Hemp Seeds of the Polish ‘Bialobrzeskie’ and ‘Henola’ Varieties (Cannabis sativa L. var. sativa) as Prospective Plant Sources for Food Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nutritional and Energy Value of Hemp Seeds
2.2. Fatty Acid Profile and Lipid Indices
2.3. Amino Acids Profile and Content
3. Materials and Methods
3.1. Reagents and Analytical Standards
3.2. Plant Material
3.3. Labelling Nutrition and Energy Value of Seeds
3.4. Determination of the Fatty Acid Profile Using GC-FID
3.5. Calculation of Lipid Health Indicators
- (1)
- PUFA/SFA ratio = (ΣDiUFA + ΣTriUFA + ΣTetraUFA)/ΣSFA [35];
- (2)
- (3)
- Atherogenicity Index AI = (C12:0 + 4 × C14:0 + C16:0)/Σ UFA [35];
- (4)
- Thrombogenicity Index TI = (C14:0 + C16:0 + C18:0)/[(0.5 × MUFA) + (0.5 × Σ n − 6) + (3 × Σ n − 3) + (Σ n − 3/Σ n − 6)] [38];
- (5)
- Hypocholesterolemic/Hypercholesterolemic Index h/H = [(C18:1 n − 9 + C18:1 n − 7 + C18:2 n − 6 + C18:3 n − 6 + C18:3 n − 3 + C20:3 n − 6 + C20:4 n − 6 + C20:5 n − 3 + C22:4 n − 6 + C22:5 n − 3 + C22:6 n − 3)/(C14:0 + C16:0)] [47]
3.6. Determination of the Amino Acid Content with the HPLC-DAD
3.7. Calculation of AAS (Amino Acid Score)
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Industrial Hemp Association Hemp Cultivation & Production in Europe in 2018. Available online: https://eiha.org/wp-content/uploads/2020/10/2018-Hemp-agri-report.pdf (accessed on 20 December 2021).
- New Frontier Data Poland Embraces European Potential for Industrial Hemp. Available online: https://newfrontierdata.com/cannabis-insights/polands-rise-to-a-new-european-hemp-powerhouse/ (accessed on 11 August 2020).
- COBORU (The Research Centre for Cultivar Testing). Oil and fibre plants. Pol. Nat. List Agric. Plant Var. 2021, 350, 32–33. [Google Scholar]
- Charitos, I.A.; Gagliano-Candela, R.; Santacroce, L.; Bottalico, L. The Cannabis Spread throughout the Continents and its Therapeutic Use in History. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J. Ethnopharmacol. 2018, 227, 300–315. [Google Scholar] [CrossRef] [PubMed]
- Abel, E.L. Marihuana; Springer US: Boston, MA, USA, 1980; ISBN 978-1-4899-2191-8. [Google Scholar]
- Devinsky, O.; Marsh, E.; Friedman, D.; Thiele, E.; Laux, L.; Sullivan, J.; Miller, I.; Flamini, R.; Wilfong, A.; Filloux, F.; et al. Cannabidiol in patients with treatment-resistant epilepsy: An open-label interventional trial. Lancet Neurol. 2016, 15, 270–278. [Google Scholar] [CrossRef]
- Koppel, B.S.; Brust, J.C.M.; Fife, T.; Bronstein, J.; Youssof, S.; Gronseth, G.; Gloss, D. Systematic review: Efficacy and safety of medical marijuana in selected neurologic disorders: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2014, 82, 1556–1563. [Google Scholar] [CrossRef]
- Whiting, P.F.; Wolff, R.F.; Deshpande, S.; Di Nisio, M.; Duffy, S.; Hernandez, A.V.; Keurentjes, J.C.; Lang, S.; Misso, K.; Ryder, S.; et al. Cannabinoids for Medical Use. JAMA 2015, 313, 2456. [Google Scholar] [CrossRef]
- Deshpande, A.; Mailis-Gagnon, A.; Zoheiry, N.; Lakha, S.F. Efficacy and adverse effects of medical marijuana for chronic noncancer pain: Systematic review of randomized controlled trials. Can. Fam. Physician 2015, 61, e372–e381. [Google Scholar]
- Lynch, M.E.; Ware, M.A. Cannabinoids for the Treatment of Chronic Non-Cancer Pain: An Updated Systematic Review of Randomized Controlled Trials. J. Neuroimmune Pharmacol. 2015, 10, 293–301. [Google Scholar] [CrossRef]
- Mücke, M.; Carter, C.; Cuhls, H.; Prüß, M.; Radbruch, L.; Häuser, W. Cannabinoide in der palliativen Versorgung. Der Schmerz 2016, 30, 25–36. [Google Scholar] [CrossRef]
- Fitzcharles, M.-A.; Ste-Marie, P.A.; Häuser, W.; Clauw, D.J.; Jamal, S.; Karsh, J.; Landry, T.; Leclercq, S.; Mcdougall, J.J.; Shir, Y.; et al. Efficacy, Tolerability, and Safety of Cannabinoid Treatments in the Rheumatic Diseases: A Systematic Review of Randomized Controlled Trials. Arthritis Care Res. 2016, 68, 681–688. [Google Scholar] [CrossRef] [Green Version]
- Volz, M.S.; Siegmund, B.; Häuser, W. Wirksamkeit, Verträglichkeit und Sicherheit von Cannabinoiden in der Gastroenterologie. Der Schmerz 2016, 30, 37–46. [Google Scholar] [CrossRef] [PubMed]
- European Commission. EU Agricultural Outlook for Markets, Income and Environment, 2020–2030; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Aschemann-Witzel, J.; Gantriis, R.F.; Fraga, P.; Perez-Cueto, F.J.A. Plant-based food and protein trend from a business perspective: Markets, consumers, and the challenges and opportunities in the future. Crit. Rev. Food Sci. Nutr. 2020, 61, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. The Seed of Industrial Hemp (Cannabis sativa L.): Nutritional Quality and Potential Functionality for Human Health and Nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef] [PubMed]
- Callaway, J.C. Hempseed as a nutritional resource: An overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Galasso, I.; Russo, R.; Mapelli, S.; Ponzoni, E.; Brambilla, I.M.; Battelli, G.; Reggiani, R. Variability in Seed Traits in a Collection of Cannabis sativa L. Genotypes. Front. Plant Sci. 2016, 7, 688. [Google Scholar] [CrossRef] [Green Version]
- Irakli, M.; Tsaliki, E.; Kalivas, A.; Kleisiaris, F.; Sarrou, E.; Cook, C.M. Effect οf Genotype and Growing Year on the Nutritional, Phytochemical, and Antioxidant Properties of Industrial Hemp (Cannabis sativa L.) Seeds. Antioxidants 2019, 8, 491. [Google Scholar] [CrossRef] [Green Version]
- Vonapartis, E.; Aubin, M.-P.; Seguin, P.; Mustafa, A.F.; Charron, J.-B. Seed composition of ten industrial hemp cultivars approved for production in Canada. J. Food Compos. Anal. 2015, 39, 8–12. [Google Scholar] [CrossRef]
- Lan, Y.; Zha, F.; Peckrul, A.; Hanson, B.; Johnson, B.; Rao, J.; Chen, B. Genotype x Environmental Effects on Yielding Ability and Seed Chemical Composition of Industrial Hemp (Cannabis sativa L.) Varieties Grown in North Dakota, USA. J. Am. Oil Chem. Soc. 2019, 96, 1417–1425. [Google Scholar] [CrossRef]
- Mihoc, M.; Pop, G.; Alexa, E.; Radulov, I. Nutritive quality of romanian hemp varieties (Cannabis sativa L.) with special focus on oil and metal contents of seeds. Chem. Cent. J. 2012, 6, 122. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Esteban, J.I.; González-Fernández, M.J.; Fabrikov, D.; Torija-Isasa, E.; de Cortes Sánchez-Mata, M.; Guil-Guerrero, J.L. Hemp (Cannabis sativa L.) Varieties: Fatty Acid Profiles and Upgrading of γ-Linolenic Acid–Containing Hemp Seed Oils. Eur. J. Lipid Sci. Technol. 2020, 122, 1900445. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Zhao, J.; Wang, W.; Griffin, J.; Li, Y.; Bean, S.; Tilley, M.; Wang, D. Hempseed as a nutritious and healthy human food or animal feed source: A review. Int. J. Food Sci. Technol. 2021, 56, 530–543. [Google Scholar] [CrossRef]
- House, J.D.; Neufeld, J.; Leson, G. Evaluating the Quality of Protein from Hemp Seed (Cannabis sativa L.) Products Through the use of the Protein Digestibility-Corrected Amino Acid Score Method. J. Agric. Food Chem. 2010, 58, 11801–11807. [Google Scholar] [CrossRef] [PubMed]
- Siano, F.; Moccia, S.; Picariello, G.; Russo, G.; Sorrentino, G.; Di Stasio, M.; La Cara, F.; Volpe, M. Comparative Study of Chemical, Biochemical Characteristic and ATR-FTIR Analysis of Seeds, Oil and Flour of the Edible Fedora Cultivar Hemp (Cannabis sativa L.). Molecules 2018, 24, 83. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-S.; Tang, C.-H.; Yang, X.-Q.; Gao, W.-R. Characterization, amino acid composition and in vitro digestibility of hemp (Cannabis sativa L.) proteins. Food Chem. 2008, 107, 11–18. [Google Scholar] [CrossRef]
- Razmaitė, V.; Pileckas, V.; Bliznikas, S.; Šiukščius, A. Fatty Acid Composition of Cannabis sativa, Linum usitatissimum and Camelina sativa Seeds Harvested in Lithuania for Food Use. Foods 2021, 10, 1902. [Google Scholar] [CrossRef]
- Vahanvaty, U.S. Hemp Seed and Hemp Milk. ICAN Infant Child Adolesc. Nutr. 2009, 1, 232–234. [Google Scholar] [CrossRef]
- Mattila, P.; Mäkinen, S.; Eurola, M.; Jalava, T.; Pihlava, J.-M.; Hellström, J.; Pihlanto, A. Nutritional Value of Commercial Protein-Rich Plant Products. Plant Foods Hum. Nutr. 2018, 73, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Korus, J.; Witczak, M.; Ziobro, R.; Juszczak, L. Hemp (Cannabis sativa subsp. sativa) flour and protein preparation as natural nutrients and structure forming agents in starch based gluten-free bread. LWT 2017, 84, 143–150. [Google Scholar] [CrossRef]
- Teterycz, D.; Sobota, A.; Przygodzka, D.; Łysakowska, P. Hemp seed (Cannabis sativa L.) enriched pasta: Physicochemical properties and quality evaluation. PLoS ONE 2021, 16, e0248790. [Google Scholar] [CrossRef]
- Surette, M.E. Dietary omega-3 PUFA and health: Stearidonic acid-containing seed oils as effective and sustainable alternatives to traditional marine oils. Mol. Nutr. Food Res. 2013, 57, 748–759. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Tringaniello, C.; Cossignani, L.; Blasi, F. Characterization of the Triacylglycerol Fraction of Italian and Extra-European Hemp Seed Oil. Foods 2021, 10, 916. [Google Scholar] [CrossRef]
- Kim, N.H.; Jung, S.Y.; Park, Y.A.; Lee, Y.J.; Jo, J.Y.; Lee, S.M.; Oh, Y.H. Fatty acid composition and characterisation of commercial vegetable oils with chemometric approaches. Int. Food Res. J. 2020, 27, 270–279. [Google Scholar]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Ying, Q.; Wojciechowska, P.; Siger, A.; Kaczmarek, A.; Rudzińska, M. Phytochemical Content, Oxidative Stability, and Nutritional Properties of Unconventional Cold-pressed Edible Oils. J. Food Nutr. Res. 2018, 6, 476–485. [Google Scholar] [CrossRef] [Green Version]
- Charzewska, J.; Jarosz, M.; Wajszczyk, B.; Chwojnowska, Z. Białka. In Normy Żywienia dla Populacji Polski i ich Zastosowanie; Jarosz, M., Rychlik, E., Stoś, K., Charzewska, J., Eds.; Narodowy Instytut Zdrowia Publicznego–Państwowy Zakład Higieny: Warsaw, Poland, 2020; pp. 48–68. ISBN 978-83-65870-28-5. [Google Scholar]
- INFMP (Institute of Natural Fibres & Medicinal Plants). Polish Industrial Hemp Varieties. Available online: https://www.iwnirz.pl/strona,5,219.html (accessed on 14 April 2021).
- European Parliament and of the Council. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending REGULATIONS (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council. Article 30. Off. J. Eur. Union 2011, 304, 34–35. [Google Scholar]
- Latimer, G.W.; Horwitz, W. (Eds.) Official Methods of Analysis of AOAC International, 18th ed.; AOAC Intl.: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Cunnif, P. (Ed.) AOAC Official Method 985.29, Total Dietary in Foods-Enzymatic-Gravimetric Method. In Official Methods of Analysis of AOAC International, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Firestone, D. (Ed.) AOCs Official Method Ce 2–66, Preparation of Methyl Esters of Fatty Acids. In Official Methods and Recommended Practices, 5th ed.; Oil Chemists’ Society: Champaign, IL, USA, 1998. [Google Scholar]
- Wołoszyn, J.; Haraf, G.; Okruszek, A.; Wereńska, M.; Goluch, Z.; Teleszko, M. Fatty acid profiles and health lipid indices in the breast muscles of local Polish goose varieties. Poult. Sci. 2020, 99, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.E.; da Vasconcelos, M.A.S.; de Almeida Ribeiro, M.; Sarubbo, L.A.; Andrade, S.A.C.; de Filho, A.B.M. Nutritional and lipid profiles in marine fish species from Brazil. Food Chem. 2014, 160, 67–71. [Google Scholar] [CrossRef]
- Haraf, G.; Wołoszyn, J.; Okruszek, A.; Orkusz, A.; Wereńska, M. Nutritional value of proteins and lipids in breast muscle of geese from four different Polish genotypes. Eur. Poult. Sci. 2018, 82, 1–11. [Google Scholar]
Parameter | HEMP | ||
---|---|---|---|
‘Bialobrzeskie’ | ‘Henola’ | ||
Energy value | kJ/100 g | 1860 ± 18.83 a | 1905 ± 11.31 a |
Energy value | kcal/100 g | 451 ± 4.46 a | 461 ± 2.74 a |
Dry matter | % | 91.38 ± 2.25 a | 92.44 ± 0.64 a |
Protein * | % | 23.54 ± 0.59 a | 23.39 ± 0.38 a |
Total sugars * | % | 2.01 ± 0.11 a | 2.09 ± 0.01 a |
Digestible carbohydrates * | % | 2.02 ± 0.24 a | 4.48 ± 0.25 b |
Dietary fiber * | % | 28.88 ± 0.18 a | 27.42 ± 0.34 b |
Fat (total) * | % | 32.28 ± 0.41 a | 32.75 ± 1.70 a |
Saturated fatty acids (SFA) * | g/100 g | 3.48 ± 0.40 a | 3.98 ± 0.25 a |
Ash (total) * | % | 4.66 ± 0.47 a | 4.40 ± 0.16 a |
Fatty Acid | Chemical Structure | ‘Bialobrzeskie’ | ‘Henola’ | ‘Bialobrzeskie’ | ‘Henola’ |
---|---|---|---|---|---|
(%) in total FA | (g/100 g DM of Seeds) | ||||
palmitic | C16:0 | 6.75 ± 0.71 a | 7.76 ± 0.89 a | 2.18 | 2.54 |
palmitoleic | C16:1 n − 7 | 0.16 ± 0.05 a | 0.16 ± 0.02 a | 0.05 | 0.05 |
margaric | C17:0 | 0.07 ± 0.00 a | 0.06 ± 0.00 a | 0.02 | 0.02 |
stearic | C18:0 | 2.65 ± 0.08 a | 2.84 ± 0.11 a | 0.86 | 0.93 |
oleic | C18:1 n − 9 | 12.28 ± 1.75 a | 11.95 ± 1.37 a | 3.96 | 3.91 |
cis-vaccenic | C18:1 n − 7 (11 cis) | 0.96 ± 0.07 a | 0.96 ± 0.09 a | 0.31 | 0.31 |
linoleic | C18:2 n − 6 | 56.46 ± 2.40 a | 53.35 ± 3.01 a | 18.22 | 17.48 |
γ-linolenic | C18:3 n − 6 | 3.33 ± 0.41 a | 1.56 ± 0.13 b | 1.07 | 0.51 |
α-linolenic | C18:3 n − 3 | 14.60 ± 1.85 a | 19.15 ± 2.06 a | 4.71 | 6.27 |
stearidonic | C18:4 n − 3 | 0.87 ± 0.11 a | 0.00 ± 0.00 b | 0.28 | 0.00 |
arachidic | C20:0 | 0.77 ± 0.09 a | 0.86 ± 0.11 a | 0.25 | 0.28 |
cis-11-eicosenoic | C20:1 | 0.34 ± 0.06 a | 0.43 ± 0.04 a | 0.11 | 0.14 |
eicosadienoic | C20:2 | 0.06 ± 0.01 a | 0.06 ± 0.00 a | 0.02 | 0.02 |
behenic | C22:0 | 0.31 ± 0.05 a | 0.34 ± 0.06 a | 0.10 | 0.11 |
erucic | C22:1 n − 9 | 0.00 ± 0.00 b | 0.07 ± 0.00 a | 0.00 | 0.02 |
lignoceric | C24:0 | 0.14 ± 0.00 a | 0.17 ± 0.00 b | 0.05 | 0.06 |
nervonic | C24:1 n − 9 | 0.00 ± 0.00 b | 0.07 ± 0.01 a | 0.00 | 0.02 |
Quality Parameters | ‘Bialobrzeskie’ | ‘Henola’ |
---|---|---|
Σ n − 6/Σ n − 3 | 3.86 ± 0.33 a | 2.87 ± 0.61 a |
Σ PUFA/Σ SFA | 7.06 ± 1.03 a | 6.17 ± 0.73 a |
AI | 0.08 ± 0.01 a | 0.09 ± 0.01 a |
TI | 0.03 ± 0.00 a | 0.03 ± 0.00 a |
h/H | 12.98 ± 3.00 a | 11.21 ± 1.82 a |
Amino Acids | ‘Bialobrzeskie’ | ‘Henola’ | Protein Pattern IOM ** | Egg protein | ||
---|---|---|---|---|---|---|
Content in Seeds (g/100 g DM) | Content in Protein (g/100 g) | Content in Seeds (g/100 g DM) | Content in Protein (g/100 g) | Content in Protein (g/100 g) | ||
Lys * | 0.754 ± 0.098 a | 3.20 | 0.752 ± 0.098 a | 3.22 | 5.1 | 6.3 |
Met * | 0.497 ± 0.065 a | 2.11 | 0.463 ± 0.060 a | 1.98 | ||
Cys * | 0.330 ± 0.060 a | 1.40 | 0.320 ± 0.060 a | 1.37 | ||
Met + Cys * | 0.827 | 3.51 | 0.783 | 3.35 | 2.5 | 5.6 |
Asp | 2.160 ± 0.280 a | 9.18 | 2.020 ± 0.260 a | 8.64 | ||
Thr * | 0.718 ± 0.093 a | 3.05 | 0.648 ± 0.084 a | 2.77 | 2.7 | 4.7 |
Ser | 0.990 ± 0.130 a | 4.21 | 0.920 ± 0.120 a | 3.93 | ||
Glu | 3.590 ± 0.390 a | 15.25 | 3.410 ± 0.380 a | 14.58 | ||
Pro | 0.820 ± 0.110 a | 3.48 | 0.810 ± 0.110 a | 3.46 | ||
Gly | 0.930 ± 0.120 a | 3.95 | 0.880 ± 0.110 a | 3.76 | ||
Ala | 0.900 ± 0.120 a | 3.82 | 0.860 ± 0.110 a | 3.68 | ||
Val * | 0.970 ± 0.130 a | 4.12 | 0.980 ± 0.130 a | 4.19 | 3.2 | 6.9 |
Ile * | 0.830 ± 0.110 a | 3.53 | 0.800 ± 0.100 a | 3.42 | 2.5 | 5.9 |
Leu * | 1.310 ± 0.170 a | 5.56 | 1.290 ± 0.170 a | 5.52 | 5.5 | 8.5 |
Tyr * | 0.571 ± 0.074 a | 2.43 | 0.523 ± 0.068 a | 2.24 | ||
Phe * | 0.890 ± 0.120 a | 3.78 | 0.930 ± 0.120 a | 3.98 | ||
Tyr + Phe * | 1.461 | 6.21 | 1.453 | 6.21 | 4.7 | 7 |
His * | 0.565 ± 0.073 a | 2.40 | 0.527 ± 0.068 a | 2.25 | 1.8 | 2.3 |
Arg Trp * | 2.480 ± 0.320 a 0.437 ± 0.060 a | 10.54 1.86 | 2.260 ± 0.290 a 0.322 ± 0.065 a | 9.66 1.38 | 0.7 | 1.5 |
Essential Amino Acid | ‘Bialobrzeskie’ | ‘Henola’ |
---|---|---|
Ile | 141.20 | 136.80 |
Leu | 101.09 | 100.36 |
Lys | 62.75 | 63.14 |
Met + Cys | 140.40 | 134.00 |
Phe + Tyr | 132.13 | 132.13 |
Thr | 112.76 | 102.59 |
Trp | 265.71 | 197.14 |
Val | 128.75 | 130.94 |
His | 133.33 | 125.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teleszko, M.; Zając, A.; Rusak, T. Hemp Seeds of the Polish ‘Bialobrzeskie’ and ‘Henola’ Varieties (Cannabis sativa L. var. sativa) as Prospective Plant Sources for Food Production. Molecules 2022, 27, 1448. https://doi.org/10.3390/molecules27041448
Teleszko M, Zając A, Rusak T. Hemp Seeds of the Polish ‘Bialobrzeskie’ and ‘Henola’ Varieties (Cannabis sativa L. var. sativa) as Prospective Plant Sources for Food Production. Molecules. 2022; 27(4):1448. https://doi.org/10.3390/molecules27041448
Chicago/Turabian StyleTeleszko, Mirosława, Adam Zając, and Tomasz Rusak. 2022. "Hemp Seeds of the Polish ‘Bialobrzeskie’ and ‘Henola’ Varieties (Cannabis sativa L. var. sativa) as Prospective Plant Sources for Food Production" Molecules 27, no. 4: 1448. https://doi.org/10.3390/molecules27041448
APA StyleTeleszko, M., Zając, A., & Rusak, T. (2022). Hemp Seeds of the Polish ‘Bialobrzeskie’ and ‘Henola’ Varieties (Cannabis sativa L. var. sativa) as Prospective Plant Sources for Food Production. Molecules, 27(4), 1448. https://doi.org/10.3390/molecules27041448