New Series of Red-Light Phosphor Ca9−xZnxGd0.9(PO4)7:0.1Eu3+ (x = 0–1)
Abstract
:1. Introduction
2. Results and Discussions
2.1. Elemental Composition and Preliminary Characterization
2.2. Scanning Electron Microscopy
2.3. PXRD Analysis
2.4. SHG Study
2.5. Crystal Structure Refinement of Ca8ZnGd(PO4)7
2.6. Luminescent Properties of Ca9−xZnxGd(PO4)7:0.1Eu3+
3. Experimental Section
3.1. Sample Preparation
3.2. Experimental Description
4. Conclusions
- (1)
- Shifting of the M3 position from the third-order axis;
- (2)
- Distortion of M3O8 polyhedra (local decrease of the symmetry);
- (3)
- General increase in symmetry of the structure (R3c → Rc).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dickens, B.; Schroeder, L.W.; Brown, W.E. Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. The crystal structure of pure β-Ca3(PO4)2. J. Solid State Chem. 1974, 10, 232–248. [Google Scholar] [CrossRef]
- Dikhtyar, Y.Y.; Spassky, D.A.; Morozov, V.A.; Deyneko, D.V.; Belik, A.A.; Baryshnikova, O.V.; Nikiforov, I.V.; Lazoryak, B.I. Site occupancy, luminescence and dielectric properties of β-Ca3(PO4)2-type Ca8ZnLn(PO4)7 host materials. J. Alloys Compd. 2022, 908, 164521. [Google Scholar] [CrossRef]
- Sun, S.; Lin, Z.; Zhang, L.; Huang, Y.; Wang, G. Growth and spectral properties of a new nonlinear laser crystal of Nd3+:Ca9Y0.5La0.5(VO4)7. J. Alloys Compd. 2013, 551, 229–232. [Google Scholar] [CrossRef]
- Lazoryak, B.I.; Baryshnikova, O.V.; Stefanovich, S.Y.; Malakho, A.P.; Morozov, V.A.; Belik, A.A.; Leonidov, I.A.; Leonidova, O.N.; Tendeloo, G. Van Ferroelectric and Ionic-Conductive Properties of Nonlinear-Optical Vanadate, Ca9Bi(VO4)7. Chem. Mater. 2003, 15, 3003–3010. [Google Scholar] [CrossRef]
- Lazoryak, B.I.; Teterskii, A.V.; Morozov, V.A.; Stefanovich, S.Y. Dielectric and nonlinear optical properties of the Ca9R(PO4)7 (R = Ln) phosphates. Russ. J. Inorg. Chem. 2005, 50, 986–989. [Google Scholar]
- Lazoryak, B.I.; Baryshnikova, O.V.; Malakho, A.P.; Kobyletskii, K.K.; Fursina, A.A.; Leonidova, O.N.; Morozov, V.A.; Leonidov, I.A.; Stefanovich, S.Y. Ferroelectric solid solutions in the Ca-3(VO4)(2)-BiVO4 system. Russ. J. Inorg. Chem. 2005, 50, 823–832. [Google Scholar]
- Stefanovich, S.Y.; Belik, A.A.; Azuma, M.; Takano, M.; Baryshnikova, O.V.; Morozov, V.A.; Lazoryak, B.I.; Lebedev, O.I.; Van Tendeloo, G. Antiferroelectric phase transition in Sr9In(PO4)7. Phys. Rev. B 2004, 70, 172103. [Google Scholar] [CrossRef]
- Teterskii, A.V.; Stefanovich, S.Y.; Lazoryak, B.I.; Rusakov, D.A. Whitlockite solid solutions Ca9−xMxR(PO4)7 (x = 1, 1.5; M = Mg, Zn, Cd; R = Ln, Y) with antiferroelectric properties. Russ. J. Inorg. Chem. 2007, 52, 308–314. [Google Scholar] [CrossRef]
- Benarafa, A.; Kacimi, M.; Coudurier, G.; Ziyad, M. Characterisation of the active sites in butan-2-ol dehydrogenation over calcium–copper and calcium–sodium–copper phosphates. Appl. Catal. A Gen. 2000, 196, 25–35. [Google Scholar] [CrossRef]
- Wagner, D.E.; Eisenmann, K.M.; Nestor-Kalinoski, A.L.; Bhaduri, S.B. A microwave-assisted solution combustion synthesis to produce europium-doped calcium phosphate nanowhiskers for bioimaging applications. Acta Biomater. 2013, 9, 8422–8432. [Google Scholar] [CrossRef]
- Deyneko, D.V.; Fadeeva, I.V.; Borovikova, E.Y.; Dzhevakov, P.B.; Slukin, P.V.; Zheng, Y.; Xia, D.; Lazoryak, B.I.; Rau, J.V. Antimicrobial properties of co-doped tricalcium phosphates Ca3-2(M′M″) (PO4)2 (M = Zn2+, Cu2+, Mn2+ and Sr2+). Ceram. Int. 2022, 48, 29770–29781. [Google Scholar] [CrossRef]
- Safiri, S.; Kolahi, A.; Cross, M.; Hill, C.; Smith, E.; Carson-Chahhoud, K.; Mansournia, M.A.; Almasi-Hashiani, A.; Ashrafi-Asgarabad, A.; Kaufman, J.; et al. Prevalence, Deaths, and Disability-Adjusted Life Years Due to Musculoskeletal Disorders for 195 Countries and Territories 1990–2017. Arthritis Rheumatol. 2021, 73, 702–714. [Google Scholar] [CrossRef] [PubMed]
- Ginebra, M.-P.; Montufar, E.B. Cements as bone repair materials. In Bone Repair Biomaterials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 233–271. [Google Scholar]
- Heise, U.; Osborn, J.F.; Duwe, F. Hydroxyapatite ceramic as a bone substitute. Int. Orthop. 1990, 14, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Rau, J.V.; Fadeeva, I.V.; Forysenkova, A.A.; Davydova, G.A.; Fosca, M.; Filippov, Y.Y.; Antoniac, I.V.; Antoniac, A.; D’Arco, A.; Di Fabrizio, M.; et al. Strontium Substituted Tricalcium Phosphate Bone Cement: Short and Long-Term Time-Resolved Studies and In Vitro Properties. Adv. Mater. Interfaces 2022, 9, 2200803. [Google Scholar] [CrossRef]
- Yuan, Z.; Bi, J.; Wang, W.; Sun, X.; Wang, L.; Mao, J.; Yang, F. Synthesis and properties of Sr2+ doping α-tricalcium phosphate at low temperature. J. Appl. Biomater. Funct. Mater. 2021, 19, 228080002199699. [Google Scholar] [CrossRef]
- Moussa, H.; Jiang, W.; Alsheghri, A.; Mansour, A.; El Hadad, A.; Pan, H.; Tang, R.; Song, J.; Vargas, J.; McKee, M.D.; et al. High strength brushite bioceramics obtained by selective regulation of crystal growth with chiral biomolecules. Acta Biomater. 2020, 106, 351–359. [Google Scholar] [CrossRef]
- Komlev, V.S.; Barinov, S.M.; Bozo, I.I.; Deev, R.V.; Eremin, I.I.; Fedotov, A.Y.; Gurin, A.N.; Khromova, N.V.; Kopnin, P.B.; Kuvshinova, E.A.; et al. Bioceramics Composed of Octacalcium Phosphate Demonstrate Enhanced Biological Behavior. ACS Appl. Mater. Interfaces 2014, 6, 16610–16620. [Google Scholar] [CrossRef]
- Tavoni, M.; Dapporto, M.; Tampieri, A.; Sprio, S. Bioactive Calcium Phosphate-Based Composites for Bone Regeneration. J. Compos. Sci. 2021, 5, 227. [Google Scholar] [CrossRef]
- Cho, J.; Park, J.H.; Kim, J.K.; Schubert, E.F. White light-emitting diodes: History, progress, and future. Laser Photon. Rev. 2017, 11, 1600147. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Beisel, N.F.; Galashov, E.N.; Mandrik, E.M.; Molokeev, M.S.; Yelisseyev, A.P.; Yusuf, A.A.; Xia, Z. Pressure-Stimulated Synthesis and Luminescence Properties of Microcrystalline (Lu,Y)3Al5O12:Ce3+Garnet Phosphors. ACS Appl. Mater. Interfaces 2015, 7, 26235–26243. [Google Scholar] [CrossRef]
- Ji, H.; Wang, L.; Molokeev, M.S.; Hirosaki, N.; Xie, R.; Huang, Z.; Xia, Z.; ten Kate, O.M.; Liu, L.; Atuchin, V.V. Structure evolution and photoluminescence of Lu3(Al,Mg)2(Al,Si)3O12:Ce3+ phosphors: New yellow-color converters for blue LED-driven solid state lighting. J. Mater. Chem. C 2016, 4, 6855–6863. [Google Scholar] [CrossRef] [Green Version]
- George, N.C.; Denault, K.A.; Seshadri, R. Phosphors for Solid-State White Lighting. Annu. Rev. Mater. Res. 2013, 43, 481–501. [Google Scholar] [CrossRef]
- Bois, C.; Bodrogi, P.; Khanh, T.; Winkler, H. Measuring, simulating and optimizing current LED phosphor systems to enhance the visual quality of lighting. J. Solid State Light. 2014, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Cao, R.; Xue, H.; Yu, X.; Xiao, F.; Wu, D.; Zhang, F. Luminescence properties and synthesis of SrMgAl10O17:Mn4+ red phosphor for white light-emitting diodes. J. Nanosci. Nanotechnol. 2016, 16, 3489–3493. [Google Scholar] [CrossRef]
- Morassuti, C.Y.; Andrade, L.H.C.; Silva, J.R.; Bento, A.C.; Baesso, M.L.; Guimarães, F.B.; Rohling, J.H.; Nunes, L.A.O.; Boulon, G.; Guyot, Y.; et al. Eu2+,3+/Pr3+ co-doped calcium aluminosilicate glass for tunable white lighting devices. J. Alloys Compd. 2020, 817, 153319. [Google Scholar] [CrossRef]
- Li, G.; Lin, J. Recent progress in low-voltage cathodoluminescent materials: Synthesis, improvement and emission properties. Chem. Soc. Rev. 2014, 43, 7099–7131. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.; Glenn, T.; Monteith, S.; Gottlieb, J.F.; Ritter, P.S.; Geddes, J.; Whybrow, P.C. The potential influence of LED lighting on mental illness. World J. Biol. Psychiatry 2018, 19, 59–73. [Google Scholar] [CrossRef]
- Behar-Cohen, F.; Martinsons, C.; Viénot, F.; Zissis, G.; Barlier-Salsi, A.; Cesarini, J.P.; Enouf, O.; Garcia, M.; Picaud, S.; Attia, D. Light-emitting diodes (LED) for domestic lighting: Any risks for the eye? Prog. Retin. Eye Res. 2011, 30, 239–257. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, J.; Guo, Z.; Gong, M. Luminescence and Energy Transfer of Dual-Emitting Solid Solution Phosphors (Ca,Sr)10Li(PO4)7:Ce3+,Mn2+ for Ratiometric Temperature Sensing. Ind. Eng. Chem. Res. 2017, 56, 890–898. [Google Scholar] [CrossRef]
- Qian, B.; Wang, Z.; Wang, Y.; Zhao, Q.; Zhou, X.; Zou, H.; Song, Y.; Sheng, Y. Comparative study on the morphology, growth mechanism and luminescence property of RE2O2S:Eu3+ (RE = Lu, Gd, Y) phosphors. J. Alloys Compd. 2021, 870, 159273. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Ning, Z.; Huang, L.; Zhong, C.; Wang, C.; Liu, M.; Lai, X.; Gao, D.; Bi, J. A novel red phosphor LixNa1-xEu(WO4)2 solid solution: Influences of Li/Na ratio on the microstructures and luminescence properties. J. Lumin. 2018, 201, 364–371. [Google Scholar] [CrossRef]
- Wang, H.; Yang, T.; Feng, L.; Ning, Z.; Liu, M.; Lai, X.; Gao, D.; Bi, J. Energy Transfer and Multicolor Tunable Luminescence Properties of NaGd0.5Tb0.5−xEux(MoO4)2 Phosphors for UV-LED. J. Electron. Mater. 2018, 47, 6494–6506. [Google Scholar] [CrossRef]
- Kumar, K.N.; Vijayalakshmi, L.; Choi, J.; Kim, J.S. Efficient red-luminescence of CaLa2ZnO5 phosphors co-doped by Ce3+ and Eu3+ ions. J. Alloys Compd. 2019, 787, 711–719. [Google Scholar] [CrossRef]
- Zhao, M.; Liao, H.; Ning, L.; Zhang, Q.; Liu, Q.; Xia, Z. Next-Generation Narrow-Band Green-Emitting RbLi(Li3SiO4)2:Eu2+: Phosphor for Backlight Display Application. Adv. Mater. 2018, 30, 1802489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, L.; Liu, R.; Zhang, X.; Peng, X.; Wang, C.; Wang, D. High-brightness Eu3+-doped Ca9Gd(PO4)7 red phosphor for NUV light-emitting diodes application. Mater. Lett. 2016, 167, 250–253. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, W.; Cao, Y.; Jang, K.; Lee, H.S.; Cho, E.; Yi, S.-S. Photoluminescence of Eu3+-doped triple phosphate Ca8MgR(PO4)7 (R=La, Gd, Y). J. Solid State Chem. 2008, 181, 2161–2164. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, C.; Cao, Y.; Shi, L.; Seo, H.J. Luminescence and microstructures of Eu3+-doped in triple phosphate Ca8MgR(PO4)7 (R=La, Gd, Y) with whitlockite structure. Mater. Res. Bull. 2009, 44, 793–798. [Google Scholar] [CrossRef]
- Wang, P.; Hao, L.; Wang, Z.; Wang, Y.; Guo, M.; Zhang, P. Gadolinium-Doped BTO-Functionalized Nanocomposites with Enhanced MRI and X-ray Dual Imaging to Simulate the Electrical Properties of Bone. ACS Appl. Mater. Interfaces 2020, 12, 49464–49479. [Google Scholar] [CrossRef]
- Deyneko, D.V.; Morozov, V.A.; Hadermann, J.; Savon, A.E.; Spassky, D.A.; Stefanovich, S.Y.; Belik, A.A.; Lazoryak, B.I. A novel red Ca8.5Pb0.5Eu(PO4)7 phosphor for light emitting diodes application. J. Alloys Compd. 2015, 647, 965–972. [Google Scholar] [CrossRef]
- Deyneko, D.V.; Morozov, V.A.; Zhukovskaya, E.S.; Nikiforov, I.V.; Spassky, D.A.; Belik, A.A.; Lazoryak, B.I. The influence of second coordination-sphere interactions on the luminescent properties of β-Ca3(PO4)2-related compounds. J. Alloys Compd. 2020, 815, 152352. [Google Scholar] [CrossRef]
- Fadeeva, I.V.; Goldberg, M.A.; Preobrazhensky, I.I.; Mamin, G.V.; Davidova, G.A.; Agafonova, N.V.; Fosca, M.; Russo, F.; Barinov, S.M.; Cavalu, S.; et al. Improved cytocompatibility and antibacterial properties of zinc-substituted brushite bone cement based on β-tricalcium phosphate. J. Mater. Sci. Mater. Med. 2021, 32, 99. [Google Scholar] [CrossRef] [PubMed]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Deyneko, D.V.; Nikiforov, I.V.; Spassky, D.A.; Dikhtyar, Y.Y.; Aksenov, S.M.; Stefanovich, S.Y.; Lazoryak, B.I. Luminescence of Eu3+ as a probe for the determination of the local site symmetry in β-Ca3(PO4)2 -related structures. CrystEngComm 2019, 21, 5235–5242. [Google Scholar] [CrossRef]
- Lazoryak, B.I. Comment on “Tuning of Photoluminescence and Local Structures of Substituted Cations in xSr2Ca(PO4)2−(1−x)Ca10Li(PO4)7:Eu2+ phosphors”. Chem. Mater. 2017, 29, 3800–3802. [Google Scholar] [CrossRef] [Green Version]
- Dikhtyar, Y.Y.; Deyneko, D.V.; Boldyrev, K.N.; Baryshnikova, O.V.; Belik, A.A.; Morozov, V.A.; Lazoryak, B.I. Crystal structure, dielectric and optical properties of β-Ca3(PO4)2-type phosphates Ca9-xZnxLa(PO4)7:Ho3+. J. Lumin. 2021, 236, 118083. [Google Scholar] [CrossRef]
- Belik, A.A.; Morozov, V.A.; Deyneko, D.V.; Savon, A.E.; Baryshnikova, O.V.; Zhukovskaya, E.S.; Dorbakov, N.G.; Katsuya, Y.; Tanaka, M.; Stefanovich, S.Y.; et al. Antiferroelectric properties and site occupations of R3+ cations in Ca8MgR(PO4)7 luminescent host materials. J. Alloys Compd. 2017, 699, 928–937. [Google Scholar] [CrossRef]
- Baur, W.H. The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1974, 30, 1195–1215. [Google Scholar] [CrossRef]
- El Khouri, A.; Elaatmani, M.; Della Ventura, G.; Sodo, A.; Rizzi, R.; Rossi, M.; Capitelli, F. Synthesis, structure refinement and vibrational spectroscopy of new rare-earth tricalcium phosphates Ca9RE(PO4)7 (RE = La, Pr, Nd, Eu, Gd, Dy, Tm, Yb). Ceram. Int. 2017, 43, 15645–15653. [Google Scholar] [CrossRef]
- Goodwin, D.W. Spectra and Energy Levels of Rare Earth Ions in Crystals. Phys. Bull. 1969, 20, 525. [Google Scholar] [CrossRef]
- van Pieterson, L.; Reid, M.F.; Wegh, R.T.; Soverna, S.; Meijerink, A. Meijerink, 4fn →4fn-15d transitions of the light lanthanides: Experiment and theory. Phys. Rev. B 2002, 65, 045113. [Google Scholar] [CrossRef]
- Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic Computing System JANA2006: General features. Zeitschrift für Krist. Cryst. Mater. 2014, 229, 345–352. [Google Scholar] [CrossRef]
- Scherrer, P. Bestimmung dergrosse und der inneren struktur yon kolloiteilchen mittels. Gott. Nachr Math. Phys 1918, 2, 98–100. [Google Scholar]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
x | Ca, at.% | Zn, at.% | Gd, at.% | Eu, at.% | Zn:Ca ratio | Crystalline sizes, nm | FWHM, ° |
---|---|---|---|---|---|---|---|
0.35 | 87.29 ± 0.29 | 3.19 ± 0.16 | 8.80 ± 0.19 | 0.72 ± 0.11 | 0.32 ± 0.03:8.73 ± 0.11 | 75 ± 10 | 0.130 ± 0.013 |
0.50 | 83.56 ± 0.50 | 5.74 ± 0.23 | 9.90 ± 0.18 | 0.80 ± 0.10 | 0.57 ± 0.02:8.36 ± 0.05 | 103 ± 8 | 0.104 ± 0.006 |
0.75 | 81.39 ± 0.46 | 8.34 ± 0.37 | 9.44 ± 0.20 | 0.83 ± 0.13 | 0.83 ± 0.04:8.14 ± 0.05 | 108 ± 10 | 0.101 ± 0.006 |
1.00 | 78.25 ± 0.14 | 11.12 ± 0.22 | 9.65 ± 0.18 | 0.98 ± 0.08 | 1.11 ± 0.02:7.83 ± 0.01 | 270 ± 20 | 0.072 ± 0.002 |
Sample Composition | Ca8ZnGd(PO4)7 |
---|---|
Lattice parameters: a, Å | 10.3796(6) |
c, Å | 37.1316(3) |
Unit cell volume, Å3 | 3460.69(4) |
Calculated density, g/cm3 | 3.452(2) |
Data Collection | |
Diffractometer | Empyrean X-ray |
Radiation/wavelength (λ, Å) | CuKα/1.540593, 1.544427 |
2θ range (o) | 10.013–109.983 |
Step scan (2θ) | 0.013 |
Imax | 51281 |
Number of points | 7691 |
Refinement | |
Refinement | Rietveld |
Background function | Pseudo-Voigt, 16 terms |
No. of reflections (all/observed) | 488/473 |
No. of refined parameters/refined atomic parameters | 64/54 |
R and Rw (%) for Bragg reflection (Rall/Robs) | 8.81/9.07, 9.10/9.08 |
RP, RwP, Rexp (%) | 4.73, 6.64, 1.96 |
Max/min residual density (e) (Å3) | 1.58/−1.78 |
nf-CaM1 | 1.263(8) |
nf-CaM3 | 0.605(5) |
nf-ZnM5 | 0.864(8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dikhtyar, Y.Y.; Spassky, D.A.; Morozov, V.A.; Polyakov, S.N.; Romanova, V.D.; Stefanovich, S.Y.; Deyneko, D.V.; Baryshnikova, O.V.; Nikiforov, I.V.; Lazoryak, B.I. New Series of Red-Light Phosphor Ca9−xZnxGd0.9(PO4)7:0.1Eu3+ (x = 0–1). Molecules 2023, 28, 352. https://doi.org/10.3390/molecules28010352
Dikhtyar YY, Spassky DA, Morozov VA, Polyakov SN, Romanova VD, Stefanovich SY, Deyneko DV, Baryshnikova OV, Nikiforov IV, Lazoryak BI. New Series of Red-Light Phosphor Ca9−xZnxGd0.9(PO4)7:0.1Eu3+ (x = 0–1). Molecules. 2023; 28(1):352. https://doi.org/10.3390/molecules28010352
Chicago/Turabian StyleDikhtyar, Yury Yu., Dmitry A. Spassky, Vladimir A. Morozov, Sergey N. Polyakov, Valerya D. Romanova, Sergey Yu. Stefanovich, Dina V. Deyneko, Oksana V. Baryshnikova, Ivan V. Nikiforov, and Bogan I. Lazoryak. 2023. "New Series of Red-Light Phosphor Ca9−xZnxGd0.9(PO4)7:0.1Eu3+ (x = 0–1)" Molecules 28, no. 1: 352. https://doi.org/10.3390/molecules28010352
APA StyleDikhtyar, Y. Y., Spassky, D. A., Morozov, V. A., Polyakov, S. N., Romanova, V. D., Stefanovich, S. Y., Deyneko, D. V., Baryshnikova, O. V., Nikiforov, I. V., & Lazoryak, B. I. (2023). New Series of Red-Light Phosphor Ca9−xZnxGd0.9(PO4)7:0.1Eu3+ (x = 0–1). Molecules, 28(1), 352. https://doi.org/10.3390/molecules28010352