Design, Synthesis and Biological Evaluation of Syn and Anti-like Double Warhead Quinolinones Bearing Dihydroxy Naphthalene Moiety as Epidermal Growth Factor Receptor Inhibitors with Potential Apoptotic Antiproliferative Action
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biology
2.2.1. Antiproliferative Action
Cell Viability Assay
Antiproliferative Assay
2.2.2. EGFR Inhibitory Assay
2.2.3. Apoptosis Assays
Effect of Compounds 4a, 4b, and 7d on Caspases Cascade
Effect of Compounds 4a, 4b, and 7d on Cytochrome C Level
Effect of Compounds 4a, 4b, and 7d on BaX and Bcl2 Levels
2.3. Molecular Docking Simulations
3. Conclusions
4. Experimental Section
4.1. Chemistry
4.1.1. Starting Materials
4.1.2. General Procedure for the Synthesis of Compounds 4a–e and 7a–e
- [4,4′-(((naphthalene-1,8-diylbis(oxy))bis(methylene))bis(1H-1,2,3-triazole-4,1-diyl))-bis-(quinolin-2(1H)-one)] (4a). This compound was obtained as colorless powder, (85%), m.p. > 360 °C. 1H NMR (DMSO-d6): δH = 12.29 (s, 2H; NH-6), 9.00 (s, 2H; H-5), 7.85 (d, J = 8.3, 2H; H-4′), 7.66 (dd, J = 7.7, 7.0, 2H; H-12), 7.49 (d, J = 7.7, 2H; H-13), 7.48 (dd, J = 7.7, 6.8, 2H; H-3′), 7.45 (d, J = 8.2, 2H; H-10), 7.31 (d, J = 7.8, 2H; H-2′), 7.26 (dd, J = 7.5, 7.2, 2H; H-11), 6.91 (s, 2H; H-8), 5.50 ppm (s, 4H; H-4a), 13C NMR (DMSO-d6): δC = 160.99 (C-7), 153.37 (C-1′), 143.64 (C-4), 143.42 (C-9), 139.43 (C-13a), 131.88 (C-12), 126.46 (C-5), 126.03 (C-4a’), 125.51 (C-3′), 124.04 (C-13), 122.59 (C-11), 117.76 (C-8), 115.92 (C-10), 114.48 (C-4′, 8a’, 9a), 106.80 (C-2′), 61.67 ppm (C-4a), 15N NMR (DMSO-d6): δN = 247.4 (N-3), 152.3 ppm (N-6), N-1 and N-2 n/o. m/z = 608 (M+, 8). Anl. Calcd. for C34H24N8O4: C, 67.10; H, 3.97; N, 18.41; Found: C, 67.19; H, 4.11; N, 18.55.
- [4,4′-(((naphthalene-1,8-diylbis(oxy))bis(methylene))bis(1H-1,2,3-triazole-4,1-diyl))-bis(6-methylquinolin-2(1H)-one)] (4b). This compound was obtained as colorless powder (80%), m.p > 360 °C. 1H NMR (DMSO-d6): δH = 12.21 (s, 2H; H-6), 8.98 (s, 2H; H-5), 7.86 (d, J = 8.1, 2H; H-4′), 7.48 (dd, J = 8.3, 8.3, 4H; H-12, 3′), 7.39 (d, J = 8.2, 2H; H-13), 7.31 (d, J = 7.7, 2H; H-2′), 7.26 (s, 2H; H-10), 6.86 (s, 2H; H-8), 5.50 (s, 4H; H-4a), 2.31 ppm (s, 6H; H-11a), 13C NMR (DMSO-d6): δC = 160.81 (C-7), 153.37 (C-1′), 143.44 (C-4,9), 137.53 (C-13a), 133.18 (C-12), 131.74 (C-11), 126.45 (C-5), 125.63 (C-4a’), 125.29 (C-3′), 123.20 (C-10), 117.78 (C-8), 115.91 (C-13), 114.42 (C-4′, 8a’, 9a), 106.77 (C-2′), 61.67 (C-4a), ppm 20.55 (C-11a), 15N NMR (DMSO-d6): δN = 247.8 (N-3), 151.8 ppm (N-6). N-1 and N-2 n/o. m/z = 636 (M+, 100). Anl. Calcd. for C36H28N8O4: C, 67.91; H, 4.43; N, 17.60; Found: C, 68.07; H, 4.52; N, 17.44.
- [4,4′-(((naphthalene-1,8-diylbis(oxy))bis(methylene))bis(1H-1,2,3-triazole-4,1-diyl))-bis-(6-methoxyquinolin-2(1H)-one)] (4c). This compound was obtained as colorless powder (77%), m.p > 360 °C. 1H NMR (DMSO-d6): δH = 12.20 (s, 2H; NH-6), 9.03 (s, 2H; H-5), 7.85 (d, J = 8.2, 2H; H-4′), 7.45 (dd, J = 8.2, 6.8, 2H; H-3′), 7.44 (d, J = 8.2, 2H; H-13), 7.34 (d, J = 8.7, 2H; H-12), 7.30 (d, J = 7.4, 2H; H-2′), 6.94 (s, 2H; H-10), 6.90 (s, 2H; H-8), 5.51 (s, 4H; H-4a), 3.67 ppm (s, 6H; H-11a), 13C NMR (DMSO-d6): δC = 160.52 (C-7), 154.51 (C-11), 153.32 (C-1′), 143.55 (C-4), 143.11 (C-9), 134.09 (C-13a), 126.35 (C-5), 126.03 (C-4a’), 125.47 (C-3′), 121.07 (C-12), 118.05 (C-8), 117.44 (C-13), 114.88 (C-4′, 9a), 114.44 (C-8a’), 106.69 (C-2′), 105.49 (C-10), 61.62 (C-4a), 55.33 ppm (C-11a), 15N NMR (DMSO-d6): δN = 247.6 (N-1), 151.3 ppm (N-6). N-2 and N-3 n/o. m/z = 668 (M+, 41). Anal. Calcd. for C36H28N8O6: C, 64.66; H, 4.22; N, 16.76; Found: C, 64.59; H, 4.31; N, 16.88.
- [4,4′-(((naphthalene-1,8-diylbis(oxy))bis(methylene))bis(1H-1,2,3-triazole-4,1-diyl))-bis-(8-methylquinolin-2(1H)-one)] (4d). This compound was obtained as colorless powder (81%), m.p > 360 °C. 1H NMR (DMSO-d6): δH = 11.40 (bs, 2H; NH-6), 8.97 (s, 2H; H-5), 7.85 (d, J = 8.1, 2H; H-4′), 7.52 (d, J = 6.8, 2H; H-12), 7.46 (dd, J = 8.0, 7.4, 2H; H-3′), 7.31 (d, J = 7.4, 2H; H-2′), 7.22 (d, J = 7.2, 2H; H-10), 7.16 (dd, J = 7.4, 6.9, 2H; H-11), 6.91 (s, 2H; H-8), 5.50 (s, 4H; H-4a), 2.51 ppm (s, 6H; H-13b), 13C NMR (DMSO-d6): δC = 161.34 (C-7), 153.38 (C-1′), 144.22 (C-4), 143.39 (C-9), 137.82 (C-13a), 133.10 (C-12), 126.63 (C-5), 126.06 (C-4a’), 125.51 (C-3′), 124.42 (C-13), 122.32 (C-11), 121.80 (C-10), 117.93 (C-8), 114.85 (C-4′), 114.52 (C-8a’, 9a), 106.85 (C-2′), 61.69 (C-4a), 17.53 ppm (C-13b), 15N NMR (DMSO-d6): δN = 247.4 (N-3 or N-1), 149.3 ppm (N-6). N-2 and (N-1 or N-3) n/o. m/z = 636 (M+, 31). Anl. Calcd. for C36H28N8O4: C, 67.91; H, 4.43; N, 17.60; Found: C, 68.10; H, 4.39; N, 17.49.
- [4,4′-(((naphthalene-1,8-diylbis(oxy))bis(methylene))bis(1H-1,2,3-triazole-4,1-diyl))-bis-(1-methylquinolin-2(1H)-one)] (4e). This compound was obtained as colorless powder (79%), m.p > 360 °C. NMR (DMSO-d6) (See Table 1) m/z = 636 (M+, 12). Anl. Calcd. for C36H28N8O4: C, 67.91; H, 4.43; N, 17.60; Found: C, 67.88; H, 4.55; N, 17.79.
- 1,5-Bis(prop-2-yn-1-yloxy)naphthalene (6). This compound was obtained as colorless powder (90%), m.p 150–152 °C. 1H NMR (DMSO-d6): δH = 7.75 (d, J = 8.4, 2H; H-4), 7.44 (dd, J = 8.2, 8.0, 2H; H-3), 7.10 (d, J = 7.7, 2H; H-2), 5.01 (d, J = 2.0, 4H; -OCH2), 3.34 (s, 2H; H-1c), 13C NMR (DMSO-d6): δC = 152.55 (C-1), 125.97 (C-4a), 125.43 (C-3), 114.23 (C-4), 106.74 (C-2), 79.12 (C-1b), 78.38 (C-1c), 55.99 (-OCH2). M/z = 236 (M+, 35). Anl. Calcd. for C16H12O2: C, 81.34; H, 5.12; Found: C, 81.44; H, 4.97.
- [4,4′-(((naphthalene-1,5-diylbis(oxy))bis(methylene))bis(1H-1,2,3-triazole-4,1-diyl))-bis-(quinolin-2(1H)-one)] (7a). This compound was obtained as colorless powder (86%), m.p > 360 °C. 1H NMR (DMSO-d6): δH = 12.21 (s, 2H; NH-6), 8.98 (s, 2H; H-5), 7.84 (d, J = 8.4 Hz, 2H; H-4′), 7.77 (d, J = 8.5 Hz, 2H; H-13), 7.51–7.26 (m, 9H; H-12,3′,10,11,2′,8), 6.86 (s, 2H; H-2′), 5.50 (s, 4H; H-4a), 13C NMR (DMSO-d6): δC = 160.84 (C-7), 153.11 (C-1′), 143.42 (C-4), 142.64 (C-9), 140.11 (C-13a), 133.18 (C-12), 126.45 (C-5), 126.07 (C-10), 125.50 (C-3′), 125.29 (C-4a’), 124.50 (C-11), 123.20 (C-9a), 117.24 (C-8), 115.91 (C-13), 114.42 (C-4′), 106.77 (C-2′), 61.88 (C-4a). m/z = 608 (M+, 20). Anl. Calcd. for C34H24N8O4: C, 67.10; H, 3.97; N, 18.41; Found: C, 66.95; H, 3.88; N, 18.58.
- [4,4′-(((naphthalene-1,5-diylbis(oxy))bis(methylene))bis(1H-1,2,3-triazole-4,1-diyl))-bis-(6-methylquinolin-2(1H)-one)] (7b). This compound was obtained as colorless powder (73%), m.p > 360 °C. 1H NMR (DMSO-d6): δH = 12.22 (s, 2H; H-6), 8.96 (s, 2H; H-5), 7.96 (d, J = 8.0, 2H; H-4′), 7.85 (d, J = 8.4, 4H; H-12, 3′), 7.51–7.26 (m, 6H; H-13,2′,10), 6.86 (s, 2H; H-8), 5.50 (s, 4H; H-4a), 2.09 ppm (s, 6H; H-11a). m/z = 636 (M+, 31). Anl. Calcd. for C36H28N8O4: C, 67.91; H, 4.43; N, 17.60; Found: C, 67.83; H, 4.38; N, 17.78.
- [4,4′-(((naphthalene-1,5-diylbis(oxy))bis(methylene))bis(1H-1,2,3-triazole-4,1-diyl))-bis-(6-methoxyquinolin-2(1H)-one)] (7c). This compound was obtained as colorless powder (78%), m.p > 360 °C. 1H NMR (DMSO-d6): δH = 12.19 (s, 2H; NH-6), 9.02 (s, 2H; H-5), 7.84 (d, J = 6.2, 2H; H-4′), 7.45 (d, J = 6.0, 2H; H-13), 7.31 (dd, J = 9.1, 8.2, 2H; H-12), 6.94 (d, J = 8.0, 2H; H-3′), 7.30 (d, J = 7.4, 2H; H-10), 6.94 (s, 2H; H-11), 6.70 (s, 2H; H-8), 5.51 (s, 4H; H-4a), 3.32 ppm (s, 6H; H-11a), 13C NMR (DMSO-d6): δC = 160.52 (C-7), 154.51 (C-11), 153.32 (C-1′), 143.55 (C-4), 143.11 (C-9), 134.09 (C-13a), 126.35 (C-5), 126.03 (C-4a’), 125.47 (C-3′), 121.07 (C-12), 118.05 (C-8), 117.44 (C-13), 114.88 (C-4′, 9a), 114.44 (C-8a’), 106.69 (C-2′), 105.49 (C-10), 61.62 (C-4a), 55.33 ppm (C-11a), 15N NMR (DMSO-d6): δN = 151.4 ppm (N-6). N-1, N-2 and N-3 n/o. m/z = 668 (M+, 8). Anl. Calcd. for C36H28N8O6: C, 64.66; H, 4.22; N, 16.76; Found: C, 64.79; H, 4.18; N, 16.59.
- [4,4′-(((naphthalene-1,5-diylbis(oxy))bis(methylene))bis(1H-1,2,3-triazole-4,1-diyl))-bis-(8-methylquinolin-2(1H)-one)] (7d). This compound was obtained as colorless powder (88%), m.p > 360 °C. 1H NMR (DMSO-d6): δH =11.38 (bs, 2H; NH-6), 8.96 (s, 2H; H-5), 7.96–690 (m, 12H; H-4′,12,3′,2′,10,8), 5.50 (s, 4H; H-4a), 2.50 ppm (s, 6H; H-13b). m/z = 636 (M+, 23). Anl. Calcd. for C36H28N8O4: C, 67.91; H, 4.43; N, 17.60; Found: C, 68.06; H, 4.52; N, 17.79.
- [(4,4′-(((naphthalene-1,5-diylbis(oxy))bis(methylene))bis(1H-1,2,3-triazole-4,1-diyl))-bis-(1-methylquinolin-2(1H)-one)] (7e). This compound was obtained as colorless powder (74%), m.p > 360 °C. 1H NMR (DMSO-d6) (See Table 1). m/z = 636 (M+, 58). Anl. Calcd. for C36H28N8O4: C, 67.91; H, 4.43; N, 17.60; Found: C, 67.78; H, 4.39; N, 17.74.
4.2. Biology
4.3. Docking Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Emmerson, A.M.; Jones, A.M. The quinolones: Decades of development and use. J. Antimicrob. Chemother. 2003, 51 (Suppl. S1), 13–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitscher, L.A. Bacterial topoisomerase inhibitors: Quinolone and pyridone antibacterial agents. Chem. Rev. 2005, 105, 559–592. [Google Scholar] [CrossRef] [PubMed]
- Linder, J.A.; Huang, E.S.; Steinman, M.A.; Gonzales, R.; Stafford, R.S. Fluoroquinolone prescribing in the United States: 1995 to 2002. Am. J. Med. 2005, 118, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.S.; Farrah, K. Fluoroquinolones for the treatment of urinary tract infection: A review of clinical effectiveness. In Cost-Effectiveness, and Guidelines; Canadian Agency for Drugs and Technologies in Health: Ottawa, Canada, 2019. [Google Scholar]
- Sharma, P.C.; Chaudhary, M.; Sharma, A.; Piplani, M.; Rajak, H.; Prakash, O. Insight view on possible role of fluoroquinolones in cancer therapy. Curr. Top. Med. Chem. 2013, 13, 2076–2096. [Google Scholar] [CrossRef] [PubMed]
- Kan, J.Y.; Hsu, Y.L.; Chen, Y.H.; Chen, T.C.; Wang, J.Y.; Kuo, P.L. Gemifloxacin, a fluoroquinolone antimicrobial drug, inhibits migration and invasion of human colon cancer cells. Bio. Med. Res. Int. 2013, 2013, 159786–159797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batalha, P.N.; Souza, M.C.B.; Pena-Cabrera, E.; Cruz, D.C.; Boechat, F.C.S. Quinolone in the search for new anti-cancer agents. Curr. Pharmaceut. Des. 2016, 22, 6009–6020. [Google Scholar] [CrossRef]
- Makhanya, T.R.; Gengan, R.M.; Pandian, P.; Chuturgoon, A.A.; Tiloke, C.; Atar, A. Phosphotungstic acid catalyzed one pot synthesis of 4,8,8-trimethyl-5-phenyl-5,5a,8,9-tetrahydrobenzo[b][1,8]naphthyridin-6(7H)-one derivatives and their biological evaluation against A549 lung cancer cells. J. Heterocycl. Chem. 2018, 55, 1193–1204. [Google Scholar] [CrossRef]
- Musiol, R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin. Drug Discov. 2017, 12, 583–597. [Google Scholar] [CrossRef]
- Afzal, O.; Afzal, O.; Kumar, S.; Haider, R.M.; Ali, R.M.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anti-cancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem. 2015, 97, 871–910. [Google Scholar] [CrossRef]
- Cherian, M.A.; Ma, C.X. The role of neratinib in HER2-driven breast cancer. Future Oncol. 2017, 13, 1931–1943. [Google Scholar] [CrossRef]
- Wissner, A.; Berger, D.; Boschelli, D.; Floyd, M.; Greenberger, L.; Gruber, B.; Johnson, B.; Mamuya, N.; Nilakantan, R.; Reich, M.; et al. 4-Anilino-6,7-dialkoxyquinoline-3-carbonitrile inhibitors of epidermal growth factor receptor kinase and their bioisosteric relationship to the 4-anilino-6,7-dialkoxy-quinazoline inhibitors. J. Med. Chem. 2000, 43, 3244–3256. [Google Scholar] [CrossRef] [PubMed]
- Pannala, M.; Kher, S.; Wilson, N.; Gaudette, J.; Sircar, I.; Zhang, S.; Bakhirev, A.; Yang, G.; Yuen, P.; Gorcsan, F.; et al. Synthesis and structure–activity relationship of 4-(2-aryl-cyclopropylamino)-quinoline-3-carbonitriles as EGFR tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 5978–5982. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, D.; El Ella, D.A.; El-Motwally, A.; Aly, R. Molecular design and synthesis of certain new quinoline derivatives having potential anti-cancer activity. Eur. J. Med. Chem. 2015, 102, 115–131. [Google Scholar] [CrossRef] [PubMed]
- Aly, R.; Serya, R.; El-Motwally, A.; Al-Ansary, G.; El Ella, D.A. Review: Quinoline-based small molecules as effective protein kinases inhibitors. J. Am. Sci. 2016, 12, 10–32. [Google Scholar]
- Romagnoli, R.; Baraldi, P.G.; Prencipe, F.; Oliva, P.; Baraldi, S.; Salvador, M.K.; Lopez-Cara, L.C.; Brancale, A.; Ferla, S.; Hamel, E.; et al. Synthesis and Biological Evaluation of 2-Methyl-4,5- Disubstituted Oxazoles as a Novel Class of Highly Potent Antitubulin Agents. Sci. Rep. 2017, 7, 46356–46375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youssif, B.G.M.; Elshaier, Y.A.M.M.; Abdu-Allah, H.H.M.; Salim, M.T.A.; Inagak, F.; Mukai, C. Synthesis of some benzimidazole derivatives endowed with 1,2,3-triazole as potential inhibitors of hepatitis C virus. Acta Pharm. 2016, 66, 219–231. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-S.; Hu, D.-K.; Zhao, D.-S.; Liu, X.-Y.; Jin, H.-W.; Song, G.-P.; Cui, Z.-N.; Zhang, L.-H. Design, synthesis and biological evaluation of 2,4-disubstituted oxazole derivatives as potential PDE4 inhibitors. Bioorg. Med. Chem. 2017, 25, 1852–1859. [Google Scholar] [CrossRef]
- Ansari, M.F.; Siddiqui, S.M.; Agarwal, S.M.; Vikramdeo, K.S.; Mondal, N.; Azam, A. Metronidazole hydrazone conjugates: Design, synthesis, antiamoebic and molecular docking studies. Bioorg. Med. Chem. Lett. 2015, 25, 3545–3549. [Google Scholar] [CrossRef]
- Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg. Chem. 2017, 71, 30–54. [Google Scholar] [CrossRef]
- Meldal, M.; Tornøe, C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 2008, 108, 2952–3015. [Google Scholar] [CrossRef]
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. [Google Scholar] [CrossRef]
- Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599. [Google Scholar] [CrossRef]
- Mohammed, I.; Kummetha, I.R.; Singh, G.; Sharova, N.; Lichinchi, G.; Dang, J.; Stevenson, M.; Rana, T.M. 1,2,3-Triazoles as amide bioisosteres: Discovery of a new class of potent HIV-1 Vif antagonists. J. Med. Chem. 2016, 16, 7677–7682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonandi, E.; Christodoulou, M.S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov. Today 2017, 22, 1572–1581. [Google Scholar] [CrossRef]
- Sun, J.; Yang, Y.-S.; Li, W.; Zhang, Y.-B.; Wang, X.-L.; Tang, J.-F.; Zhu, H.-L. Synthesis, biological evaluation and molecular docking studies of 1,3,4-thiadiazole derivatives containing 1,4-benzodioxan as potential antitumor agents. Bioorg. Med. Chem. Lett. 2011, 21, 6116–6121. [Google Scholar] [CrossRef]
- Khan, M.F.; Anwer, T.; Bakht, A.; Verma, G.; Akhtar, W.; Alam, M.M.; Rizvi, M.A.; Akhter, M.; Shaquiquzzaman, M. Unveiling novel diphenyl-1H-pyrazole based acrylates tethered to 1,2,3-triazole as promising apoptosis inducing cytotoxic and anti-inflammatory agents. Bioorg. Chem. 2019, 87, 667–678. [Google Scholar] [CrossRef]
- Mahmoud, M.A.; Mohammed, A.F.; Salem, O.I.A.; Gomaa, H.A.M.; Youssif, B.G.M. New 1,3,4-oxadiazoles linked 1,2,3-triazole moiety as antiproliferative agents targeting EGFR-TK. Arch. Der Pharm. 2022, 355, 2200009–2200023. [Google Scholar] [CrossRef]
- Xu, J.H.; Fan, Y.L.; Zhou, J. Quinolone-triazole hybrids and their biological activities. J. Heterocycl. Chem. 2018, 55, 1854–1862. [Google Scholar] [CrossRef]
- Ren, Q.C.; Gao, C.; Xu, Z.; Feng, L.S.; Liu, M.L.; Wu, X.; Zhao, F. Bis-coumarin derivatives and their biological activities. Curr. Top. Med. Chem. 2018, 18, 101–113. [Google Scholar] [CrossRef]
- Hemamalini, A.; Das, M.T. Design and synthesis of sugar-triazole low molecular weight gels as mercury ion sensor. New. J. Chem. 2013, 37, 2419–2425. [Google Scholar] [CrossRef]
- Steinschifter, W.; Fiala, W.; Stadlbauer, W. Synthesis of oxazolo[4,5-c]quinolones by thermolytic degradation of 4-azido-2(1H)-quinolones. J. Heterocycl. Chem. 1994, 31, 1647–1652. [Google Scholar] [CrossRef]
- Nayl, A.A.; Aly, A.A.; Arafa, W.A.A.; Ahmed, I.M.; Abd-Elhamid, A.I.; El-Fakharany, E.M.; Abdelgawad, M.A.; Tawfeek, H.N.; Bräse, S. Azides in the Synthesis of Various Heterocycles. Molecules 2022, 27, 3716. [Google Scholar]
- Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic Azides: An Exploding Diversity of a Unique Class of Compounds. Angew. Chem. 2005, 117, 5320–5374. [Google Scholar]
- Stadlbauer, W.; Laschober, R.; Kappe, T. Potential non-steroidal estrogens and antiestrogens, IV Organicazides in heterocyclic synthesis, part 13: Synthesis of aza-and diazacoumestrols via azido derivatives. Monathefte Chem. 1991, 122, 853–861. [Google Scholar] [CrossRef]
- Aizikovich, A.; Kuznetsov, V.; Gorohovsky, S.; Levy, A.; Meir, S.; Byk, G.; Gellerman, G. A new application of diphenylphosphorylazide (DPPA) reagent: Convenient transformations of quinolin-4-one, pyridin-4-one and quinazolin-4-one derivatives into the 4-azido and 4-amino counterparts. Tetrahedron Lett. 2004, 45, 4241–4243. [Google Scholar] [CrossRef]
- El-Sheref, E.M.; Aly, A.A.; Alshammari, M.B.; Brown, A.B.; Abdel-Hafez, S.M.N.; Abdelzaher, W.Y.; Bräse, S.; Abdelhafez, E.M.N. Design, Synthesis, Molecular Docking, Anti-apoptotic and Caspase-3 Inhibition of New 1,2,3-Triazole/Bis-2(1H)-Quinolinone Hybrids. Molecules 2020, 25, 5057. [Google Scholar] [CrossRef]
- Aly, A.A.; El-Sheref, E.M.; Mourad, A.E.; Bakheet, M.E.M.; Bräse, S. 4-Hydroxy-2-quinolones: Syntheses, reactions and fused heterocycles. Mol. Divers. 2020, 24, 477–524. [Google Scholar] [CrossRef]
- El-Sheref, E.M.; Elbastawesy, M.A.I.; Brown, A.B.; Shawky, A.M.; Gomaa, H.A.M.; Bräse, S.; Youssif, B.G.M. Design and synthesis of (2-oxo-1,2-dihydroquinolin-4-yl)-1,2,3-triazole derivatives via click reaction: Potential apoptotic antiproliferative agents. Molecules 2021, 26, 6798. [Google Scholar] [CrossRef]
- Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper(I)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates. J. Am. Chem. Soc. 2005, 127, 210–216. [Google Scholar] [CrossRef]
- Gomaa, H.A.M.; Shaker, M.E.; Alzarea, S.I.; Hendawy, O.M.; Mohamed, F.A.M.; Gouda, A.M.; Ali, A.T.; Morcoss, M.M.; Abdelrahman, M.H.; Trembleau, L.; et al. Optimization and SAR investigation of novel 2,3-dihydropyrazino[1,2-a]indole-1,4-dione derivatives as EGFR and BRAFV600E dual inhibitors with potent antiproliferative and antioxidant activities. Bioorg. Chem. 2022, 120, 105616–105629. [Google Scholar] [CrossRef]
- Youssif, B.G.M.; Gouda, A.M.; Moustafa, A.H.; Abdelhamid, A.A.; Gomaa, H.A.M.; Kamal, I.; Marzouk, A.A. Design and synthesis of new triarylimidazole derivatives as dual inhibitors of BRAFV600E/p38α with potential antiproliferative activity. J. Mol. Struct. 2022, 1253, 132218. [Google Scholar] [CrossRef]
- Lamya, H.; Al-Wahaibi, L.H.; Gouda, A.M.; Abou-Ghadir, O.F.; Salem, O.I.A.; Ali, A.T.; Farghaly, H.S.; Abdelrahman, M.H.; Trembleau, L.; Abdu-Allah, H.H.M.; et al. Design and synthesis of novel 2,3-dihydropyrazino[1,2-a]indole-1,4-dione derivatives as antiproliferative EGFR and BRAFV600E dual inhibitors. Bioorg. Chem. 2020, 104, 104260–104276. [Google Scholar]
- Zha, G.-F.; Qin, H.-L.; Youssif, B.G.M.; Amjad, M.W.; Raja, M.A.; Abdelazeem, A.H.; Bukhari, S.N.A. Discovery of potential anti-cancer multi-targeted ligustrazine based cyclohexanone and oxime analogs overcoming the cancer multidrug resistance. Eur. J. Med. Chem. 2017, 135, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, F.A.M.; Gomaa, H.A.M.; OM, H.; Ali, A.T.; Farghaly, H.S.; Gouda, A.M.; Abdelazeem, A.H.; Abdelrahman, M.H.; Trembleau, L.; Youssif, B.G.M. Design, synthesis, and biological evaluation of novel EGFR inhibitors containing 5-chloro-3-hydroxymethyl-indole-2-carboxamide scaffold with apoptotic antiproliferative activity. Bioorg. Chem. 2021, 112, 104960–104973. [Google Scholar] [CrossRef] [PubMed]
- Hisham, M.; Hassan, H.A.; Gomaa, H.A.M.; Youssif, B.G.M.; Hayallah, A.M.; Abdel-Aziz, M. Structure-based design, synthesis and antiproliferative action of new quinazoline-4-one/chalcone hybrids as EGFR inhibitors. J. Mol. Struct. 2022, 1254, 132422. [Google Scholar] [CrossRef]
- Mohassab, A.M.; Hassan, H.A.; Abdelhamid, D.; Gouda, A.M.; Youssif, B.G.M.; Tateishi, H.; Fujita, M.; Otsuka, M.; Abdel-Aziz, M. Design and Synthesis of Novel quinoline/chalcone/1,2,4-triazole hybrids as potent antiproliferative agent targeting EGFR and BRAFV600E kinases. Bioorg. Chem. 2021, 106, 104510–104521. [Google Scholar] [CrossRef]
- AL-Mahmoudy, A.M.M.; Hassan, A.N.; Ibrahim, T.S.; Youssif, B.G.M.; Taher, E.S.; Tantawy, M.A.; Abdel-Aal, E.H.; Osman, N.A. Novel benzyloxyphenyl pyrimidine-5-carbonitrile derivatives as potential apoptotic antiproliferative agents. Anti-Cancer Agent. Med. Chem. 2021, 21, 1–7. [Google Scholar] [CrossRef]
- Abdelbaset, M.S.; Abdel-Aziz, M.; Abuo-Rahma, G.E.A.; Abdelrahman, M.H.; Ramadan, M.; Youssif, B.G.M. Novel quinoline derivatives carrying nitrones/oximes nitric oxide donors: Design, synthesis, antiproliferative and caspase-3 activation activities. Arch. Der Pharm. 2019, 352, 1800270–1800283. [Google Scholar] [CrossRef] [Green Version]
- Hisham, M.; Youssif, B.G.M.; Osman, E.E.A.; Hayallah, A.M.; Abdel-Aziz, M. Synthesis and biological evaluation of novel xanthine derivatives as potential apoptotic antitumor agents. Eur. J. Med. Chem. 2019, 176, 117–128. [Google Scholar] [CrossRef]
- Shaikh, M.; Shinde, Y.; Pawara, R.; Noolvi, M.; Surana, S.; Ahmad, I.; Patel, H. Emerging Approaches to Overcome Acquired Drug Resistance Obstacles to Osimertinib in Non-Small-Cell Lung Cancer. J. Med. Chem. 2022, 65, 1008–1046. [Google Scholar] [CrossRef]
- Abou-Zied, H.A.; Youssif, B.G.M.; Mohamed, M.F.A.; Hayallah, A.M.; Abdel-Aziz, M. EGFR inhibitors and apoptotic inducers: Design, synthesis, anti-cancer activity and docking studies of novel xanthine derivatives carrying chalcone moiety as hybrid molecules. Bioorg. Chem. 2019, 89, 102997–103007. [Google Scholar] [CrossRef] [PubMed]
- Al-Sanea, M.M.; Gotina, L.; Mohamed, M.F.A.; Parambi, D.G.T.; Gomaa, H.A.M.; Mathew, B.; Youssif, B.G.M.; Alharbi, K.S.; Elsayed, Z.M.; Abdelgawad, M.A.; et al. Design, Synthesis and Biological Evaluation of New HDAC1 and HDAC2 Inhibitors Endowed with Ligustrazine as a Novel Cap Moiety. Drug Des. Dev. Ther. 2020, 14, 497–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elbastawesy, M.A.I.; Aly, A.A.; Ramadan, M.; Elshaier, Y.A.M.M.; Youssif, B.G.M.; Brown, A.B.; Abuo-Rahma, G.E.A. Novel Pyrazoloquinolin-2-ones: Design, Synthesis, Docking Studies, and Biological Evaluation as Antiproliferative EGFR- TK Inhibitors. Bioorg. Chem. 2019, 90, 103045–103060. [Google Scholar] [CrossRef] [PubMed]
1H NMR Compound 4e Compound 7e | 1H-1H COSY | Assignment | |
8.98 (s; 2H) 8.98 (s; 2H) | 5.50 5.50 | H-5 H-5 | |
7.85 (d, J = 8.3; 2H) 7.85 (d, J = 8.3; 2H) | 7.48 7.48 | H-4′ H-4′ | |
7.78 (dd, J = 8.4, 7.9; 2H) 7.79 (d, J = 8.0; 2H) | 7.73, 7.35 7.75 | H-12 H-13 | |
7.73 (d, J = 8.3; 2H) 7.75 (dd, J = 9.0, 8.3; 2H) | 7.78 7.79. 7.31 | H-13 H-12 | |
7.48 (dd, J = 7.6, 7.1; 2H) 7.48 (dd, J = 7.6, 6.5; 2H) | 7.85, 7.35 7.85 | H-3′ H-3′ | |
7.43 (d, J = 8.0; 2H) 7.43 (d, J = 8.2; 2H) | H-10 H-10 | ||
7.35 (dd, J = 7.6, 7.3; 2H) 7.35 (dd, J = 7.7, 7.4; 2H) | 7.79, 7.48 | H-11 H-11 | |
7.31 (d, J = 7.6; 2H) 7.31 (d, J = 7.7; 2H) | 7.48 7.48 | H-2′ H-2′ | |
7.04 (s; 2H) 7.03 (s; 2H) | H-8 H-8 | ||
5.50 (s; 4H) 5.50 (s; 4H) | 8.98 8.98 | H-4a H-4a | |
3.74 (s; 6H) 3.74 (s; 6H) | H-6a H-6a | ||
13C NMR | HSQC | HMBC | Assignment |
160.31 160.31 | 3.74 3.74 | C-7 C-7 | |
153.38 153.38 | 7.85, 7.43, 5.50 7.85, 7.43, 7.31, 5.50 | C-1′ C-1′ | |
143.44 143.44 | 8.98 8.98, 7.03, 5.50 | C-4 C-4 | |
142.64 142.64 | 7.48, 7.04, 5.50 7.48 | C-9 C-9 | |
140.14 140.14 | 7.78, 7.48, 3.74 7.48, 3.74 | C-13a C-13a | |
132.32 132.32 | 7.79 7.79 | 7.43 7.48, 7.35 | C-12 C-12 |
126.68 126.66 | 8.98 8.98 | 8.98 8.98, 7.43, 7.31, 5.50 | C-5 C-5 |
126.06 126.07 | 7.43 | 7.85, 7.43, 7.31, 5.50 7.85 | C-4 C-10 |
125.51 125.50 | 7.43 7.48 | C-10 C-3′ | |
125.30 125.29 | C-4a’ C-4a’ | ||
124.50 124.50 | 7.48 7.35 | 7.79, 7.35 | C-3′ C-11 |
122.78 122.73 | 7.35 | 7.73 7.75 | C-11 C-9a |
117.24 117.24 | 7.04 7.03 | 7.04 7.03 | C-8 C-8 |
115.55 115.56 | 7.73 7.75 | 7.73, 7.35, 7.04, 3.74 7.75, 7.35, 7.04, 3.74 | C-13 C-13 |
114.51 114.52 | 7.85 7.85 | 7.31 7.31 | C-4a’,8a’,9a C-4′ |
106.84 106.85 | 7.31 7.31 | 7.85 7.85 | C-2′ C-2′ |
61.69 61.70 | 5.50 5.50 | 5.50 | C-4a C-4a |
29.59 29.59 | 3.74 3.74 | 3.74 3.74 | C-6a C-6a |
15N NMR | 1H-15N HSQC | 1H-15N HMBC | Assignment |
246.9 246.9 | 8.98, 7.04 8.98, 7.03 | N-3 or N-1 N-1 | |
146.9 146.9 | 7.04, 3.74 7.03, 3.74 | N-6 N-6 |
Comp. | Cell Viability % | Antiproliferative Activity IC50 ± SEM (nM) | ||||
---|---|---|---|---|---|---|
A-549 | MCF-7 | Panc-1 | HT-29 | Average (GI50) | ||
4a | 91 | 31 ± 3 | 33 ± 3 | 36 ± 3 | 36 ± 3 | 34 |
4b | 89 | 41 ± 4 | 43 ± 4 | 46 ± 4 | 48 ± 4 | 45 |
4c | 87 | 78 ± 8 | 79 ± 8 | 83 ± 8 | 81 ± 8 | 80 |
4d | 86 | 90 ± 9 | 95 ± 9 | 98 ± 9 | 97 ± 9 | 95 |
4e | 90 | 123 ± 12 | 127 ± 12 | 135 ± 13 | 137 ± 13 | 130 |
7a | 89 | 57 ± 6 | 59 ± 6 | 62 ± 6 | 65 ± 6 | 61 |
7b | 93 | 63 ± 6 | 65 ± 6 | 67 ± 6 | 67 ± 6 | 65 |
7c | 91 | 70 ± 7 | 74 ± 7 | 75 ± 7 | 76 ± 7 | 74 |
7d | 89 | 50 ± 5 | 53 ± 5 | 57 ± 5 | 57 ± 5 | 54 |
7e | 85 | 126 ± 13 | 130 ± 13 | 136 ± 13 | 143 ± 14 | 134 |
Erlotinib | - | 30 ± 3 | 40 ± 3 | 30 ± 3 | 30 ± 3 | 33 |
Code No. | EGFR IC50 ± SEM (nM) |
---|---|
4a | 64 ± 6 |
4b | 93 ± 9 |
7d | 97 ± 9 |
Erlotinib | 70 ± 5 |
Comp. No | Caspase-3 | Caspase-8 | Caspase-9 | Cytochrome C | ||||
---|---|---|---|---|---|---|---|---|
Conc (pg/mL) | Fold Change | Conc (ng/mL) | Fold Change | Conc (ng/mL) | Fold Change | Conc (ng/mL) | Fold Change | |
4a | 587.50 ± 4.50 | 8.95 | 1.20 | 6 | 17.80 | 18.75 | 0.80 | 16 |
4b | 535.50 ± 4.50 | 8.15 | 0.80 | 4 | 16.60 | 17.50 | 0.70 | 14 |
7d | 485.50 ± 4.25 | 7.40 | -- | -- | -- | -- | -- | -- |
Doxorubicin | 503.25 ± 4.50 | 7.70 | 1.80 | 9 | 16.25 | 17.00 | 0.60 | 12 |
Control | 65.65 | 1 | 0.20 | 1 | 0.95 | 1 | 0.05 | 1 |
Comp. No | Bax | Bcl-2 | ||
---|---|---|---|---|
Conc (pg/mL) | Fold Change | Conc (ng/mL) | Fold Reduction | |
4a | 298.60 | 36 | 1.05 | 5 |
4b | 284.50 | 34 | 1.17 | 4 |
Doxorubicin | 276.20 | 33 | 1.98 | 2.5 |
Control | 8.30 | 1 | 5.10 | 1 |
Compounds | XP Docking Score (kcal/mol) | Glide Emodel (kcal/mol) | MMGBSA ΔG Bind (kcal/mol) | Interacting Residues with Distance |
---|---|---|---|---|
4a | −7.20 | −102.60 | −75.62 | Arg817(2.21 A°) a, Lys721(4.08 A°) d |
4b | −6.80 | −107.55 | −72.35 | Lys721(2.31 A°) d |
7d | −6.94 | −85.55 | −61.43 | Met769(1.77 A°) a, Phe771(4.90 A°) b, Lys405(4.52 A°) c |
Erlotinib | −9.07 | −74.22 | −84.86 | Met769(1.98 A°) a,Cys773(1.43 A°) a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sheref, E.M.; Ameen, M.A.; El-Shaieb, K.M.; Abdel-Latif, F.F.; Abdel-naser, A.I.; Brown, A.B.; Bräse, S.; Fathy, H.M.; Ahmad, I.; Patel, H.; et al. Design, Synthesis and Biological Evaluation of Syn and Anti-like Double Warhead Quinolinones Bearing Dihydroxy Naphthalene Moiety as Epidermal Growth Factor Receptor Inhibitors with Potential Apoptotic Antiproliferative Action. Molecules 2022, 27, 8765. https://doi.org/10.3390/molecules27248765
El-Sheref EM, Ameen MA, El-Shaieb KM, Abdel-Latif FF, Abdel-naser AI, Brown AB, Bräse S, Fathy HM, Ahmad I, Patel H, et al. Design, Synthesis and Biological Evaluation of Syn and Anti-like Double Warhead Quinolinones Bearing Dihydroxy Naphthalene Moiety as Epidermal Growth Factor Receptor Inhibitors with Potential Apoptotic Antiproliferative Action. Molecules. 2022; 27(24):8765. https://doi.org/10.3390/molecules27248765
Chicago/Turabian StyleEl-Sheref, Essmat M., Mohamed A. Ameen, Kamal M. El-Shaieb, Fathy F. Abdel-Latif, Asmaa I. Abdel-naser, Alan B. Brown, Stefan Bräse, Hazem M. Fathy, Iqrar Ahmad, Harun Patel, and et al. 2022. "Design, Synthesis and Biological Evaluation of Syn and Anti-like Double Warhead Quinolinones Bearing Dihydroxy Naphthalene Moiety as Epidermal Growth Factor Receptor Inhibitors with Potential Apoptotic Antiproliferative Action" Molecules 27, no. 24: 8765. https://doi.org/10.3390/molecules27248765
APA StyleEl-Sheref, E. M., Ameen, M. A., El-Shaieb, K. M., Abdel-Latif, F. F., Abdel-naser, A. I., Brown, A. B., Bräse, S., Fathy, H. M., Ahmad, I., Patel, H., Gomaa, H. A. M., Youssif, B. G. M., & Mohamed, A. H. (2022). Design, Synthesis and Biological Evaluation of Syn and Anti-like Double Warhead Quinolinones Bearing Dihydroxy Naphthalene Moiety as Epidermal Growth Factor Receptor Inhibitors with Potential Apoptotic Antiproliferative Action. Molecules, 27(24), 8765. https://doi.org/10.3390/molecules27248765