Naringinase Biosynthesis by Aspergillus niger on an Optimized Medium Containing Red Grapefruit Albedo
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of A. niger KMS Submerged Cultures Run in Shaker Flasks
2.1.1. Selection of the Carbon Source in the Culture Medium
2.1.2. Selection of the Nitrogen Source in the Culture Medium
2.1.3. Selection of Ingredients Stimulating Naringinase Biosynthesis
2.1.4. Selection of the Culture Temperature
2.2. Optimization of the Composition of the Growing Medium
2.3. Receiving a Naringinase Preparation
2.3.1. Obtaining a Solid Naringinase Preparation
2.3.2. Protein Separation of the Naringinase Preparation by Size Exclusion Chromatography
3. Conclusions
4. Materials and Methods
4.1. Materials
4.1.1. Microorganisms
4.1.2. Culture Media
4.1.3. Substrates to Choose the Carbon Source
4.1.4. The Medium for Selecting Ingredients Stimulating the Naringinase Biosynthesis
4.1.5. The Medium for Selecting the Temperature of A. niger Culture
4.1.6. The Medium for Optimization
4.2. Analytical Methods
4.2.1. Determination of Naringinase Activity in the Culture Fluid
4.2.2. Determination of the Activity of the Naringinase Enzyme Preparation
4.2.3. Protein Separation of the Naringinase Preparation by Size Exclusion Chromatography
4.3. Culture of A. niger KMS Strain
4.4. Optimization of the Composition of the Growing Medium
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, L.J.; Liu, X.Q.; Du, X.P.; Wu, L.; Jiang, Z.D.; Ni, H.; Li, Q.B.; Chen, F. Preparation of isoquercitrin by biotransformation of rutin using α-L-rhamnosidase from Aspergillus niger JMU-TS528 and HSCCC purification. Prep. Biochem. Biotechnol. 2020, 50, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Huang, B.; Lei, L.; Lu, Y.; Zhou, J.; Wong, W. Production of high antioxidant activity flavonoid monoglucosides from citrus flavanone with immobilised α-L-rhamnosidase in one step. Int. J. Food Sci. Technol. 2019, 54, 2854–2862. [Google Scholar] [CrossRef]
- Zheng, Y.; Zheng, Z.; Ming, Y.; Bai, Y.; Chen, L.; Huang, W.; Lin, M.; Liu, S.; Xiao, J.; Lin, H. Compound K producing from the enzymatic conversion of gypenoside by naringinase. Food Chem. Toxicol. 2019, 130, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Singla, G.; Panesar, P.S.; Sangwan, R.S.; Krishania, M. Enzymatic debittering of Citrus reticulata (Kinnow) pulp residue and its utilization for the preparation of vermicelli. J. Food Process. Preserv. 2021, 45, e15135. [Google Scholar] [CrossRef]
- Olson, A.C.; Gray, G.M.; Guadagni, D.G. Naringin bitterness of grapefruit juice debittered with naringinase immobilized in a hollow fiber. J. Food Sci. 1979, 44, 1358–1361. [Google Scholar] [CrossRef]
- Puri, M.; Marwaha, S.S.; Kothari, R.M.; Kennedy, J.F. Biochemical Basis of Bitterness in Citrus Fruit Juices and Biotech Approaches for Debittering. Crit. Rev. Biotechnol. 1996, 16, 145–155. [Google Scholar] [CrossRef]
- Phukan, K.; Kardong, D. Isolation of naringinase producing soil bacteria from Psidium guajava L. and Terminalia chebula Retz and its enzymatic activity. AIMS Mol. Sci. 2020, 7, 292–304. [Google Scholar] [CrossRef]
- Soares, N.F.F.; Hotchkiss, J.H. Bitterness Reduction in Grapefruit Juice Through Active Packaging. Packag. Technol. Scince 1998, 18, 9–18. [Google Scholar] [CrossRef]
- Ferreira, L.; Afonso, C.; Vila-real, H.; Alfaia, A. Evaluation of the Effect of High Pressure on Naringin Hydrolysis in Grapefruit Juice with Naringinase Immobilised in Calcium Alginate Beads. Food Technol. Biotechnol. 2008, 46, 146–150. [Google Scholar]
- Young, N.M.; Johnston, R.A.; Richards, J.C. Purification of the α-L-rhamnosidase of Penicillium decumbens and characterization of two glycopeptide components. Carbohydr. Res. 1989, 191, 53–62. [Google Scholar] [CrossRef]
- Mamma, D.; Kalogeris, E.; Hatzinikolaou, D.G.; Lekanidou, A.; Kekos, D.; Macris, B.J.; Christakopoulos, P. Biochemical characterization of the multi-enzyme system produced by Penicillium decumbens grown on rutin. Food Biotechnol. 2004, 18, 1–18. [Google Scholar] [CrossRef]
- Norouzian, D.; Hosscinzadeh, A.; Inanlou, D.N.; Moazami, N. Production and partial purification of naringinase by Penicillium decumbens PTCC 5248. World J. Microbiol. Biotechnol. 2000, 16, 471–473. [Google Scholar] [CrossRef]
- Rajal, B.; Carrillo, L.; Cuevas, C.M. Studies on exocellular hydrolases from a new Penicillium ulaiense strain. World J. Microbiol. Biotechnol. 2002, 18, 713–714. [Google Scholar] [CrossRef]
- Patil, M.B.; Dhake, A.B. Debittering of citrus fruit juice by naringinase of Penicillium purpurogenum. Int. J. Eng. Res. Sci. Technol. 2014, 3, 266–270. [Google Scholar]
- Karuppaija, S.; Kapilan, R.; Vasantharuba, S. Optimization of naringinase production by Rhizophus stolonifer in solid state fermentation media using paddy husk as support. Scholar Acad. J. Biosci. 2016, 4, 507–514. [Google Scholar] [CrossRef]
- Puri, M.; Kaur, A.; Barrow, C.J.; Singh, R.S. Citrus peel influences the production of an extracellular naringinase by Staphylococcus xylosus MAK2 in a stirred tank reactor. Appl. Microbiol. Biotechnol. 2011, 89, 715–722. [Google Scholar] [CrossRef]
- Caraveo, L.; Medina, H.; Rodríguez-Buenfil, I.; Montalvo-Romero, C.; Evangelista-Martínez, Z. A simple plate-assay for screening extracellular naringinase produced by streptomycetes. J. Microbiol. Methods 2014, 102, 8–11. [Google Scholar] [CrossRef]
- Zhu, Y.; Jia, H.; Xi, M.; Li, J.; Yang, L.; Li, X. Characterization of a naringinase from Aspergillus oryzae 11250 and its application in the debitterization of orange juice. Process Biochem. 2017, 62, 114–121. [Google Scholar] [CrossRef]
- Kumar, V.V. Comparative studies on inducers in the production of naringinase from Aspergillus niger MTCC 1344. Afr. J. Biotechnol. 2010, 9, 7683–7686. [Google Scholar] [CrossRef]
- Chen, D.X.; Niu, T.G.; Cai, H.N. Optimizing culture medium for debittering constitutive enzyme naringinase production by Aspergillus oryzae JMU316. Afr. J. Biotechnol. 2010, 9, 4970–4978. [Google Scholar] [CrossRef]
- Chang, H.-Y.; Lee, Y.-B.; Bae, H.-A.; Huh, J.-Y.; Nam, S.-H.; Sohn, H.-S.; Lee, H.J.; Lee, S.-B. Purification and characterisation of Aspergillus sojae naringinase: The production of prunin exhibiting markedly enhanced solubility with in vitro inhibition of HMG-CoA reductase. Food Chem. 2011, 124, 234–241. [Google Scholar] [CrossRef]
- Gonzalez-Vazquez, R.; Victoria, T.; Osorio-Revilla, G.; Azaola, A.; Arana-Errasquin, R.; Rivera-Espinoza, Y.; Gallardo-Velazquez, T. The effect of different carbon sources and salts in the production of naringinase by Aspergillus niger ATCC1015. Rev. Mex. Ing. Química 2011, 10, 1–8. [Google Scholar]
- Ni, H.; Chen, F.; Cai, H.; Xiao, A.; You, Q.; Lu, Y. Characterization and preparation of Aspergillus niger naringinase for debittering citrus juice. J. Food Sci. 2012, 77, C1–C7. [Google Scholar] [CrossRef] [PubMed]
- Xiao, A.; You, H.; Wu, C.; Ni, H.; Yang, Q.; Cai, H. Immobilization and characterization of naringinase from Aspergillus aculeatus onto magnetic Fe3O4 nanoparticles. Nanosci. Nanotechnol. Lett. 2015, 7, 770–778. [Google Scholar] [CrossRef]
- Yadav, M.; Sehrawat, N.; Sharma, A.K.; Kumar, V.; Kumar, A. Naringinase: Microbial sources, production and applications in food processing industry. J. Microbiol. Biotechnol. Food Sci. 2018, 8, 717–720. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Li, Q.; Tian, J.; Zhan, H.; Yu, C.; Wang, S.; Sun, X. Novel Strategy of Mussel-Inspired Immobilization of Naringinase with High Activity Using a Polyethylenimine/Dopamine Co-deposition Method. ACS Omega 2021, 6, 3267–3277. [Google Scholar] [CrossRef] [PubMed]
- Bram, B.; Solomons, G.L. Production of the Enzyme Naringinase by Aspergillus niger. Appl. Microbiol. 1966, 14, 477. [Google Scholar] [CrossRef]
- Olsen, R.W.; Hill, E.C. Debittering of concentrated grapefruit juice with naringinase. Proc. Fla. State Hortic. Soc. 1964, 77, 321–325. [Google Scholar]
- Puri, M.; Banerjee, A.; Banerjee, U.C. Optimization of process parameters for the production of naringinase by Aspergillus niger MTCC 1344. Process Biochem. 2005, 40, 195–201. [Google Scholar] [CrossRef]
- Puri, M.; Kalra, S. Purification and characterization of naringinase from a newly isolated strain of Aspergillus niger 1344 for the transformation of flavonoids. World J. Microbiol. Biotechnol. 2005, 21, 753–758. [Google Scholar] [CrossRef]
- Busto, M.; Meza, V.; Ortega, N.; Perez-Mateos, M. Immobilization of naringinase from Aspergillus niger CECT 2088 in poly(vinyl alcohol) cryogels for the debittering of juices. Food Chem. 2007, 104, 1177–1182. [Google Scholar] [CrossRef]
- Thammawat, K.; Pongtanya, P. Isolation, Preliminary Enzyme Characterization and Optimization of Culture Parameters for Production of Naringinase Isolated from Aspergillus niger BCC 25166. Nat. Sci. 2008, 42, 61–72. [Google Scholar]
- Mendoza-Cal, A.; Cuevas-Glory, L.; Lizama-Uc, G.; Ortiz-Vázquez, E. Naringinase production from filamentous fungi using grapefruit rind in solid state fermentation. Afr. J. Microbiol. Res. 2010, 4, 1964–1969. [Google Scholar]
- Kumar, V.; Kayambu, P.; RevathiBabu, S. Optimization of fermentation parameters for enhanced production of naringinase by soil isolate Aspergillus niger VB07. Food Sci. Biotechnol. 2010, 19, 827–829. [Google Scholar] [CrossRef]
- Igbonekwu, A.; Omeje, K.O.; Ezugwu, A.L.; Eze, S.O.O.; Njoku, O.U.; Chilaka, F.C. Characterization of Nariginase Obtained from Aspergillus niger by Submerged Fermentation Using Naringin Extracted from Lemon Peels. Res. Dev. Mater. Sci. 2018, 4, 1–5. [Google Scholar] [CrossRef]
- Chen, Y.; Ni, H.; Chen, F.; Cai, H.; Li, L.; Su, W. Purification and characterization of a naringinase from Aspergillus aculeatus JMUdb058. J. Agric. Food Chem. 2013, 61, 931–938. [Google Scholar] [CrossRef]
- Shanmugaprakash, M.; Kirthika, J.; Ragupathy, J.; Nilanee, K.; Manickam, A. Statistical based media optimization and production of naringinase using Aspergillus brasiliensis 1344. Int. J. Biol. Macromol. 2014, 64, 443–452. [Google Scholar] [CrossRef]
- Soria, F.; Ellenrieder, G.; Grasselli, M.; Del Cañizo, A.N.; Cascone, O. Fractionation of the naringinase complex from Aspergillus terreus by dye affinity chromatography. Biotechnol. Lett. 2004, 26, 1265–1268. [Google Scholar] [CrossRef]
- Radhakrishnan, I.; Shanmugan, S.; Sathish, K.T. Isolation and characterization of enzyme naringinase from Aspergillus flavus. Int. J. Adv. Biotechnol. Res. 2013, 4, 1071–1075. [Google Scholar]
- Srikantha, K.; Kapilan, R.; Vasantharuba, S. Kinetic Properties and Metal Ion Stability of the Extracellular Naringinase Produced By Aspergillus Flavus Isolated From Decaying Citrus Maxima Fruits. Int. J. Sci. Res. Environ. Sci. 2017, 5, 71–81. [Google Scholar] [CrossRef]
- Srikantha, K.; Ranganathan, K.; Seevaratnam, V. Characterization of best naringinase producing fungus isolated from the citrus fruits. Int. J. Biol. Res. 2016, 4, 83. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Zhang, Y.; Lei, S.; Hu, B.; Fu, C. Identification and iterative combinatorial mutagenesis of a new naringinase-producing strain, Aspergillus tubingensis MN589840. Lett. Appl. Microbiol. 2021, 72, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Bodakowska-Boczniewicz, J.; Garncarek, Z. Produkcja naringinazy przez Aspergillus niger—Optymalizacja składu podłoża. Pr. Nauk. Uniw. Ekon. We Wrocławiu 2016, 461, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Borkar, V.; Chakraborty, S.; Gokhale, J.S. Fermentative Production of Naringinase from Aspergillus niger van Tieghem MTCC 2425 Using Citrus Wastes: Process Optimization, Partial Purification, and Characterization. Appl. Biochem. Biotechnol. 2020, 193, 1321–1337. [Google Scholar] [CrossRef]
- Singh, P.; Sahota, P.P.; Singh, R.K. Optimization of Media Components for Production of α-L-rhamnosidase from Clavispora lusitaniae KF633446. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2947–2959. [Google Scholar] [CrossRef]
- Puri, M.; Banerjee, U.C. Production, purification, and characterization of the debittering enzyme naringinase. Biotechnol. Adv. 2000, 18, 207–217. [Google Scholar] [CrossRef]
- Puri, M.; Kaur, A. Molecular identification of Staphylococcus xylosus MAK2, a new α-L-rhamnosidase producer. World J. Microbiol. Biotechnol. 2010, 200, 963–968. [Google Scholar] [CrossRef]
- Ni, H.; Li, L.; Xiao, A.F.; Cao, Y.H.; Chen, Y.; Cai, H. Identification and characterization of a new naringinase-producing strain, Williopsis californica Jmudeb007. World J. Microbiol. Biotechnol. 2011, 27, 2857–2862. [Google Scholar] [CrossRef]
- Pavithra, M.; Prasanna, D.; Saidutta, M.B. Production of naringinse by a new soil isolate of Serratia Sp.: Effect of different carbon and nitrogen sources. Res. J. Biotech. 2012, 7, 208–211. [Google Scholar]
- Elinbaum, S.; Ferreyra, H.; Ellenrieder, G.; Cuevas, C. Production of Aspergillus terreus α-L-rhamnosidase by solid state fermentation. Lett. App. Microbiol. 2002, 34, 67–71. [Google Scholar] [CrossRef]
- Ye, X.; Yang, J.; Lin, J.; Cai, M.; Chen, Z. Culture Medium and Method for Producing Naringinase by Fermenting Citrus Peel Powder and Beam Dregs by Aspergillus niger. Patent CN 102732491A, 2012. [Google Scholar]
- Puri, M.; Kaur, A.; Schwarz, W.; Singh, S.; Kennedy, J. Molecular characterization and enzymatic hydrolysis of naringin extracted from kinnow peel waste. Int. J. Biol. Macromol. 2011, 48, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Shehata, A.N.; Abas, A.; El, A. Optimization of Process Parameters by Statistical Experimental Designs for the Production of Naringinase Enzyme by Marine Fungi. Int. J. Chem. Eng. 2014, 2014, 273523. [Google Scholar] [CrossRef]
- Mateles, R.I.; Perlman, D.; Humphery, A.E.; Deindorfer, F.H. Fermentation review. Biotechnol. Bioeng. 1965, 7, 54–58. [Google Scholar]
- Hwang, H.J.; Kim, S.W.; Xu, C.P.; Choi, J.W.; Yun, J.W. Production and molecular characteristics of four groups of exopolysaccharides from submerged culture of Phellinus gilvus. J. Appl. Microbiol. 2003, 94, 708–719. [Google Scholar] [CrossRef] [PubMed]
- Davis, W.B. Determination of Flavanones in Citrus Fruits. Anal. Chem. 1947, 19, 476–478. [Google Scholar] [CrossRef]
Parameter Number | Component | Component Concertation [g 100 mL−1] | |||
---|---|---|---|---|---|
−1 * | 1 * | 0 | Δ | ||
x1 | NaNO3 | 0.28 | 1.28 | 0.78 | 0.5 |
x2 | yeast extract | 1.5 | 2.5 | 2.0 | 0.5 |
x3 | KH2PO4 | 0.057 | 0.257 | 0.157 | 0.1 |
x4 | dry albedo, flavedo, and red grapefruit segment membranes | 0.2 | 0.8 | 0.5 | 0.3 |
x5 | naringin | 0.08 | 0.16 | 0.12 | 0.04 |
x6 | rhamnose | 0.0 | 0.5 | 0.25 | 0.25 |
Parameter Number | Component | Component Concertation [g·100 mL−l] | |||||
---|---|---|---|---|---|---|---|
−2.38 | 2.38 | −1 * | 1 * | 0 | Δ | ||
x1 | NaNO3 | 2.09 | 4.47 | 2.78 | 3.78 | 3.280 | 0.5 |
x2 | yeast extract | 2.71 | 3.99 | 3.08 | 3.62 | 3.350 | 0.27 |
x3 | KH2PO4 | 0.170 | 0.19 | 0.177 | 0.187 | 0.182 | 0.005 |
x4 | dry albedo, flavedo, and red grapefruit segment membranes | 0.66 | 0.94 | 0.74 | 0.86 | 0.800 | 0.06 |
x5 | naringin | 0.134 | 0.205 | 0.155 | 0.185 | 0.170 | 0.015 |
x6 | rhamnose | 1.56 | 3.94 | 2.25 | 3.25 | 2.750 | 0.5 |
Culture Number | Component Concertation [g·100 mL−1] | Naringinase Activity [µmol × min−1 × mL−1] | |||||
---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x5 | x6 | ||
1 | −1 | −1 | −1 | −1 | −1 | −1 | 1.560 |
2 | −1 | −1 | −1 | −1 | 1 | 1 | 1.732 |
3 | −1 | −1 | −1 | 1 | −1 | 1 | 2.110 |
4 | −1 | −1 | −1 | 1 | 1 | −1 | 1.269 |
5 | −1 | −1 | 1 | −1 | −1 | 1 | 1.785 |
6 | −1 | −1 | 1 | −1 | 1 | −1 | 1.350 |
7 | −1 | −1 | 1 | 1 | −1 | −1 | 1.764 |
8 | −1 | −1 | 1 | 1 | 1 | 1 | 1.850 |
9 | −1 | 1 | −1 | −1 | −1 | 1 | 1.876 |
10 | −1 | 1 | −1 | −1 | 1 | −1 | 1.162 |
11 | −1 | 1 | −1 | 1 | −1 | −1 | 1.641 |
12 | −1 | 1 | −1 | 1 | 1 | 1 | 1.801 |
13 | −1 | 1 | 1 | −1 | −1 | −1 | 1.786 |
14 | −1 | 1 | 1 | −1 | 1 | 1 | 0.993 |
15 | −1 | 1 | 1 | 1 | −1 | 1 | 1.758 |
16 | −1 | 1 | 1 | 1 | 1 | −1 | 1.870 |
17 | 1 | −1 | −1 | −1 | −1 | 1 | 1.269 |
18 | 1 | −1 | −1 | −1 | 1 | −1 | 1.649 |
19 | 1 | −1 | −1 | 1 | −1 | −1 | 1.600 |
20 | 1 | −1 | −1 | 1 | 1 | 1 | 1.188 |
21 | 1 | −1 | 1 | −1 | −1 | −1 | 1.784 |
22 | 1 | −1 | 1 | −1 | 1 | 1 | 1.839 |
23 | 1 | −1 | 1 | 1 | −1 | 1 | 1.601 |
24 | 1 | −1 | 1 | 1 | 1 | −1 | 1.854 |
25 | 1 | 1 | −1 | −1 | −1 | −1 | 1.700 |
26 | 1 | 1 | −1 | −1 | 1 | 1 | 1.827 |
27 | 1 | 1 | −1 | 1 | −1 | 1 | 1.903 |
28 | 1 | 1 | −1 | 1 | 1 | −1 | 1.878 |
29 | 1 | 1 | 1 | −1 | −1 | 1 | 1.699 |
30 | 1 | 1 | 1 | −1 | 1 | −1 | 1.500 |
31 | 1 | 1 | 1 | 1 | −1 | −1 | 1.798 |
32 | 1 | 1 | 1 | 1 | 1 | 1 | 2.210 |
33 | −2.38 | 0 | 0 | 0 | 0 | 0 | 1.800 |
34 | 2.38 | 0 | 0 | 0 | 0 | 0 | 1.400 |
35 | 0 | −2.38 | 0 | 0 | 0 | 0 | 1.699 |
36 | 0 | 2.38 | 0 | 0 | 0 | 0 | 1.716 |
37 | 0 | 0 | −2.38 | 0 | 0 | 0 | 1.450 |
38 | 0 | 0 | 2.38 | 0 | 0 | 0 | 1.832 |
39 | 0 | 0 | 0 | −2.38 | 0 | 0 | 1.800 |
40 | 0 | 0 | 0 | 2.38 | 0 | 0 | 1.871 |
41 | 0 | 0 | 0 | 0 | −2.38 | 0 | 1.504 |
42 | 0 | 0 | 0 | 0 | 2.38 | 0 | 1.374 |
43 | 0 | 0 | 0 | 0 | 0 | −2.38 | 1.687 |
44 | 0 | 0 | 0 | 0 | 0 | 2.38 | 1.760 |
45 | 0 | 0 | 0 | 0 | 0 | 0 | 2.200 |
46 | 0 | 0 | 0 | 0 | 0 | 0 | 2.167 |
47 | 0 | 0 | 0 | 0 | 0 | 0 | 2.200 |
48 | 0 | 0 | 0 | 0 | 0 | 0 | 2.190 |
49 | 0 | 0 | 0 | 0 | 0 | 0 | 2.200 |
50 | 0 | 0 | 0 | 0 | 0 | 0 | 2.110 |
51 | 0 | 0 | 0 | 0 | 0 | 0 | 2.210 |
Obtaining Stage | Activity [μmol· min−1·mL−1] | Volume or Quantity [ml] | Total Activity [μmol· min−1] | Process Efficiency [%] | Specific Activity [μmol·min−1 mg−1 Protein] | Protein Concentration [mg·ml−1] |
---|---|---|---|---|---|---|
Post-culture fluid | 2.11 | 1600 | 3376 | 100 | 0.208 | 10.14 |
The fluid after concentration by ultrafiltration | 40.56 | 70.2 | 2847.3 | 84.3 | 1.357 | 29.88 |
Precipitation with cold acetone | 816 μmol·min−1· g−1 * | 2.9 g * | 2366.4 | 70.1 | 1.563 | 522 mg·g−1 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bodakowska-Boczniewicz, J.; Garncarek, Z. Naringinase Biosynthesis by Aspergillus niger on an Optimized Medium Containing Red Grapefruit Albedo. Molecules 2022, 27, 8763. https://doi.org/10.3390/molecules27248763
Bodakowska-Boczniewicz J, Garncarek Z. Naringinase Biosynthesis by Aspergillus niger on an Optimized Medium Containing Red Grapefruit Albedo. Molecules. 2022; 27(24):8763. https://doi.org/10.3390/molecules27248763
Chicago/Turabian StyleBodakowska-Boczniewicz, Joanna, and Zbigniew Garncarek. 2022. "Naringinase Biosynthesis by Aspergillus niger on an Optimized Medium Containing Red Grapefruit Albedo" Molecules 27, no. 24: 8763. https://doi.org/10.3390/molecules27248763
APA StyleBodakowska-Boczniewicz, J., & Garncarek, Z. (2022). Naringinase Biosynthesis by Aspergillus niger on an Optimized Medium Containing Red Grapefruit Albedo. Molecules, 27(24), 8763. https://doi.org/10.3390/molecules27248763