Metal-Free Aerobic C–N Bond Formation of Styrene and Arylamines via Photoactivated Electron Donor–Acceptor Complexation
Abstract
1. Introduction
2. Results and Discussions
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Spectroscopy and Spectrometry
3.2.2. Synthetic Procedure of N-methylnaphthalen-2-amine (1c)
3.2.3. General Protocol for the Photocatalytic Hydroamination of Styrene
N-(1-Phenylethyl)naphthalen-1-amine (2a)
N-Phenyl-N-(1-phenylethyl)naphthalen-2-amine (2b)
N-Phenyl-1-(1-phenylethyl)naphthalen-2-amine (2b’)
N-Methyl-N-(1-phenylethyl)naphthalen-2-amine (2c)
N-Methyl-N-(1-phenylethyl)naphthalen-2-amine (2c’)
3.2.4. Procedure for “ON-OFF” Experiment
3.2.5. Procedures for UV–Vis Absorbance Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Müller, T.E.; Beller, M. Metal-Initiated Amination of Alkenes and Alkynes. Chem. Rev. 1998, 98, 675–704. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, J.F. Evolution of a Fourth Generation Catalyst for the Amination and Thioetherification of Aryl Halides. Acc. Chem. Res. 2008, 41, 1534–1544. [Google Scholar] [CrossRef]
- Jiao, J.; Murakami, K.; Itami, K. Catalytic Methods for Aromatic C–H Amination: An Ideal Strategy for Nitrogen-Based Functional Molecules. ACS Catal. 2015, 6, 610–633. [Google Scholar] [CrossRef]
- Gupta, N.K.; Reif, P.; Palenicek, P.; Rose, M. Toward Renewable Amines: Recent Advances in the Catalytic Amination of Biomass-Derived Oxygenates. ACS Catal. 2022, 12, 10400–10440. [Google Scholar] [CrossRef]
- Müller, T.E.; Hultzsch, K.C.; Yus, M.; Foubelo, F.; Tada, M. Hydroamination: Direct Addition of Amines to Alkenes and Alkynes. Chem. Rev. 2008, 108, 3795–3892. [Google Scholar] [CrossRef]
- Forero-Cortés, P.A.; Haydl, A.M. The 25th Anniversary of the Buchwald–Hartwig Amination: Development, Applications, and Outlook. Org. Process Res. Dev. 2019, 23, 1478–1483. [Google Scholar] [CrossRef]
- Ruiz-Castillo, P.; Buchwald, S.L. Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions. Chem. Rev. 2016, 116, 12564–12649. [Google Scholar] [CrossRef] [PubMed]
- Coman, S.M.; Parvulescu, V.I. Nonprecious Metals Catalyzing Hydroamination and C–N Coupling Reactions. Org. Process Res. Dev. 2015, 19, 1327–1355. [Google Scholar] [CrossRef]
- Huang, L.; Arndt, M.; Goossen, K.; Heydt, H.; Goossen, L.J. Late transition metal-catalyzed hydroamination and hydroamidation. Chem. Rev. 2015, 115, 2596–2697. [Google Scholar] [CrossRef] [PubMed]
- Kawatsura, M.; Hartwig, J.F. Palladium-Catalyzed Intermolecular Hydroamination of Vinylarenes Using Arylamines. J. Am. Chem. Soc. 2000, 122, 9546–9547. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, X.; Fan, J.; Liu, Y.; Tang, W.; Xue, D.; Li, C.; Xiao, J.; Wang, C. Iron-Catalyzed Anti-Markovnikov Hydroamination and Hydroamidation of Allylic Alcohols. J. Am. Chem. Soc. 2019, 141, 13506–13515. [Google Scholar] [CrossRef] [PubMed]
- Ghorai, S.K.; Gopalsamuthiram, V.G.; Jawalekar, A.M.; Patre, R.E.; Pal, S. Iron catalyzed C N bond formation. Tetrahedron 2017, 73, 1769–1794. [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, W. Recent advances in radical-based C-N bond formation via photo-/electrochemistry. Chem. Soc. Rev. 2018, 47, 2591–2608. [Google Scholar] [CrossRef] [PubMed]
- Pratley, C.; Fenner, S.; Murphy, J.A. Nitrogen-Centered Radicals in Functionalization of sp(2) Systems: Generation, Reactivity, and Applications in Synthesis. Chem. Rev. 2022, 122, 8181–8260. [Google Scholar] [CrossRef] [PubMed]
- Ganley, J.M.; Murray, P.R.D.; Knowles, R.R. Photocatalytic Generation of Aminium Radical Cations for C horizontal line N Bond Formation. ACS Catal. 2020, 10, 11712–11738. [Google Scholar] [CrossRef]
- Wei, Y.; Zhou, Q.-Q.; Tan, F.; Lu, L.-Q.; Xiao, W.-J. Visible-Light-Driven Organic Photochemical Reactions in the Absence of External Photocatalysts. Synthesis 2019, 51, 3021–3054. [Google Scholar] [CrossRef]
- Jahjah, R.; Gassama, A.; Dumur, F.; Marinkovic, S.; Richert, S.; Landgraf, S.; Lebrun, A.; Cadiou, C.; Selles, P.; Hoffmann, N. Photochemical electron transfer mediated addition of naphthylamine derivatives to electron-deficient alkenes. J. Org. Chem. 2011, 76, 7104–7118. [Google Scholar] [CrossRef]
- Mulliken, R.S. Molecular Compounds and their Spectra II. J. Am. Chem. Soc. 1952, 74, 811–824. [Google Scholar] [CrossRef]
- Foster, R. Electron donor-acceptor complexes. J. Phys. Chem. 1980, 84, 2135–2141. [Google Scholar] [CrossRef]
- Runemark, A.; Sunden, H. Aerobic Oxidative EDA Catalysis: Synthesis of Tetrahydroquinolines Using an Organocatalytic EDA Active Acceptor. J. Org. Chem. 2022, 87, 1457–1469. [Google Scholar] [CrossRef]
- Runemark, A.; Zacharias, S.C.; Sunden, H. Visible-Light-Driven Stereoselective Annulation of Alkyl Anilines and Dibenzoylethylenes via Electron Donor-Acceptor Complexes. J. Org. Chem. 2021, 86, 1901–1910. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.G.S.; Lima, T.M.; Duarte, M.; Jurberg, I.D.; Paixão, M.W. Organic Synthesis Enabled by Light-Irradiation of EDA Complexes: Theoretical Background and Synthetic Applications. ACS Catal. 2016, 6, 1389–1407. [Google Scholar] [CrossRef]
- Li, K.; Horton, P.; Hursthouse, M.; Kuok, K.; Hii, K. Air- and moisture-stable cationic (diphosphine)palladium(II)complexes as hydroamination catalysts: X-ray crystal structures of two[(diphosphine)Pd(NCMe)(OH2)]2+[OTf]–2 complexes. J. Organomet. Chem. 2003, 665, 250–257. [Google Scholar] [CrossRef]
- Johns, A.M.; Utsunomiya, M.; Incarvito, C.D.; Hartwig, J.F. A Highly Active Palladium Catalyst for Intermolecular Hydroamination. Factors that Control Reactivity and Additions of Functionalized Anilines to Dienes and Vinylarenes. J. Am. Chem. Soc. 2006, 128, 1828–1839. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Martin, D.; Melaimi, M.; Bertrand, G. Gold-catalyzed hydroarylation of alkenes with dialkylanilines. J. Am. Chem. Soc. 2014, 136, 13594–13597. [Google Scholar] [CrossRef] [PubMed]
- Schroeter, F.; Lerch, S.; Kaliner, M.; Strassner, T. Cobalt-Catalyzed Hydroarylations and Hydroaminations of Alkenes in Tunable Aryl Alkyl Ionic Liquids. Org. Lett. 2018, 20, 6215–6219. [Google Scholar] [CrossRef] [PubMed]
- Beller, M.; Thiel, O.R.; Trauthwein, H. Catalytic Alkylation of Aromatic Amines with Styrene in the Presence of Cationic Rhodium Complexes and Acid. Synlett 1999, 1999, 243–245. [Google Scholar] [CrossRef]
- Anderson, L.L.; Arnold, J.; Bergman, R.G. Proton-Catalyzed Hydroamination and Hydroarylation Reactions of Anilines and Alkenes: A Dramatic Effect of Counteranions on Reaction Efficiency. J. Am. Chem. Soc. 2005, 127, 14542–14543. [Google Scholar] [CrossRef]
- Seshu Babu, N.; Mohan Reddy, K.; Sai Prasad, P.S.; Suryanarayana, I.; Lingaiah, N. Intermolecular hydroamination of vinyl arenes using tungstophosphoric acid as a simple and efficient catalyst. Tetrahedron Lett. 2007, 48, 7642–7645. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, G. Visible-Light-Induced Copper-Catalyzed Intermolecular Markovnikov Hydroamination of Alkenes. Org. Lett. 2019, 21, 7873–7877. [Google Scholar] [CrossRef]
- Rank, C.K.; Ozkaya, B.; Patureau, F.W. HBF4- and AgBF4-Catalyzed ortho-Alkylation of Diarylamines and Phenols. Org. Lett. 2019, 21, 6830–6834. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Force, G.; Guillot, R.; Carpentier, J.-F.; Sarazin, Y.; Bour, C.; Gandon, V.; Lebœuf, D. Lewis Acid/Hexafluoroisopropanol: A Promoter System for Selective ortho-C-Alkylation of Anilines with Deactivated Styrene Derivatives and Unactivated Alkenes. ACS Catal. 2020, 10, 10794–10802. [Google Scholar] [CrossRef]
- Herrero, M.T.; Sarralde, J.D.; SanMartin, R.; Bravo, L.; Domínguez, E. Cesium Carbonate-Promoted Hydroamidation of Alkynes: Enamides, Indoles and the Effect of Iron(III) Chloride. Adv. Synth. Catal. 2012, 354, 3054–3064. [Google Scholar] [CrossRef]
- Bowman, D.F.; Middleton, B.S.; Ingold, K.U. Oxidation of amines with peroxy radicals. I. N-phenyl-2-naphthylamine. J. Org. Chem. 1969, 34, 3456–3461. [Google Scholar] [CrossRef]
- Cortright, S.B.; Huffman, J.C.; Yoder, R.A.; Coalter, J.N.; Johnston, J.N. IAN Amines: Chiral C2-Symmetric Zirconium(IV) Complexes from Readily Modified Axially Chiral C1-Symmetric β-Diketimines. Organometallics 2004, 23, 2238–2250. [Google Scholar] [CrossRef]
Entry | Substrate | Molar Ratio of Substrate (1/styrene) | Wavelength Λ (nm) | Solvent | Additives | Yield a (%) |
---|---|---|---|---|---|---|
1 | 1a | 1/1 | 365 | DCM b/H2O = 4/1 | - | 5 |
2 | 1a | 1/2 | 365 | DCM/H2O = 4/1 | - | 24 |
3 | 1a | 1/8 | 365 | DCM/H2O = 4/1 | - | 10 |
4 | 1a | 1/4 | 340 | DCM/H2O = 4/1 | - | 2a: 11 |
5 | 1a | 1/4 | 365 | DCM/H2O = 4/1 | - | 2a: 61 [61 c] |
6 | 1a | 1/4 | 448 | DCM/H2O = 4/1 | - | N.R.d |
7 | 1a | 1/4 | 365 | MeCN/H2O = 4/1 | 2a: 2 | |
8 | 1a | 1/4 | 365 | Acetone/H2O = 4/1 | - | 2a: 13 |
9 | 1a | 1/4 | 365 | EtOAc/H2O = 4/1 | - | 2a: 13 |
10 | 1b | 1/4 | 365 | H2O | - | 2b: 8; 2b’: 26 |
11 | 1b | 1/4 | 365 | DCM | - | 2b: 15; 2b’: 23 |
12 | 1b | 1/1 | 365 | DCM/H2O = 4/1 | - | 2b: 7; 2b’: 7 |
13 | 1b | 1/2 | 365 | DCM/H2O = 4/1 | - | 2b:15, 2b’: 15 |
14 | 1b | 1/4 | 365 | DCM/H2O = 4/1 | - | 2b: 39, 2b’: 51 |
15 | 1b | 1/4 | 365 | DCM/H2O = 4/1 | Cs2CO3 (2.0 equiv.) | 2b: 50, 2b’: 46 |
16 | 1b | 1/4 | 365 | DCM/H2O = 4/1 | DBU (2.0 equiv.) | 2b: 25, 2b’: 30 |
17 | 1b | 1/4 | 365 | DCM/H2O = 4/1 | Et3N (2.0 equiv.) | 2b: 25, 2b’: 27 |
18 | 1b | 1/4 | 460 | DCM/H2O = 4/1 | 9-fluorene (2.0 equiv.) | N.R. |
19 | 1b | 1/4 | 460 | DCM/H2O = 4/1 | rose bengal (2.0 equiv.) | |
20 | 1b | 1/4 | 460 | DCM/H2O = 4/1 | 4CzIPN (2.0 equiv.) | |
21 | 1b | 1/4 | 460 | DCM/H2O = 4/1 | eosin Y (2.0 equiv.) | |
22 | 1c | 1/4 | 365 | DCM/H2O = 4/1 | - | 2c: 30, 2c’: 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, D.; Sabri, A.; Sasai, H.; Takizawa, S. Metal-Free Aerobic C–N Bond Formation of Styrene and Arylamines via Photoactivated Electron Donor–Acceptor Complexation. Molecules 2023, 28, 356. https://doi.org/10.3390/molecules28010356
Fan D, Sabri A, Sasai H, Takizawa S. Metal-Free Aerobic C–N Bond Formation of Styrene and Arylamines via Photoactivated Electron Donor–Acceptor Complexation. Molecules. 2023; 28(1):356. https://doi.org/10.3390/molecules28010356
Chicago/Turabian StyleFan, Duona, Ahmed Sabri, Hiroaki Sasai, and Shinobu Takizawa. 2023. "Metal-Free Aerobic C–N Bond Formation of Styrene and Arylamines via Photoactivated Electron Donor–Acceptor Complexation" Molecules 28, no. 1: 356. https://doi.org/10.3390/molecules28010356
APA StyleFan, D., Sabri, A., Sasai, H., & Takizawa, S. (2023). Metal-Free Aerobic C–N Bond Formation of Styrene and Arylamines via Photoactivated Electron Donor–Acceptor Complexation. Molecules, 28(1), 356. https://doi.org/10.3390/molecules28010356