Controlling Pepper Mild Mottle Virus (PMMoV) Infection in Pepper Seedlings by Use of Chemically Synthetic Silver Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. PMMoV Isolation and Identification
2.2. Total RNA Extraction and RT-PCR
2.3. Electron Microscopy
2.4. Synthesis and Collection of Spherical AgNPs (avg. 36.32 nm) Using 8.0 mM of Trisodium Citrate Dehydrate (C6H5O7Na3)
2.5. Activity of AgNPs against PMMoV
2.6. Physiological Constraints
2.6.1. Photosynthetic Pigments
2.6.2. Phenolic Content
2.6.3. Protein Composition
3. Materials and Methods
3.1. Virus Isolation and Propagation
3.2. Mechanical Transmission of PMMoV
3.3. Transmission Electron Microscopy
3.4. Double Antibody Sandwich ELISA (DAS-ELISA)
3.5. Total RNA Extraction and RT-PCR
3.6. Synthesis and Collection of Spherical AgNPs (avg. 36.32 nm) Using 8.0 mM of Trisodium Citrate Dehydrate (C6H5O7Na3)
3.7. Antiviral Activity of Different Concentrations of AgNPs
3.8. Evaluation of the Changes Resulting from Treatment with AgNPs during Viral Infection
3.8.1. Evaluation of the Pigments
3.8.2. Total Phenolic Content
3.8.3. Soluble Protein Content
3.9. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Attia, N.F.; El-Monaem, E.M.A.; El-Aqapa, H.G.; Elashery, S.E.; Eltaweil, A.S.; El Kady, M.; Khalifa, S.A.; Hawash, H.B.; El-Seedi, H.R. Iron oxide nanoparticles and their pharmaceutical applications. Appl. Surf. Sci. Adv. 2022, 11, 100284. [Google Scholar] [CrossRef]
- Jo, Y.; Choi, H.; Lee, J.H.; Moh, S.H.; Cho, W.K. Viromes of 15 Pepper (Capsicum annuum L.) Cultivars. Int. J. Mol. Sci. 2022, 23, 10507. [Google Scholar] [CrossRef] [PubMed]
- Egbuna, C.; Parmar, V.K.; Jeevanandam, J.; Ezzat, S.M.; Patrick-Iwuanyanwu, K.C.; Adetunji, C.O.; Khan, J.; Onyeike, E.N.; Uche, C.Z.; Akram, M.; et al. Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology. J. Toxicol. 2021, 2021, 9954443. [Google Scholar] [CrossRef] [PubMed]
- Jamil, K.; Khattak, S.H.; Farrukh, A.; Begum, S.; Riaz, M.N.; Muhammad, A.; Kamal, T.; Taj, T.; Khan, I.; Riaz, S.; et al. Biogenic Synthesis of Silver Nanoparticles Using Catharanthus roseus and Its Cytotoxicity Effect on Vero Cell Lines. Molecules 2022, 27, 6191. [Google Scholar] [CrossRef]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef]
- Song, X.; Bayati, P.; Gupta, M.; Elahinia, M.; Haghshenas, M. Fracture of magnesium matrix nanocomposites—A review. Int. J. Light. Mater. Manuf. 2020, 4, 67–98. [Google Scholar] [CrossRef]
- Li, Y.; Tan, G.; Xiao, L.; Zhou, W.; Lan, P.; Chen, X.; Liu, Y.; Li, R.; Li, F. A Multiyear Survey and Identification of Pepper- and Tomato-Infecting Viruses in Yunnan Province, China. Front. Microbiol. 2021, 12, 623875. [Google Scholar] [CrossRef]
- Karavina, C.; Ibaba, J.D.; Gubba, A. Potato virus Y isolates infecting bell pepper from parts of Southern Africa display distinct recombination patterns. Physiol. Mol. Plant Pathol. 2021, 114, 101638. [Google Scholar] [CrossRef]
- Ojinaga, M.; Guirao, P.; Larregla, S. A Survey of Main Pepper Crop Viruses in Different Cultivation Systems for the Selection of the Most Appropriate Resistance Genes in Sensitive Local Cultivars in Northern Spain. Plants 2022, 11, 719. [Google Scholar] [CrossRef]
- Pearl, R.L.; Hopkins, C.H.; Berkowitz, R.I.; Wadden, T.A. Group cognitive-behavioral treatment for internalized weight stigma: A pilot study. Eat Weight Disord. 2018, 23, 357–362. [Google Scholar] [CrossRef]
- Nooghabi, M.G. First report of Pepper mottle virus in Iran. Plant Dis. Notes 2022, 17, 6. [Google Scholar] [CrossRef]
- Kumari, N.; Patel, P.B.; Chaudhary, S.; Sharma, P.N. Molecular Characterization and Population Structure Analysis of Pepper Mild Mottle Virus Infecting Capsicum in Himachal Pradesh, India. Ann. Agric. Crop Sci. 2021, 6, 1097. [Google Scholar] [CrossRef]
- Garcia-Luque, I.; Serra, M.T.; Alonso, E.; Wicke, B.; Ferrero, M.L.; Diaz-Ruiz, J.R. Characterization of a Spanish Strain of Pepper Mild Mottle Virus (PMMV-S) and its Relationship to Other Tobamoviruses. J. Phytopathol. 1990, 129, 1–8. [Google Scholar] [CrossRef]
- Kirita, M.; Akutsu, K.; Watanabe, Y.; Tsuda, S. Nucleotide Sequence of the Japanese Isolate of Pepper Mild Mottle Tobamovirus (TMV-P) RNA. Jpn. J. Phytopathol. 1997, 63, 373–376. [Google Scholar] [CrossRef]
- Idriss, L.K.; Gamal, Y.A.S. Properties of Rubberized Concrete Prepared from Different Cement Types. Recycling 2022, 7, 39. [Google Scholar] [CrossRef]
- Sharmin, S.; Rahaman, M.; Sarkar, C.; Atolani, O.; Islam, M.T.; Adeyemi, O.S. Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study. Heliyon 2021, 7, e06456. [Google Scholar] [CrossRef]
- Al Otraqchi, K.I.B.; Darogha, S.N.; Ali, B.A. Serum levels of immunoglobulin and complement in UTI of patients caused by Proteus mirabilis and using AgNPs as antiswarming. Cell. Mol. Biol. 2021, 67, 11–23. [Google Scholar] [CrossRef]
- Alavi, M.; Adulrahman, N.A.; Haleem, A.A.; Al-Râwanduzi, A.D.H.; Khusro, A.; Abdelgawad, M.A.; Ghoneim, M.M.; Batiha, G.E.-S.; Kahrizi, D.; Martinez, F.; et al. Nanoformulations of curcumin and quercetin with silver nanoparticles for inactivation of bacteria. Cell. Mol. Biol. 2022, 67, 151–156. [Google Scholar] [CrossRef]
- Kareem, P.A.; Salh, K.K.; Ali, F.A. ZnO, TiO2 and Ag nanoparticles impact against some species of pathogenic bacteria and yeast. Cell. Mol. Biol. 2021, 67, 24–34. [Google Scholar] [CrossRef]
- Ibrahem, K.H.; Ali, F.A.; Sorchee, S.M.A. Biosynthesis and characterization with antimicrobial activity of TiO2 nanoparticles using probiotic Bifidobacterium bifidum. Cell. Mol. Biol. 2020, 66, 111–117. [Google Scholar] [CrossRef]
- Cortés, H.; Reyes-Hernández, O.D.; Gonzalez-Torres, M.; Vizcaino-Dorado, P.A.; Del Prado-Audelo, M.L.; Alcalá-Alcalá, S.; Sharifi-Rad, J.; Figueroa-González, G.; Carmen, M.G.-D.; Florán, B.; et al. Curcumin for parkinson´s disease: Potential therapeutic effects, molecular mechanisms, and nanoformulations to enhance its efficacy. Cell. Mol. Biol. 2021, 67, 101–105. [Google Scholar] [CrossRef]
- Vargas-Hernandez, M.; Macias-Bobadilla, I.; Guevara-Gonzalez, R.; Rico-Garcia, E.; Ocampo-Velazquez, R.; Avila-Juarez, L.; Torres-Pacheco, I. Nanoparticles as Potential Antivirals in Agriculture. Agriculture 2020, 10, 444. [Google Scholar] [CrossRef]
- Hamid, A.; Saleem, S. Role of nanoparticles in management of plant pathogens and scope in plant transgenics for imparting disease resistance. Plant Prot. Sci. 2022, 58, 173–184. [Google Scholar] [CrossRef]
- Derbalah, A.S.H.; Elsharkawy, M.M. A new strategy to control Cucumber mosaic virus using fabricated NiO-nanostructures. J. Biotechnol. 2019, 306, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Çağlar, B.K.; Fidan, H.; Elbeaino, T. Detection and Molecular Characterization of Pepper Mild Mottle Virus from Turkey. J. Phytopathol. 2012, 161, 434–438. [Google Scholar] [CrossRef]
- Levy, A.; Zheng, J.Y.; Lazarowitz, S.G. The Tobamovirus Turnip Vein Clearing Virus 30-Kilodalton Movement Protein Localizes to Novel Nuclear Filaments To Enhance Virus Infection. J. Virol. 2013, 87, 6428–6440. [Google Scholar] [CrossRef] [Green Version]
- Colson, P.; Richet, H.; Desnues, C.; Balique, F.; Moal, V.; Grob, J.-J.; Berbis, P.; Lecoq, H.; Harlé, J.-R.; Berland, Y.; et al. Pepper Mild Mottle Virus, a Plant Virus Associated with Specific Immune Responses, Fever, Abdominal Pains, and Pruritus in Humans. PLoS ONE 2010, 5, e10041. [Google Scholar] [CrossRef]
- Velasco, L.; Janssen, D.; Ruiz-Garcia, L.; Segundo, E.; Cuadrado, I.M. The complete nucleotide sequence and development of a diferential detection assay for a pepper mild mottle virus (PMMoV) isolate that overcomes L3 resistance in pepper. J. Virol. Methods 2002, 106, 135–140. [Google Scholar] [CrossRef]
- Li, Y.; Tan, G.; Lan, P.; Zhang, A.; Liu, Y.; Li, R.; Li, F. Detection of tobamoviruses by RT-PCR using a novel pair of degenerate primers. J. Virol. Methods 2018, 259, 122–128. [Google Scholar] [CrossRef]
- Zhou, W.P.; Li, Y.Y.; Li, F.; Tan, G.L. First report of natural infection of tomato by pepper mild mottle virus in China. J. Plant Pathol. 2020, 103, 363. [Google Scholar] [CrossRef]
- Hadidi, A.; Montasser, M.S.; Levy, L.; Goth, R.W.; Converse, R.H.; Madkour, M.A.; Skrzeckowski, L.J. Detection of Potato Leafroll and Strawberry Mild Yellow-Edge Luteoviruses by Reverse Transcription-Polymerase Chain Reaction Amplification. Plant Dis. 1993, 77, 595–601. [Google Scholar] [CrossRef]
- Singh, R.; Kuddus, M.; Singh, P.K.; Choden, D. Nanotechnology for Nanophytopathogens: From Detection to the Management of Plant Viruses. BioMed Res. Int. 2022, 2022, 8688584. [Google Scholar] [CrossRef] [PubMed]
- Yerragopu, P.S.; Hiregoudar, S.; Nidoni, U.; Ramappa, K.T.; Sreenivas, A.G.; Doddagoudar, S.R. Chemical Synthesis of Silver Nanoparticles Using Tri-sodium Citrate, Stability Study and Their Characterization. Int. Res. J. Pure Appl. Chem. 2020, 21, 37–50. [Google Scholar] [CrossRef]
- Elbeshehy, E.K.F.; Elazzazy, A.M.; Aggelis, G. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front. Microbiol. 2015, 6, 453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suriati, G.; Mariatti, M.; Azizan, A. Synthesis of silver nanoparticles by chemical reduction method: Effect of reducing agent and surfactant concentration. Int. J. Automot. Mech. Eng. 2014, 10, 1920–1927. [Google Scholar] [CrossRef]
- Ahsan, T. Biofabrication of silver nanoparticles from Pseudomonas fluorescens to control tobacco mosaic virus. Egypt. J. Biol. Pest Control 2020, 30, 66. [Google Scholar] [CrossRef]
- Perveen, R.; Shujaat, S.; Naz, M.; Qureshi, M.Z.; Nawaz, S.; Shahzad, K.; Ikram, M. Green synthesis of antimicrobial silver nanoparticles with Brassicaceae seeds. Mater. Res. Express 2021, 8, 055007. [Google Scholar] [CrossRef]
- Mahfouze, H.A.; El-Dougdoug, N.K.; Mahfouze, S.A. Virucidal activity of silver nanoparticles against Banana bunchy top virus (BBTV) in banana plants. Bull. Natl. Res. Cent. 2020, 44, 199. [Google Scholar] [CrossRef]
- Srikar, S.K.; Giri, D.D.; Pal, D.B.; Mishra, P.K.; Upadhyay, S.N. Green Synthesis of Silver Nanoparticles: A Review. Green Sustain. Chem. 2016, 06, 34–56. [Google Scholar] [CrossRef] [Green Version]
- Dutta, P.; Kumari, A.; Mahanta, M.; Biswas, K.K.; Dudkiewicz, A.; Thakuria, D.; Abdelrhim, A.S.; Singh, S.B.; Muthukrishnan, G.; Sabarinathan, K.G.; et al. Advances in Nanotechnology as a Potential Alternative for Plant Viral Disease Management. Front. Microbiol. 2022, 13, 935193. [Google Scholar] [CrossRef]
- Pazarlar, S.; Gümüş, M.; Öztekin, G.B. The Effects of Tobacco mosaic virus Infection on Growth and Physiological Parameters in Some Pepper Varieties (Capsicum annuum L.). Not. Bot. Horti Agrobot. Cluj-Napoca 2013, 41, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Balogun, O.S.; Teraoka, T. Time-course analysis of the accumulation of phenols in tomato seedlings infected with Potato Virus X and Tobacco mosaic virus. Biokemistri 2005, 16, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Abdelkhalek, A.; Király, L.; Al-Mansori, A.-N.A.; Younes, H.A.; Zeid, A.; Elsharkawy, M.M.; Behiry, S.I. Defense Responses and Metabolic Changes Involving Phenylpropanoid Pathway and PR Genes in Squash (Cucurbita pepo L.) following Cucumber mosaic virus Infection. Plants 2022, 11, 1908. [Google Scholar] [CrossRef] [PubMed]
- Duarte, L.M.L.; Salatino, M.L.F.; Salatino, A.; Negri, G.; Barradas, M.M. Effect of Potato virus X on total phenol and alkaloid contents in Datura stramonium leaves. Summa Phytopathol. 2008, 34, 65–67. [Google Scholar] [CrossRef] [Green Version]
- Vélez-Olmedo, J.B.; Fribourg, C.E.; Melo, F.L.; Nagata, T.; de Oliveira, A.S.; Resende, R.O. Tobamoviruses of two new species trigger resistance in pepper plants harbouring functional L alleles. J. Gen. Virol. 2021, 102, jgv001524. [Google Scholar] [CrossRef]
- Martelli, G.P.; Russo, M. Use of Thin Sectioning for Visualization and Identification of Plant Viruses. Methods Virol. 1984, 8, 143–224. [Google Scholar] [CrossRef]
- Clark, M.F.; Adams, A.N.; Graham, F.L.; Smiley, J.; Russell, W.C.; Nairn, R. Characteristics of the Microplate Method of Enzyme-Linked Immunosorbent Assay for the Detection of Plant Viruses. J. Gen. Virol. 1977, 34, 475–483. [Google Scholar] [CrossRef]
- Dadosh, T. Synthesis of uniform silver nanoparticles with a controllable size. Mater. Lett. 2009, 63, 2236–2238. [Google Scholar] [CrossRef]
- Halder, S.; Ahmed, A.N.; Gafur, A.; Seong, G.; Hossain, M.Z. Size-Controlled Facile Synthesis of Silver Nanoparticles by Chemical Reduction Method and Analysis of Their Antibacterial Performance. ChemistrySelect 2021, 6, 9714–9720. [Google Scholar] [CrossRef]
- Sofy, A.R.; Hmed, A.A.; Alnaggar, A.E.-A.M.; Dawoud, R.A.; Elshaarawy, R.F.; Sofy, M.R. Mitigating effects of Bean yellow mosaic virus infection in faba bean using new carboxymethyl chitosan-titania nanobiocomposites. Int. J. Biol. Macromol. 2020, 163, 1261–1275. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Aldhebiani, A.Y.; Elbeshehy, E.K.; Baeshen, A.A.; Elbeaino, T. Inhibitory activity of different medicinal extracts from Thuja leaves, ginger roots, Harmal seeds and turmeric rhizomes against Fig leaf mottle-associated virus 1 (FLMaV-1) infecting figs in Mecca region. Saudi J. Biol. Sci. 2017, 24, 936–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mæhre, H.; Dalheim, L.; Edvinsen, G.; Elvevoll, E.; Jensen, I.-J. Protein Determination—Method Matters. Foods 2018, 7, 5. [Google Scholar] [CrossRef] [PubMed]
Groups | Treatments | Virus Concentration | * Virus Infectivity | Percentage of Infection | Percentage of Disease Severity (DS %) (*) | ||
---|---|---|---|---|---|---|---|
R1 | R2 | R3 | |||||
Pre-inoculation | Negative control | 0.034 (−) | 0/3 | 0/3 | 0/3 | 0.00% | 0.00% (0) |
Positive control | 1.164 (+) | 3/3 | 3/3 | 3/3 | 100% | 100% (4) | |
Infected and AgNPs (200 µg/L) | 1.156 | 3/3 | 3/3 | 3/3 | 100% | 100% (4) | |
Infected and AgNPs (300 µg/L) | 1.130 | 3/3 | 2/3 | 3/3 | 88.89% | 88.89% (4) | |
Infected and AgNPs (400 µg/L) | 0.986 | 3/3 | 2/3 | 2/3 | 66.67% | 58.33% (3) | |
With inoculation | Infected and AgNPs (200 µg/L) | 0.897 | 2/3 | 2/3 | 3/3 | 77.78% | 58.33% (3) |
Infected and AgNPs (300 µg/L) | 0.312 | 1/3 | 1/3 | 1/3 | 33.33% | 16.67% (2) | |
Infected and AgNPs (400 µg/L) | 0.121 | 1/3 | 0/3 | 1/3 | 22.22% | 5.56% (1) | |
Post-inoculation | Infected and AgNPs (200 µg/L) | 0.451 | 1/3 | 2/3 | 1/3 | 44.44% | 22.22% (2) |
Infected and AgNPs (300 µg/L) | 0.095 | 1/3 | 0/3 | 1/3 | 22.22% | 8.33% (1) | |
Infected and AgNPs (400 µg/L) | 0.055 | 1/3 | 0/3 | 0/3 | 11.11% | 5.56% (1) |
Groups | Treatments | Chl a (mg/g Fresh Weight) | Chl b (mg/g Fresh Weight) | Ch a + b | Car. (mg/g Fresh Weight) | Chla+b / Car. |
---|---|---|---|---|---|---|
Pre-inoculation | Negative control | 1.099 | 0.396 | 1.495 | 0.508 | 2.943 |
Positive control | 0.595 | 0.232 | 0.827 | 0.253 | 3.269 | |
Infected and AgNPs (200 µg/L) | 0.596 | 0.221 | 0.817 | 0.276 | 2.960 | |
Infected and AgNPs (300 µg/L) | 0.616 | 0.244 | 0.860 | 0.288 | 2.986 | |
Infected and AgNPs (400 µg/L) | 0.825 | 0.256 | 1.081 | 0.297 | 3.639 | |
With inoculation | Infected and AgNPs (200 µg/L) | 0.912 | 0.241 | 1.153 | 0.412 | 2.798 |
Infected and AgNPs (300 µg/L) | 1.024 | 0.311 | 1.335 | 0.427 | 3.127 | |
Infected and AgNPs (400 µg/L) | 1.052 | 0.323 | 1.375 | 0.436 | 3.154 | |
Post-inoculation | Infected and AgNPs (200 µg/L) | 1.037 | 0.367 | 1.404 | 0.412 | 3.408 |
Infected and AgNPs (300 µg/L) | 1.041 | 0.378 | 1.419 | 0.495 | 2.867 | |
Infected and AgNPs (400 µg/L) | 1.085 | 0.395 | 1.477 | 0.501 | 2.948 |
Treatments | Pre-Inoculation | With Inoculation | Post-Inoculation | |||
---|---|---|---|---|---|---|
Total Phenols (mg/g dw) | Soluble Proteins (mg/g fw) | Total Phenols (mg/g dw) | Soluble Proteins (mg/g fw) | Soluble Proteins (mg/g fw) | Total Phenols (mg/g dw) | |
Negative control | 0.582 | 29.84 | 0.579 | 29.77 | 0.580 | 0.580 |
Positive control | 0.323 | 45.81 | 0.365 | 45.99 | 0.377 | 0.377 |
Infected and AgNPs (200 µg/L) | 0.311 | 43.61 | 0.399 | 41.29 | 0.385 | 0.385 |
Infected and AgNPs (300 µg/L) | 0.347 | 36.66 | 0.489 | 32.26 | 0.530 | 0.530 |
Infected and AgNPs (400 µg/L) | 0.352 | 38.52 | 0.497 | 31.23 | 0.573 | 0.573 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbeshehy, E.K.F.; Hassan, W.M.; Baeshen, A.A. Controlling Pepper Mild Mottle Virus (PMMoV) Infection in Pepper Seedlings by Use of Chemically Synthetic Silver Nanoparticles. Molecules 2023, 28, 139. https://doi.org/10.3390/molecules28010139
Elbeshehy EKF, Hassan WM, Baeshen AA. Controlling Pepper Mild Mottle Virus (PMMoV) Infection in Pepper Seedlings by Use of Chemically Synthetic Silver Nanoparticles. Molecules. 2023; 28(1):139. https://doi.org/10.3390/molecules28010139
Chicago/Turabian StyleElbeshehy, Esam K. F., Wael M. Hassan, and Areej A. Baeshen. 2023. "Controlling Pepper Mild Mottle Virus (PMMoV) Infection in Pepper Seedlings by Use of Chemically Synthetic Silver Nanoparticles" Molecules 28, no. 1: 139. https://doi.org/10.3390/molecules28010139
APA StyleElbeshehy, E. K. F., Hassan, W. M., & Baeshen, A. A. (2023). Controlling Pepper Mild Mottle Virus (PMMoV) Infection in Pepper Seedlings by Use of Chemically Synthetic Silver Nanoparticles. Molecules, 28(1), 139. https://doi.org/10.3390/molecules28010139