G.H.; Chan, J.K.; Akbari, O.S.; Riffell, J.A. The olfactory basis of orchid pollination by mosquitoes. Proc. Natl. Acad. Sci. USA 2019, 117, 708–716. [Google Scholar] [CrossRef] [Green Version]
- von Oppen, S.; Masuh, H.; Licastro, S.; Zerba, E.; Gonzalez-Audino, P. A floral-derived attractant for Aedes aegypti mosquitoes. Èntomol. Exp. Appl. 2015, 155, 184–192. [Google Scholar] [CrossRef]
- Ovruski, S.; Aluja, M.; Sivinski, J.; Wharton, R. Hymenopteran Parasitoids on Fruit-infesting Tephritidae (Diptera) in Latin America and the Southern United States: Diversity, Distribution, Taxonomic Status and their use in Fruit Fly Biological Control. Integr. Pest Manag. Rev. 2000, 5, 81–107. [Google Scholar] [CrossRef]
- Rohrig, E.; Sivinski, J.; Teal, P.; Stuhl, C.; Aluja, M. A Floral-Derived Compound Attractive to the Tephritid Fruit Fly Parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae). J. Chem. Ecol. 2008, 34, 549–557. [Google Scholar] [CrossRef]
- Chen, Y.; Mao, J.; Reynolds, O.L.; Chen, W.; He, W.; You, M.; Gurr, G.M. Alyssum (Lobularia maritima) selectively attracts and enhances the performance of Cotesia vestalis, a parasitoid of Plutella xylostella. Sci. Rep. 2020, 10, 6447. [Google Scholar] [CrossRef] [Green Version]
- Pureswaran, D.S.; Borden, J.H. New repellent semiochemicals for three species of Dendroctonus (Coleoptera: Scolytidae). Chemoecology 2004, 14, 67–75. [Google Scholar] [CrossRef]
- Sullivan, B.T. Electrophysiological and Behavioral Responses of Dendroctonus frontalis (Coleoptera: Curculionidae) to Volatiles Isolated from Conspecifics. J. Econ. Èntomol. 2005, 98, 2067–2078. [Google Scholar] [CrossRef] [PubMed]
- Erbilgin, N.; Gillette, N.E.; Mori, S.R.; Stein, J.D.; Owen, D.R.; Wood, D.L. Acetophenone as an Anti-attractant for the Western Pine Beetle, Dendroctonus Brevicomis LeConte (Coleoptera: Scolytidae). J. Chem. Ecol. 2007, 33, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Erbilgin, N.; Gillette, N.E.; Owen, D.R.; Mori, S.R.; Nelson, A.S.; Uzoh, F.; Wood, D.L. Acetophenone superior to verbenone for reducing attraction of western pine beetle Dendroctonus brevicomis to its aggregation pheromone. Agric. For. Entomol. 2008, 10, 433–441. [Google Scholar] [CrossRef]
- Fettig, C.J.; McKelvey, S.R.; Dabney, C.P.; Huber, D.P.W. Responses of Dendroctonus brevicomis (Coleoptera: Curculionidae) in behavioral assays: Implications to development of a semiochemical-based tool for tree protection. J. Econ. Èntomol. 2012, 105, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Jonfia-Ess, W.; Alderson, P.; Tucker, G.; Linforth, R.; West, G. The Growth of Tribolium castaneum (Herbst) and Lasioderma serricorne (Fabricius) on Feed Media Dosed with Flavour Volatiles Found in Dry Cocoa Beans. Pak. J. Biol. Sci. 2007, 10, 1301–1304. [Google Scholar] [CrossRef] [Green Version]
- Nones, S.; Sousa, E.; Holighaus, G. Symbiotic fungi of an ambrosia beetle alter the volatile bouquet of cork oak seedlings. Phytopathology 2022, 112, 1965–1978. [Google Scholar] [CrossRef]
- Suchet, C.; Dormont, L.; Schatz, B.; Giurfa, M.; Simon, V.; Raynaud, C.; Chave, J. Floral scent variation in two Antirrhinum majus subspecies influences the choice of naïve bumblebees. Behav. Ecol. Sociobiol. 2011, 65, 1015–1027. [Google Scholar] [CrossRef]
- Hernández, M.M.; Sanz, I.; Adelantado, M.; Ballach, S.; Primo, E. Electroantennogram activity from antennae ofCeratitis capitata (Wied.) to fresh orange airborne volatiles. J. Chem. Ecol. 1996, 22, 1607–1619. [Google Scholar] [CrossRef]
- Murugan, R.; Mallavarapu, G.R.; Padmashree, K.V.; Rao, R.R.; Livingstone, C. Volatile Oil Composition of Pogostemon heyneanus and Comparison of its Composition with Patchouli Oil. Nat. Prod. Commun. 2010, 5, 1961–1964. [Google Scholar] [CrossRef] [Green Version]
- Nithyanand, P.; Shafreen, R.M.B.; Muthamil, S.; Murugan, R.; Pandian, S.K. Essential oils from commercial and wild Patchouli modulate Group A Streptococcal biofilms. Ind. Crop. Prod. 2015, 69, 180–186. [Google Scholar] [CrossRef]
- Bodor, N.; Gabanyi, Z.; Wong, C.K. A new method for the estimation of partition coefficient. J. Am. Chem. Soc. 1989, 111, 3783–3786. [Google Scholar] [CrossRef]
- Acetophenone. Available online: http://www.stenutz.eu/chem/solv6.php?name=acetophenone (accessed on 29 July 2022).
- Marchiosi, R.; Dos Santos, W.D.; Constantin, R.P.; De Lima, R.B.; Soares, A.R.; Finger-Teixeira, A.; Mota, T.R.; de Oliveira, D.M.; Foletto-Felipe, M.D.P.; Abrahão, J.; et al. Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochem. Rev. 2020, 19, 865–906. [Google Scholar] [CrossRef]
- Lattanzio, V. Relationship of Phenolic Metabolism to Growth in Plant and Cell Cultures Under Stress. In Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry; Ramawat, K.G., Ekiert, H.M., Goyal, S., Eds.; Springer: Cham, Switzerland, 2021; pp. 837–868. [Google Scholar] [CrossRef]
- Widhalm, J.R.; Dudareva, N. A Familiar Ring to It: Biosynthesis of Plant Benzoic Acids. Mol. Plant 2015, 8, 83–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, H.; Dudareva, N. The Shikimate Pathway and Aromatic Amino Acid Biosynthesis in Plants. Annu. Rev. Plant Biol. 2012, 63, 73–105. [Google Scholar] [CrossRef] [PubMed]
- Qualley, A.V.; Widhalm, J.R.; Adebesin, F.; Kish, C.M.; Dudareva, N. Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants. Proc. Natl. Acad. Sci. USA 2012, 109, 16383–16388. [Google Scholar] [CrossRef] [Green Version]
- Lapadatescu, C.; Giniès, C.; Le Quéré, J.-L.; Bonnarme, P. Novel Scheme for Biosynthesis of Aryl Metabolites from l -Phenylalanine in the Fungus Bjerkandera adusta. Appl. Environ. Microbiol. 2000, 66, 1517–1522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, F.; Yang, Z.; Baldermann, S.; Kajitani, Y.; Ota, S.; Kasuga, H.; Imazeki, Y.; Ohnishi, T.; Watanabe, N. Characterization of l-phenylalanine metabolism to acetophenone and 1-phenylethanol in the flowers of Camellia sinensis using stable isotope labeling. J. Plant Physiol. 2011, 169, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Kroschwitz, J.I.; Howe-Gremt, M. (Eds.) Encyclopedia of Chemical Technology, 4th ed.; Wiley Interscience: New York, NY, USA, 1993; Volume 11, p. 1055. [Google Scholar]
- Zakoshansky, V.M. The cumene process for phenol-acetone production. Pet. Chem. 2007, 47, 273–284. [Google Scholar] [CrossRef]
- Schmidt, R.J. Industrial catalytic processes—Phenol production. Appl. Catal. A Gen. 2005, 280, 89–103. [Google Scholar] [CrossRef]
- Drönner, J.; Hausoul, P.; Palkovits, R.; Eisenacher, M. Solid Acid Catalysts for the Hock Cleavage of Hydroperoxides. Catalysts 2022, 12, 91. [Google Scholar] [CrossRef]
- Unnarkat, A.P.; Sonani, J.; Baldha, J.; Agarwal, S.; Manvar, K.; Faraji, A.R.; Arshadi, M. Catalytic oxidation of ethylbenzene: Kinetic modeling, mechanism, and implications. Chem. Pap. 2022, 76, 995–1008. [Google Scholar] [CrossRef]
- Becker, M. Preparation of Hydroperoxides. U.S. Patent 4,262,143 A, 1981. [Google Scholar]
- Schmidt, J.P. Preparation of Ethylbenzene Hydroperoxide. U.S. Patent 4,066,706 A, 1978. [Google Scholar]
- Roohi, H.; Rajabi, M. Noncatalytic Liquid Phase Air Oxidation of Ethylbenzene to 1-Phenyl Ethyl Hydroperoxide in Low Oxygen Volume Fraction. Org. Process Res. Dev. 2018, 22, 136–146. [Google Scholar] [CrossRef]
- Acetophenone Market. Available online: https://www.futuremarketinsights.com/reports/acetophenone-market#:~:text=%5B250%20Pages%20Report%5D%20The%20global,valuation%20of%20US%24%20335%20Million (accessed on 29 July 2022).
- Dataintelo. Available online: https://dataintelo.com/report/global-acetophenone-market/ (accessed on 29 July 2022).
- Liu, S.-H.; Yu, C.-F.; Das, M. Thermal hazardous evaluation of autocatalytic reaction of cumene hydroperoxide alone and mixed with products under isothermal and non-isothermal conditions. J. Therm. Anal. Calorim. 2019, 140, 2325–2336. [Google Scholar] [CrossRef]
- Nandanwar, S.U.; Rathod, S.; Bansal, V.; Bokade, V.V. A Review on Selective Production of Acetophenone from Oxidation of Ethylbenzene over Heterogeneous Catalysts in a Decade. Catal. Lett. 2021, 151, 2116–2131. [Google Scholar] [CrossRef]
- Rahman, M.; Ara, M.G.; Rahman, S.; Uddin, S.; Bin-Jumah, M.N.; Abdel-Daim, M.M. Recent Development of Catalytic Materials for Ethylbenzene Oxidation. J. Nanomater. 2020, 2020, 7532767. [Google Scholar] [CrossRef] [Green Version]
- Gutmann, B.; Elsner, P.; Roberge, D.; Kappe, C.O. Homogeneous Liquid-Phase Oxidation of Ethylbenzene to Acetophenone in Continuous Flow Mode. ACS Catal. 2013, 3, 2669–2676. [Google Scholar] [CrossRef]
- Ziarani, G.M.; Kheilkordi, Z.; Mohajer, F. Recent advances in the application of acetophenone in heterocyclic compounds synthesis. J. Iran. Chem. Soc. 2019, 17, 247–282. [Google Scholar] [CrossRef]
- Rajai-Daryasarei, S.; Gohari, M.H.; Mohammadi, N. Reactions involving aryl methyl ketone and molecular iodine: A powerful tool in the one-pot synthesis of heterocycles. New J. Chem. 2021, 45, 20486–20518. [Google Scholar] [CrossRef]
- Mohammed, S.; Mitton-Fry, M.J.; West, J.S. Aryl Methyl Ketones: Versatile Synthons in the Synthesis of Heterocyclic Compounds. SynOpen 2022, 06, 110–131. [Google Scholar] [CrossRef]
- Deka, B.; Rastogi, G.K.; Deb, M.L.; Baruah, P.K. Ten Years of Glory in the α-Functionalizations of Acetophenones: Progress Through Kornblum Oxidation and C–H Functionalization. Top. Curr. Chem. 2021, 380, 1–38. [Google Scholar] [CrossRef]
- Moonen, M.J.H.; Kamerbeek, N.M.; Westphal, A.H.; Boeren, S.A.; Janssen, D.B.; Fraaije, M.W.; van Berkel, W.J.H. Elucidation of the 4-Hydroxyacetophenone Catabolic Pathway in Pseudomonas fluorescens ACB. J. Bacteriol. 2008, 190, 5190–5198. [Google Scholar] [CrossRef] [PubMed]
- Negrel, J.; Javelle, F. The biosynthesis of acetovanillone in tobacco cell-suspension cultures. Phytochemistry 2010, 71, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Parent, G.J.; Giguère, I.; Mageroy, M.; Bohlmann, J.; MacKay, J.J. Evolution of the biosynthesis of two hydroxyacetophenones in plants. Plant, Cell Environ. 2018, 41, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Soucy, N.V. Acetophenone in “Encyclopedia of Toxicology”, 3rd ed.; Wexler, P., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 43–45. [Google Scholar]
- Gould, F.; Brown, Z.S.; Kuzma, J. Wicked evolution: Can we address the sociobiological dilemma of pesticide resistance? Science 2018, 360, 728–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, J.; Dobson, H. The benefits of pesticides to mankind and the environment. Crop. Prot. 2007, 26, 1337–1348. [Google Scholar] [CrossRef]
- Popp, J.; Pető, K.; Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 2012, 33, 243–255. [Google Scholar] [CrossRef]
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Baker, B.P.; Green, T.A.; Loker, A.J. Biological control and integrated pest management in organic and conventional systems. Biol. Control 2019, 140, 104095. [Google Scholar] [CrossRef]
- Ridomil Glod®SL; Product No. A13947A; Syngenta Crop Protection, LLC: Greensboro, NC, USA, 2015.
- Ma, Y.-T.; Fan, H.-F.; Gao, Y.-Q.; Zhang, A.-L.; Gao, J.-M.; Li, H. Natural Products as Sources of New Fungicides (I): Synthesis and Antifungal Activity of Acetophenone Derivatives Against Phytopathogenic Fungi. Chem. Biol. Drug Des. 2013, 81, 545–552. [Google Scholar] [CrossRef]
- Nandinsuren, T.; Shi, W.; Zhang, A.-L.; Bai, Y.; Gao, J.-M. Natural products as sources of new fungicides (II): Antiphytopathogenic activity of 2,4-dihydroxyphenyl ethanone derivatives. Nat. Prod. Res. 2015, 30, 1166–1169. [Google Scholar] [CrossRef]
- Shi, W.; Dan, W.-J.; Tang, J.-J.; Zhang, Y.; Nandinsuren, T.; Zhang, A.-L.; Gao, J.-M. Natural products as sources of new fungicides (III): Antifungal activity of 2,4-dihydroxy-5-methylacetophenone derivatives. Bioorganic Med. Chem. Lett. 2016, 26, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Luong, T.T.M.; Dan, W.-J.; Ren, Y.; Nien, H.X.; Zhang, A.-L.; Gao, J.-M. Natural products as sources of new fungicides (IV): Synthesis and biological evaluation of isobutyrophenone analogs as potential inhibitors of class-II fructose-1,6-bisphosphate aldolase. Bioorganic Med. Chem. 2018, 26, 386–393. [Google Scholar] [CrossRef]
- Luong, T.T.M.; Wang, W.-W.; Zhang, F.; Dan, W.-J.; Nien, H.X.; Zhang, A.-L.; Li, D.; Gao, J.-M. Structure-antifungal relationships and preventive effects of 1-(2,4-dihydroxyphenyl)-2-methylpropan-1-one derivatives as potential inhibitors of class-II fructose-1,6-bisphosphate aldolase. Pestic. Biochem. Physiol. 2019, 159, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, Q.X.; Song, B. Chemical Nematicides: Recent Research Progress and Outlook. J. Agric. Food Chem. 2020, 68, 12175–12188. [Google Scholar] [CrossRef] [PubMed]
- Tocco, G.; Eloh, K.; Onnis, V.; Sasanelli, N.; Caboni, P. Haloacetophenones as newly potent nematicides against Meloidogyne incognita. Ind. Crop. Prod. 2017, 110, 94–102. [Google Scholar] [CrossRef]
- Caboni, P.; Aissani, N.; Demurtas, M.; Ntalli, N.; Onnis, V. Nematicidal activity of acetophenones and chalcones against Meloidogyne incognita and structure-activity considerations. Pest Manag. Sci. 2015, 72, 125–130. [Google Scholar] [CrossRef]
- Oliveira, D.F.; Costa, V.A.; Terra, W.C.; Campos, V.P.; Paula, P.M.; Martins, S.J. Impact of phenolic compounds on Meloidogyne incognita in vitro and in tomato plants. Exp. Parasitol. 2019, 199, 17–23. [Google Scholar] [CrossRef]
- Charoenying, P.; Teerarak, M.; Laosinwattana, C. An allelopathic substance isolated from Zanthoxylum limonella Alston fruit. Sci. Hortic. 2010, 125, 411–416. [Google Scholar] [CrossRef]
- Chotsaeng, N.; Laosinwattana, C.; Charoenying, P. Herbicidal Activities of Some Allelochemicals and Their Synergistic Behaviors toward Amaranthus tricolor L. Molecules 2017, 22, 1841. [Google Scholar] [CrossRef] [Green Version]
- Zaman, F.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Allelopathic potential and identification of two allelopathic substances in Eleocharis atropurpurea. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2020, 155, 510–516. [Google Scholar] [CrossRef]
- Chotpatiwetchkul, W.; Chotsaeng, N.; Laosinwattana, C.; Charoenying, P. Structure–Activity Relationship Study of Xanthoxyline and Related Small Methyl Ketone Herbicides. ACS Omega 2022, 7, 29002–29012. [Google Scholar] [CrossRef] [PubMed]
- Foley, K.F.; DeSanty, K.P.; Kast, R.E. Bupropion: Pharmacology and therapeutic applications. Expert Rev. Neurother. 2006, 6, 1249–1265. [Google Scholar] [CrossRef] [PubMed]
- Ioannides-Demos, L.L.; Piccenna, L.; McNeil, J.J. Pharmacotherapies for Obesity: Past, Current, and Future Therapies. J. Obes. 2010, 2011, 179674. [Google Scholar] [CrossRef] [Green Version]
- Meltzer, P.C.; Butler, D.; Deschamps, J.R.; Madras, B.K. 1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (Pyrovalerone) Analogues: A Promising Class of Monoamine Uptake Inhibitors. J. Med. Chem. 2006, 49, 1420–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumalatha, Y.; Reddy, T.R.; Reddy, P.P.; Satyanarayana, B. A simple and efficient synthesis of hypnotic agent, zolpidem and its related substances. Arkivoc 2009, 2009, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Catozzi, N.; Foletto, J.; Forcato, M.; Giovanetti, R.; Soriato, G.; Verzini, M. Process for Preparing Cinacalcet. U.S. Patent No. 8,614,353, 24 December 2013. [Google Scholar]
- Polak, A. Oxiconazole, a new imidazole derivative. Evaluation of antifungal activity in vitro and in vivo. Arzneimittelforschung 1982, 32, 17–24. [Google Scholar]
- Fukuhara, Y.; Yoshida, D. Paeonol: A Bio-antimutagen Isolated from a Crude Drug, Moutan Cortex. Agric. Biol. Chem. 1987, 51, 1441–1442. [Google Scholar] [CrossRef]
- Miyazawa, M.; Shimamura, H.; Nakamura, S.-I.; Kameoka, H. Antimutagenic Activity of (+)-β-Eudesmol and Paeonol from Dioscorea japonica. J. Agric. Food Chem. 1996, 44, 1647–1650. [Google Scholar] [CrossRef]
- Papandreou, V.; Magiatis, P.; Chinou, I.; Kalpoutzakis, E.; Skaltsounis, A.-L.; Tsarbopoulos, A. Volatiles with antimicrobial activity from the roots of Greek Paeonia taxa. J. Ethnopharmacol. 2002, 81, 101–104. [Google Scholar] [CrossRef]
- Zhang, L.; Li, D.-C.; Liu, L.-F. Paeonol: Pharmacological effects and mechanisms of action. Int. Immunopharmacol. 2019, 72, 413–421. [Google Scholar] [CrossRef]
- Wang, J.; Wu, G.; Chu, H.; Wu, Z.; Sun, J. Paeonol Derivatives and Pharmacological Activities: A Review of Recent Progress. Mini-Reviews Med. Chem. 2020, 20, 466–482. [Google Scholar] [CrossRef] [PubMed]
- Adki, K.M.; Kulkarni, Y.A. Chemistry, pharmacokinetics, pharmacology and recent novel drug delivery systems of paeonol. Life Sci. 2020, 250, 117544. [Google Scholar] [CrossRef] [PubMed]
- Schmiedeberg, O. Über die wirksamen bestandtheile der wurzel von Apocynum canabinum L. Arch. Exp. Pathol. Pharmakol. 1883, 16, 161–164. [Google Scholar]
- Finnemore, H. The constituents of Canadian hemp. Part I. Apocynin. J. Chem. Soc. Trans. 1908, 93, 1513–1519. [Google Scholar] [CrossRef] [Green Version]
- Basu, K.; Dasgupta, B.; Bhattacharya, S.K.; Debnath, P.K. Chemistry and pharmacology of apocynin, isolated from Picrorhiza kurroa Royle ex Benth. Curr. Sci. 1971, 40, 603–604. [Google Scholar]
- Simons, J.; Hart, L.; Van Dijk, H.; Fischer, F.; De Silva, K.; Labadie, R. Imunodulatory compounds from Picrorhiza kurroa: Isolation and characterization of two anti-complementary polymeric fractions from an aqueous root extract. J. Ethnopharmacol. 1989, 26, 169–182. [Google Scholar] [CrossRef]
- Boshtam, M.; Kouhpayeh, S.; Amini, F.; Azizi, Y.; Najaflu, M.; Shariati, L.; Khanahmad, H. Anti-inflammatory effects of apocynin: A narrative review of the evidence. All Life 2021, 14, 997–1010. [Google Scholar] [CrossRef]
- Hart, B.A.T.; Copray, S.; Philippens, I. Apocynin, a Low Molecular Oral Treatment for Neurodegenerative Disease. BioMed. Res. Int. 2014, 2014, 298020. [Google Scholar] [CrossRef]
- Sandrini, L.; Ieraci, A.; Amadio, P.; Popoli, M.; Tremoli, E.; Barbieri, S.S. Apocynin Prevents Abnormal Megakaryopoiesis and Platelet Activation Induced by Chronic Stress. Oxidative Med. Cell. Longev. 2017, 2017, 9258937. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.; Kour, K.; Bani, S.; Suri, K.A.; Satti, N.K.; Sharma, P.; Qazi, G.N. Amelioration of adjuvant induced arthritis by apocynin. Phytotherapy Res. 2009, 23, 1462–1468. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, S.-A.; Park, M.-K.; Park, Y.-D.; Na, H.-J.; Kim, H.-M.; Shin, M.-K.; Ahn, K.-S. Paeonol inhibits anaphylactic reaction by regulating histamine and TNF-α. Int. Immunopharmacol. 2004, 4, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Zhai, K.-F.; Duan, H.; Luo, L.; Cao, W.-G.; Han, F.-K.; Shan, L.-L.; Fang, X.-M. Protective effects of paeonol on inflammatory response in IL-1β-induced human fibroblast-like synoviocytes and rheumatoid arthritis progression via modulating NF-κB pathway. Inflammopharmacology 2017, 25, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Huang, W.; Song, Q.; Zheng, X.; He, R.; Liu, J. Paeonol Ameliorates Ovalbumin-Induced Asthma through the Inhibition of TLR4/NF-κB and MAPK Signaling. Evidence-Based Complement. Altern. Med. 2018, 2018, 3063145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cross, A.L.; Hawkes, J.; Wright, H.L.; Moots, R.J.; Edwards, S.W. APPA (apocynin and paeonol) modulates pathological aspects of human neutrophil function, without supressing antimicrobial ability, and inhibits TNFα expression and signalling. Inflammopharmacology 2020, 28, 1223–1235. [Google Scholar] [CrossRef] [PubMed]
- Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2017, 18, 134–147. [Google Scholar] [CrossRef]
- Fernandez-Moreno, M.; Larkins, N.; Reynolds, A.; Hermida-Gomez, T.; Blanco, F. Biological effect of APPA -apocynin and paeonol- in human articular chondrocytes. Osteoarthr. Cartil. 2021, 29, S358. [Google Scholar] [CrossRef]
- Larkins, N. Efficacy and safety of the combination of apocynin and paeonol (APPA) in patients with osteoarthritis: An uncontrolled patient case series. Ann. Rheum. Dis. 2020, 79 (Suppl. S1), 1738. [Google Scholar] [CrossRef]
- Greener, M. How close are disease-modifying drugs for osteoarthritis? Prescriber 2021, 32, 9–12. [Google Scholar] [CrossRef]
- Karim, M.S.A.; Nasouddin, S.S.; Othman, M.; Adzahan, M.N.; Hussin, S.R. Consumers’ Knowledge and Perception towards Melicope Ptelefolia (Daun Tenggek Burung): A Preliminary Qualitative Study. Int. Food Res. J. 2011, 18, 1481–1488. Available online: https://www.proquest.com/scholarly-journals/consumers-knowledge-perception-towards-melicope/docview/927983422/se-2 (accessed on 29 July 2022).
- Ng, C.H.; Rullah, K.; Aluwi, M.F.F.M.; Abas, F.; Lam, K.W.; Ismail, I.S.; Narayanaswamy, R.; Jamaludin, F.; Shaari, K. Synthesis and Docking Studies of 2,4,6-Trihydroxy-3-Geranylacetophenone Analogs as Potential Lipoxygenase Inhibitor. Molecules 2014, 19, 11645–11659. [Google Scholar] [CrossRef]
- Chan, Y.H.; Liew, K.Y.; Tan, J.W.; Shaari, K.; Israf, D.A.; Tham, C.L. Pharmacological Properties of 2,4,6-Trihydroxy-3-Geranyl Acetophenone and the Underlying Signaling Pathways: Progress and Prospects. Front. Pharmacol. 2021, 12, 2227. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubkov, F.I.; Kouznetsov, V.V. Traveling across Life Sciences with Acetophenone—A Simple Ketone That Has Special Multipurpose Missions. Molecules 2023, 28, 370. https://doi.org/10.3390/molecules28010370
Zubkov FI, Kouznetsov VV. Traveling across Life Sciences with Acetophenone—A Simple Ketone That Has Special Multipurpose Missions. Molecules. 2023; 28(1):370. https://doi.org/10.3390/molecules28010370
Chicago/Turabian StyleZubkov, Fedor I., and Vladimir V. Kouznetsov. 2023. "Traveling across Life Sciences with Acetophenone—A Simple Ketone That Has Special Multipurpose Missions" Molecules 28, no. 1: 370. https://doi.org/10.3390/molecules28010370
APA StyleZubkov, F. I., & Kouznetsov, V. V. (2023). Traveling across Life Sciences with Acetophenone—A Simple Ketone That Has Special Multipurpose Missions. Molecules, 28(1), 370. https://doi.org/10.3390/molecules28010370