Phosphorylation of Thr9 Affects the Folding Landscape of the N-Terminal Segment of Human AGT Enhancing Protein Aggregation of Disease-Causing Mutants
Abstract
:1. Introduction
2. Results
2.1. The T9E and P11L Mutations Synergistically Reshape the Conformational Landscape of the NTT-AGT Peptides by Enhancing Structural Order
2.1.1. Conformational Transitions of NTT-AGT Peptides Studied by Optical Spectroscopy
2.1.2. Conformational of NTT-AGT Peptides Studied by NMR Spectroscopy
2.1.3. Conformational Landscape of NTT-AGT Peptides Studied by Statistical Mechanical Methods
2.2. The T9E Mutation Did Not Affect the Overall Conformation and Catalytic Performance of the AGT Protein
2.3. The T9E Mutation Did Not Affect PLP or PMP Binding Affinity
2.4. The T9E Mutation Did Not Affect the Thermal Stability of AGT
2.5. The T9E Mutation Enhanced Aggregation of the Disease-Associated Variants in the Apo-State
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Characterization of the Effects of T9E and T9A on NTT-AGT Peptides
4.2.1. NTT-AGT Peptides
4.2.2. Far-UV CD Spectroscopy
4.2.3. Nuclear Magnetic Resonance (NMR) Spectroscopy
- 1D-1H-NMR spectra: A total of 48 scans were acquired with 16 K acquisition points for the homonuclear 1D-1H-NMR spectra of each isolated peptide at a concentration of 1.2 mM. Water signal was suppressed with the WATERGATE sequence [62]. The spectra were processed after zero-filling and apodization with an exponential window.
- Translational diffusion NMR (DOSY): The peptide concentrations in DOSY experiments was 100 µM, and 128 scans were acquired, where the gradient strength was varied linearly. Measurements of the translational self-diffusion were performed with the pulsed-gradient spin-echo sequence in the presence of 100% D2O. Details on the experimental conditions and fitting of the resulting curves have been described elsewhere [42]. The gradient strength was varied in sixteen linear steps between 2 to 95% of the total power of the gradient coil. Gradient strength was calibrated by using the value of the translational diffusion coefficient, D, for the residual proton water signal in a sample containing 100% D2O, in a 5-mm tube [63]. The length of the gradient was 2.5 ms; the time between the two pulse gradients in the pulse sequence was 250 ms; and the recovery delay between the bipolar gradients was 100 µs. The methyl groups between 0.8 and 1.0 ppm were used for peak integration for both peptides. A final concentration of 1% of ultra-pure dioxane, which was assumed to have a hydrodynamic radius Rh of 2.12 Å [63], was added to the solution.
- 2D-1H-NMR spectra: Two-dimensional spectra of the four peptides in aqueous solution (100 mM phosphate buffer, pH 7.2) or in the presence of deuterated TFE were acquired in each dimension in phase-sensitive mode by using the time-proportional phase incrementation technique [64] and a spectral width of 5500 Hz; the concentration of the peptide was the same used in the 1D-1H-NMR experiments. Standard TOCSY (with a mixing time of 80 ms) [65] and NOESY experiments (with a mixing time of 225 ms) [66] were performed by acquiring a data matrix size of 4096 × 512 points. The DIPSI (decoupling in the presence of scalar interactions) spin-lock sequence [67] was used in the TOCSY experiments, with a relaxation time of 1 s. A number of 96 scans were acquired per increment in the first dimension, and the residual water signal was removed by using the WATERGATE sequence [62]. NOESY spectra were collected with 128 scans per increment in the first dimension, again using the WATERGATE sequence [62], with a relaxation time of 1 s. Data were zero-filled, resolution-enhanced with a square sine-bell window function optimized in each spectrum, and baseline-corrected. The 1H resonances were assigned by standard sequential assignment processes [43]. The chemical shift values of Hα protons in random-coil regions were obtained from tabulated data, corrected by neighboring residue effects [43,45,46].
4.2.4. Statistical Mechanical Calculations
4.3. Characterization of the Effects of T9E and T9A on Full-Length AGT Proteins
4.3.1. Protein Expression and Purification
4.3.2. Overall Transaminase Activity
4.3.3. Spectroscopic and Light Scattering Experiments
4.3.4. Thermal Denaturation Experiments
4.3.5. Aggregation Kinetics Measurements
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Hilser, V.J.; García-Moreno, E.B.; Oas, T.G.; Kapp, G.; Whitten, S.T. A Statistical Thermodynamic Model of the Protein Ensemble. Chem. Rev. 2006, 106, 1545–1558. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, R.; Schliebs, W. Peroxisomal Matrix Protein Import: The Transient Pore Model. Nat. Rev. Mol. Cell Biol. 2005, 6, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Stanley, W.A.; von Filipp, F.; Kursula, P.; Schüller, N.; Erdmann, R.; Schliebs, W.; Sattler, M.; Wilmanns, M. Recognition of a Functional Peroxisome Type 1 Target by the Dynamic Import Receptor Pex5p. Mol. Cell 2006, 24, 653–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motlagh, H.N.; Wrabl, J.O.; Li, J.; Hilser, V.J. The Ensemble Nature of Allostery. Nature 2014, 508, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, A.J.; Choy, J.; Bustamante, C.; Matouschek, A. Effect of Protein Structure on Mitochondrial Import. Proc. Natl. Acad. Sci. USA 2005, 102, 15435–15440. [Google Scholar] [CrossRef] [Green Version]
- Guharoy, M.; Bhowmick, P.; Sallam, M.; Tompa, P. Tripartite Degrons Confer Diversity and Specificity on Regulated Protein Degradation in the Ubiquitin-Proteasome System. Nat. Commun. 2016, 7, 10239. [Google Scholar] [CrossRef] [Green Version]
- Mesa-Torres, N.; Tomic, N.; Albert, A.; Salido, E.; Pey, A.L. Molecular Recognition of PTS-1 Cargo Proteins by Pex5p: Implications for Protein Mistargeting in Primary Hyperoxaluria. Biomolecules 2015, 5, 121–141. [Google Scholar] [CrossRef] [Green Version]
- Naganathan, A.N. Modulation of Allosteric Coupling by Mutations: From Protein Dynamics and Packing to Altered Native Ensembles and Function. Curr. Opin. Struct. Biol. 2019, 54, 1–9. [Google Scholar] [CrossRef]
- Pacheco-García, J.L.; Loginov, D.S.; Naganathan, A.N.; Vankova, P.; Cano-Muñoz, M.; Man, P.; Pey, A.L. Loss of Stability and Unfolding Cooperativity in HPGK1 upon Gradual Structural Perturbation of Its N-Terminal Domain Hydrophobic Core. Sci. Rep. 2022, 12, 17200. [Google Scholar] [CrossRef]
- Pacheco-Garcia, J.L.; Loginov, D.S.; Anoz-Carbonell, E.; Vankova, P.; Palomino-Morales, R.; Salido, E.; Man, P.; Medina, M.; Naganathan, A.N.; Pey, A.L. Allosteric Communication in the Multifunctional and Redox NQO1 Protein Studied by Cavity-Making Mutations. Antioxidants 2022, 11, 1110. [Google Scholar] [CrossRef]
- Pacheco-Garcia, J.L.; Anoz-Carbonell, E.; Vankova, P.; Kannan, A.; Palomino-Morales, R.; Mesa-Torres, N.; Salido, E.; Man, P.; Medina, M.; Naganathan, A.N.; et al. Structural Basis of the Pleiotropic and Specific Phenotypic Consequences of Missense Mutations in the Multifunctional NAD(P)H:Quinone Oxidoreductase 1 and Their Pharmacological Rescue. Redox Biol. 2021, 46, 102112. [Google Scholar] [CrossRef] [PubMed]
- Neira, J.L.; Rizzuti, B.; Jiménez-Alesanco, A.; Palomino-Schätzlein, M.; Abián, O.; Velázquez-Campoy, A.; Iovanna, J.L. A Phosphorylation-Induced Switch in the Nuclear Localization Sequence of the Intrinsically Disordered NUPR1 Hampers Binding to Importin. Biomolecules 2020, 10, 1313. [Google Scholar] [CrossRef] [PubMed]
- Kampmeyer, C.; Larsen-Ledet, S.; Wagnkilde, M.R.; Michelsen, M.; Iversen, H.K.M.; van Nielsen, S.; Lindemose, S.; Caregnato, A.; Ravid, T.; Stein, A.; et al. Disease-Linked Mutations Cause Exposure of a Protein Quality Control Degron. Structure 2022, 30, 1245–1253. [Google Scholar] [CrossRef]
- Abildgaard, A.B.; Stein, A.; van Nielsen, S.; Schultz-Knudsen, K.; Papaleo, E.; Shrikhande, A.; Hoffmann, E.R.; Bernstein, I.; Gerdes, A.-M.; Takahashi, M.; et al. Computational and Cellular Studies Reveal Structural Destabilization and Degradation of MLH1 Variants in Lynch Syndrome. Elife 2019, 8, e49138. [Google Scholar] [CrossRef]
- Winogradoff, D.; Echeverria, I.; Potoyan, D.A.; Papoian, G.A. The Acetylation Landscape of the H4 Histone Tail: Disentangling the Interplay between the Specific and Cumulative Effects. J. Am. Chem. Soc. 2015, 137, 6245–6253. [Google Scholar] [CrossRef]
- Bah, A.; Vernon, R.M.; Siddiqui, Z.; Krzeminski, M.; Muhandiram, R.; Zhao, C.; Sonenberg, N.; Kay, L.E.; Forman-Kay, J.D. Folding of an Intrinsically Disordered Protein by Phosphorylation as a Regulatory Switch. Nature 2015, 519, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.; Fowler, D.M.; Hartmann-Petersen, R.; Lindorff-Larsen, K. Biophysical and Mechanistic Models for Disease-Causing Protein Variants. Trends Biochem. Sci. 2019, 44, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Pey, A.L.; Stricher, F.; Serrano, L.; Martinez, A. Predicted Effects of Missense Mutations on Native-State Stability Account for Phenotypic Outcome in Phenylketonuria, a Paradigm of Misfolding Diseases. Am. J. Hum. Genet. 2007, 81, 1006–1024. [Google Scholar] [CrossRef] [Green Version]
- Medina-Carmona, E.; Betancor-Fernández, I.; Santos, J.; Mesa-Torres, N.; Grottelli, S.; Batlle, C.; Naganathan, A.N.; Oppici, E.; Cellini, B.; Ventura, S.; et al. Insight into the Specificity and Severity of Pathogenic Mechanisms Associated with Missense Mutations through Experimental and Structural Perturbation Analyses. Hum. Mol. Genet. 2019, 28, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Gregersen, N.; Bross, P.; Vang, S.; Christensen, J.H. Protein Misfolding and Human Disease. Annu. Rev. Genomics Hum. Genet. 2006, 7, 103–124. [Google Scholar] [CrossRef] [PubMed]
- Chiti, F.; Dobson, C.M. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu. Rev. Biochem. 2017, 86, 27–68. [Google Scholar] [CrossRef] [PubMed]
- Dhulesia, A.; Cremades, N.; Kumita, J.R.; Hsu, S.-T.D.; Mossuto, M.F.; Dumoulin, M.; Nietlispach, D.; Akke, M.; Salvatella, X.; Dobson, C.M. Local Cooperativity in an Amyloidogenic State of Human Lysozyme Observed at Atomic Resolution. J. Am. Chem. Soc. 2010, 132, 15580–15588. [Google Scholar] [CrossRef]
- Oppici, E.; Dindo, M.; Conter, C.; Borri Voltattorni, C.; Cellini, B. Folding Defects Leading to Primary Hyperoxaluria. Handb. Exp. Pharmacol. 2018, 245, 313–343. [Google Scholar] [CrossRef]
- Salido, E.; Pey, A.L.; Rodriguez, R.; Lorenzo, V. Primary Hyperoxalurias: Disorders of Glyoxylate Detoxification. Biochim. Biophys. Acta Mol. Basis Dis. 2012, 1822, 1453–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesa-Torres, N.; Salido, E.; Pey, A.L. The Lower Limits for Protein Stability and Foldability in Primary Hyperoxaluria Type i. Biochim. Biophys. Acta Proteins Proteom. 2014, 1844, 2355–2365. [Google Scholar] [CrossRef]
- Mandrile, G.; van Woerden, C.S.; Berchialla, P.; Beck, B.B.; Acquaviva Bourdain, C.; Hulton, S.-A.; Rumsby, G.; OxalEurope Consortium. Data from a Large European Study Indicate That the Outcome of Primary Hyperoxaluria Type 1 Correlates with the AGXT Mutation Type. Kidney Int. 2014, 86, 1197–1204. [Google Scholar] [CrossRef] [Green Version]
- Hopp, K.; Cogal, A.G.; Bergstralh, E.J.; Seide, B.M.; Olson, J.B.; Meek, A.M.; Lieske, J.C.; Milliner, D.S.; Harris, P.C.; Rare Kidney Stone Consortium. Phenotype-Genotype Correlations and Estimated Carrier Frequencies of Primary Hyperoxaluria. J. Am. Soc. Nephrol. 2015, 26, 2559–2570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pey, A.L.; Albert, A.; Salido, E. Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase: New Therapeutic Strategies in Primary Hyperoxaluria Type I. Biomed. Res. Int. 2013, 2013, 687658. [Google Scholar] [CrossRef] [Green Version]
- Santana, A.; Salido, E.; Torres, A.; Shapiro, L.J. Primary Hyperoxaluria Type 1 in the Canary Islands: A Conformational Disease Due to I244T Mutation in the P11L-Containing Alanine:Glyoxylate Aminotransferase. Proc. Natl. Acad. Sci. USA 2003, 100, 7277–7282. [Google Scholar] [CrossRef] [Green Version]
- Oppici, E.; Montioli, R.; Cellini, B. Liver Peroxisomal Alanine:Glyoxylate Aminotransferase and the Effects of Mutations Associated with Primary Hyperoxaluria Type I: An Overview. Biochim. Biophys. Acta 2015, 1854, 1212–1219. [Google Scholar] [CrossRef]
- Mesa-Torres, N.; Fabelo-Rosa, I.; Riverol, D.; Yunta, C.; Albert, A.; Salido, E.; Pey, A.L. The Role of Protein Denaturation Energetics and Molecular Chaperones in the Aggregation and Mistargeting of Mutants Causing Primary Hyperoxaluria Type I. PLoS ONE 2013, 8, e71963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pey, A.L.; Salido, E.; Sanchez-Ruiz, J.M. Role of Low Native State Kinetic Stability and Interaction of Partially Unfolded States with Molecular Chaperones in the Mitochondrial Protein Mistargeting Associated with Primary Hyperoxaluria. Amino Acids 2011, 41, 1233–1245. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Higuero, J.Á.; Betancor-Fernández, I.; Mesa-Torres, N.; Muga, A.; Salido, E.; Pey, A.L. Structural and Functional Insights on the Roles of Molecular Chaperones in the Mistargeting and Aggregation Phenotypes Associated with Primary Hyperoxaluria Type I. Adv. Protein Chem. Struct. Biol. 2019, 114, 119–152. [Google Scholar] [PubMed]
- Zhang, X.; Roe, S.M.; Hou, Y.; Bartlam, M.; Rao, Z.; Pearl, L.H.; Danpure, C.J. Crystal Structure of Alanine:Glyoxylate Aminotransferase and the Relationship between Genotype and Enzymatic Phenotype in Primary Hyperoxaluria Type 1. J. Mol. Biol. 2003, 331, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Montioli, R.; Fargue, S.; Lewin, J.; Zamparelli, C.; Danpure, C.J.; Borri Voltattorni, C.; Cellini, B. The N-Terminal Extension Is Essential for the Formation of the Active Dimeric Structure of Liver Peroxisomal Alanine:Glyoxylate Aminotransferase. Int. J. Biochem. Cell Biol. 2012, 44, 536–546. [Google Scholar] [CrossRef] [PubMed]
- Lumb, M.J.; Drake, A.F.; Danpure, C.J. Effect of N-Terminal Alpha-Helix Formation on the Dimerization and Intracellular Targeting of Alanine:Glyoxylate Aminotransferase. J. Biol. Chem. 1999, 274, 20587–20596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, D.; Berg, J.M. A Proteome-Wide Perspective on Peroxisome Targeting Signal 1(PTS1)-Pex5p Affinities. J. Am. Chem. Soc. 2010, 132, 3973–3979. [Google Scholar] [CrossRef]
- Bian, Y.; Song, C.; Cheng, K.; Dong, M.; Wang, F.; Huang, J.; Sun, D.; Wang, L.; Ye, M.; Zou, H. An Enzyme Assisted RP-RPLC Approach for in-Depth Analysis of Human Liver Phosphoproteome. J. Proteomics 2014, 96, 253–262. [Google Scholar] [CrossRef]
- Kelly, S.M.; Jess, T.J.; Price, N.C. How to Study Proteins by Circular Dichroism. Biochim. Biophys. Acta 2005, 1751, 119–139. [Google Scholar] [CrossRef]
- Jasanoff, A.; Fersht, A.R. Quantitative Determination of Helical Propensities from Trifluoroethanol Titration Curves. Biochemistry 1994, 33, 2129–2135. [Google Scholar] [CrossRef]
- Sancho, J.; Neira, J.L.; Fersht, A.R. An N-Terminal Fragment of Barnase Has Residual Helical Structure Similar to That in a Refolding Intermediate. J. Mol. Biol. 1992, 224, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Neira, J.L.; Hornos, F.; Bacarizo, J.; Cámara-Artigás, A.; Gómez, J. The Monomeric Species of the Regulatory Domain of Tyrosine Hydroxylase Has a Low Conformational Stability. Biochemistry 2016, 55, 3418–3431. [Google Scholar] [CrossRef] [PubMed]
- Wüthrich, K. NMR of Proteins and Nucleic Acids; John Wiley and Sons: New York, NY, USA, 1986. [Google Scholar]
- Danielsson, J.; Jarvet, J.; Damberg, P.; Gräslund, A. Translational Diffusion Measured by PFG-NMR on Full Length and Fragments of the Alzheimer Aβ(1-40) Peptide. Determination of Hydrodynamic Radii of Random Coil Peptides of Varying Length. Magn. Reson. Chem. 2002, 40, S89–S97. [Google Scholar] [CrossRef]
- Kjaergaard, M.; Brander, S.; Poulsen, F.M. Random Coil Chemical Shift for Intrinsically Disordered Proteins: Effects of Temperature and PH. J. Biomol. NMR 2011, 49, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Kjaergaard, M.; Poulsen, F.M. Sequence Correction of Random Coil Chemical Shifts: Correlation between Neighbor Correction Factors and Changes in the Ramachandran Distribution. J. Biomol. NMR 2011, 50, 157–165. [Google Scholar] [CrossRef]
- Cellini, B.; Bertoldi, M.; Montioli, R.; Paiardini, A.; Borri Voltattorni, C. Human Wild-Type Alanine:Glyoxylate Aminotransferase and Its Naturally Occurring G82E Variant: Functional Properties and Physiological Implications. Biochem. J. 2007, 408, 39–50. [Google Scholar] [CrossRef]
- Cellini, B.; Montioli, R.; Paiardini, A.; Lorenzetto, A.; Maset, F.; Bellini, T.; Oppici, E.; Voltattorni, C.B. Molecular Defects of the Glycine 41 Variants of Alanine Glyoxylate Aminotransferase Associated with Primary Hyperoxaluria Type I. Proc. Natl. Acad. Sci. USA 2010, 107, 2896–2901. [Google Scholar] [CrossRef] [Green Version]
- Dindo, M.; Conter, C.; Cellini, B. Electrostatic Interactions Drive Native-like Aggregation of Human Alanine:Glyoxylate Aminostransferase. FEBS J. 2017, 284, 3739–3764. [Google Scholar] [CrossRef]
- Marinelli, P.; Navarro, S.; Baño-Polo, M.; Morel, B.; Graña-Montes, R.; Sabe, A.; Canals, F.; Fernandez, M.R.; Conejero-Lara, F.; Ventura, S. Global Protein Stabilization Does Not Suffice to Prevent Amyloid Fibril Formation. ACS Chem. Biol. 2018, 13, 2094–2105. [Google Scholar] [CrossRef]
- Varela, L.; Morel, B.; Azuaga, A.I.; Conejero-Lara, F. A Single Mutation in an SH3 Domain Increases Amyloid Aggregation by Accelerating Nucleation, but Not by Destabilizing Thermodynamically the Native State. FEBS Lett. 2009, 583, 801–806. [Google Scholar] [CrossRef]
- Pearlman, S.M.; Serber, Z.; Ferrell, J.E. A Mechanism for the Evolution of Phosphorylation Sites. Cell 2011, 147, 934–946. [Google Scholar] [CrossRef] [Green Version]
- Ubersax, J.A.; Ferrell, J.E., Jr. Mechanisms of Specificity in Protein Phosphorylation. Nat. Rev. Mol. Cell Biol. 2007, 8, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Medina-Carmona, E.; Rizzuti, B.; Martín-Escolano, R.; Pacheco-García, J.L.; Mesa-Torres, N.; Neira, J.L.; Guzzi, R.; Pey, A.L. Phosphorylation Compromises FAD Binding and Intracellular Stability of Wild-Type and Cancer-Associated NQO1: Insights into Flavo-Proteome Stability. Int. J. Biol. Macromol. 2019, 125, 1275–1288. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Garcia, J.L.; Anoz-Carbonell, E.; Loginov, D.S.; Vankova, P.; Salido, E.; Man, P.; Medina, M.; Palomino-Morales, R.; Pey, A.L. Different Phenotypic Outcome Due to Site-Specific Phosphorylation in the Cancer-Associated NQO1 Enzyme Studied by Phosphomimetic Mutations. Arch. Biochem. Biophys. 2022, 729, 109392. [Google Scholar] [CrossRef] [PubMed]
- Van Hornbeck, P.; Zhang, B.; Murray, B.; Kornhauser, J.M.; Latham, V.; Skrzypek, E. PhosphoSitePlus, 2014: Mutations, PTMs and Recalibrations. Nucleic Acids Res. 2015, 43, D512–D520. [Google Scholar] [CrossRef] [Green Version]
- Miles, A.J.; Ramalli, S.G.; Wallace, B.A. DichroWeb, a Website for Calculating Protein Secondary Structure from Circular Dichroism Spectroscopic Data. Protein Sci. 2022, 31, 37–46. [Google Scholar] [CrossRef]
- Whitmore, L.; Wallace, B.A. Protein Secondary Structure Analyses from Circular Dichroism Spectroscopy: Methods and Reference Databases. Biopolymers 2008, 89, 392–400. [Google Scholar] [CrossRef]
- Whitmore, L.; Wallace, B.A. DICHROWEB, an Online Server for Protein Secondary Structure Analyses from Circular Dichroism Spectroscopic Data. Nucleic Acids Res. 2004, 32, W668–W673. [Google Scholar] [CrossRef] [Green Version]
- Chakrabartty, A.; Kortemme, T.; Padmanabhan, S.; Baldwin, R.L. Aromatic Side-Chain Contribution to Far-Ultraviolet Circular Dichroism of Helical Peptides and Its Effect on Measurement of Helix Propensities. Biochemistry 1993, 32, 5560–5565. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, J.; Skelton, N.; Fairbrother, W.; Rance, M.; Palmer, I.A. Protein NMR Spectroscopy Principles and Practice, 2nd ed.; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Piotto, M.; Saudek, V.; Sklenář, V. Gradient-Tailored Excitation for Single-Quantum NMR Spectroscopy of Aqueous Solutions. J. Biomol. NMR 1992, 2, 661–665. [Google Scholar] [CrossRef]
- Wilkins, D.K.; Grimshaw, S.B.; Receveur, V.; Dobson, C.M.; Jones, J.A.; Smith, L.J. Hydrodynamic Radii of Native and Denatured Proteins Measured by Pulse Field Gradient NMR Techniques. Biochemistry 1999, 38, 16424–16431. [Google Scholar] [CrossRef] [PubMed]
- Marion, D.; Wüthrich, K. Application of Phase Sensitive Two-Dimensional Correlated Spectroscopy (COSY) for Measurements of 1H-1H Spin-Spin Coupling Constants in Proteins. Biochem. Biophys. Res. Commun. 1983, 113, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Bax, A.; Davis, D.G. MLEV-17-Based Two-Dimensional Homonuclear Magnetization Transfer Spectroscopy. J. Magn. Reson. 1985, 65, 355–360. [Google Scholar] [CrossRef]
- Kumar, A.; Ernst, R.R.; Wüthrich, K. A Two-Dimensional Nuclear Overhauser Enhancement (2D NOE) Experiment for the Elucidation of Complete Proton-Proton Cross-Relaxation Networks in Biological Macromolecules. Biochem. Biophys. Res. Commun. 1980, 95, 1–6. [Google Scholar] [CrossRef]
- Cavanagh, J.; Rance, M. Suppression of Cross-Relaxation Effects in TOCSY Spectra via a Modified DIPSI-2 Mixing Sequence. J. Magn. Reson. 1992, 96, 670–678. [Google Scholar] [CrossRef]
- Naganathan, A.N.; Sanchez-Ruiz, J.M.; Munshi, S.; Suresh, S. Are Protein Folding Intermediates the Evolutionary Consequence of Functional Constraints? J. Phys. Chem. B 2015, 119, 1323–1333. [Google Scholar] [CrossRef]
- Sivanandan, S.; Naganathan, A.N. A Disorder-Induced Domino-Like Destabilization Mechanism Governs the Folding and Functional Dynamics of the Repeat Protein IκBα. PLoS Comput. Biol. 2013, 9, e1003403. [Google Scholar] [CrossRef] [Green Version]
- Rajasekaran, N.; Gopi, S.; Narayan, A.; Naganathan, A.N. Quantifying Protein Disorder through Measures of Excess Conformational Entropy. J. Phys. Chem. B 2016, 120, 4341–4350. [Google Scholar] [CrossRef]
NTT-AGT Peptide | D, Translational Diffusion Coefficient (cm2·s−1) | Rh, Hydrodynamic Radius (Å) 1 |
---|---|---|
WT | (9.83 ± 0.08) × 10−7 | 12 ± 2 |
T9E P11L T9E-P11L | (9.69 ± 0.04) × 10−7 (9.99 ± 0.01) × 10−7 (9.82 ± 0.04) × 10−7 | 12 ± 2 12 ± 2 12 ± 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neira, J.L.; Naganathan, A.N.; Mesa-Torres, N.; Salido, E.; Pey, A.L. Phosphorylation of Thr9 Affects the Folding Landscape of the N-Terminal Segment of Human AGT Enhancing Protein Aggregation of Disease-Causing Mutants. Molecules 2022, 27, 8762. https://doi.org/10.3390/molecules27248762
Neira JL, Naganathan AN, Mesa-Torres N, Salido E, Pey AL. Phosphorylation of Thr9 Affects the Folding Landscape of the N-Terminal Segment of Human AGT Enhancing Protein Aggregation of Disease-Causing Mutants. Molecules. 2022; 27(24):8762. https://doi.org/10.3390/molecules27248762
Chicago/Turabian StyleNeira, Jose L., Athi N. Naganathan, Noel Mesa-Torres, Eduardo Salido, and Angel L. Pey. 2022. "Phosphorylation of Thr9 Affects the Folding Landscape of the N-Terminal Segment of Human AGT Enhancing Protein Aggregation of Disease-Causing Mutants" Molecules 27, no. 24: 8762. https://doi.org/10.3390/molecules27248762
APA StyleNeira, J. L., Naganathan, A. N., Mesa-Torres, N., Salido, E., & Pey, A. L. (2022). Phosphorylation of Thr9 Affects the Folding Landscape of the N-Terminal Segment of Human AGT Enhancing Protein Aggregation of Disease-Causing Mutants. Molecules, 27(24), 8762. https://doi.org/10.3390/molecules27248762