The Renewed Interest on Brunogeierite, GeFe2O4, a Rare Mineral of Germanium: A Review
Abstract
:1. Introduction
2. Crystal Structure
3. Syntheses
3.1. Single Crystals
3.2. Powders
4. Physico-Chemical Properties
4.1. Spectroscopic Features
4.2. Magnetic Properties
4.3. Optical and Electrical Properties
5. Applications
5.1. Anode for LIBs and SIBs
5.2. Electrocatalyst
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3D GFO/N-CNSs | 3D interconnected N-doped ultrathin carbon nanosheets |
CE | Coulombic efficiency |
EB | Optical band gap |
EMF | Electro motive force |
FEC | Fluoroethylene carbonate |
GFO | GeFe2O4, Fe2GeO4 |
GO | Graphene Oxide |
HER | Hydrogen evolution reaction |
HRTEM | High-resolution transmission electron microscopy |
IR | Infrared spectroscopy |
IS | Isomeric shift |
LIBs | Lithium Ion Batteries |
N-CNs | N-doped ultrathin carbon nanosheets |
neff | Effective Bohr magnetons number |
OER | O2 evolution reaction |
QS | Quadrupole splitting |
RHE | Reversible hydrogen electrode |
SEM | Scanning Electron Microscopy |
SIBs | Sodium Ion Batteries |
TEM | Transmission Electron Microscopy |
θA | Curie temperature |
TN | Neel Temperature |
UOR | Urea oxidation reaction |
XPS | X-ray photoelectron spectroscopy |
XRD | X-ray diffraction |
References
- Höll, R.; Kling, M.; Schroll, E. Metallogenesis of germanium—A review. Ore Geol. Rev. 2007, 30, 145–180. [Google Scholar] [CrossRef]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; Walter De Gruyter: Berlin, Germany, 2015; pp. 1–30. [Google Scholar]
- Cempírek, J.; Groat, L.A. Note on the formula of brunogeierite and the first bond-valence parameters for Ge2+. J. Geosci. 2013, 58, 71–74. [Google Scholar] [CrossRef] [Green Version]
- Chakradhary, K.V.; Ansari, A.; Akhtar, M.J. Design, synthesis, and testing of high coercivity cobalt doped nickel ferrite nanoparticles for magnetic applications. J. Magn. Magn. Mater. 2019, 469, 674–680. [Google Scholar] [CrossRef]
- Ranganath, K.V.S.; Shaikh, M.; Sahu, A.; Sarvani, G. Catalytic Activity of Functionalized Spinels. Curr. Org. Chem. 2017, 21, 2573–2584. [Google Scholar] [CrossRef]
- Sutka, A.; Gross, K.A. Spinel ferrite oxide semiconductor gas sensors. Sens. Actuators B 2016, 222, 95–105. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Bowen, C.; Zhang, P.; Li, Z.; Yuan, Q.; Ren, X.; Deng, L. Spinel photocatalysts for environmental remediation, hydrogen generation, CO2 reduction and photoelectrochemical water splitting. J. Mater. Chem. A 2018, 6, 11078–11104. [Google Scholar] [CrossRef]
- Lima-Tenorio, M.K.; Taveira Tenorio-Neto, E.; Winkler Hechenleitner, A.A.; Fessi, H.; Gomez Pineda, E.A. CoFe2O4 and ZnFe2O4 Nanoparticles: An Overview About Structure, Properties, Synthesis and Biomedical Applications. J. Colloid Sci. Biotechnol. 2016, 5, 45–54. [Google Scholar] [CrossRef]
- Hyder, F.; Manjura Hoque, S. Brain Tumor Diagnostics and Therapeutics with Superparamagnetic Ferrite Nanoparticles. Contrast Media Mol. Imaging 2017, 2017, 6387217. [Google Scholar] [CrossRef] [Green Version]
- Bini, M.; Ambrosetti, M.; Spada, D. ZnFe2O4, a green and high-capacity anode material for lithium-ion batteries: A review. Appl. Sci. 2021, 11, 11713. [Google Scholar] [CrossRef]
- Gazzola, G.; Ambrosetti, M.; Mozzati, M.C.; Albini, B.; Galinetto, P.; Bini, M. Tuning the superparamagnetic effect in ZnFe2O4 nanoparticles with Mg, Ga doping. Mat. Chem. Phys. 2021, 273, 125069. [Google Scholar] [CrossRef]
- Fantozzi, E.; Rama, E.; Calvio, C.; Albini, B.; Galinetto, P.; Bini, M. Silver Doped Magnesium Ferrite Nanoparticles: Physico-Chemical Characterization and Antibacterial Activity. Materials 2021, 14, 2859. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chem. Rev. 2017, 117, 10121–10211. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Liu, S.; Li, Y.; Conte, E.; Cao, Y. A Critical Review of Spinel Structured Iron Cobalt Oxides Based Materials for Electrochemical Energy Storage and Conversion. Energies 2017, 10, 1787. [Google Scholar] [CrossRef] [Green Version]
- Strobel, P.; Koffyberg, F.P.; Wold, A. Electrical and optical properties of high-purity p-type single crystals of GeFe2O4. J. Solid State Chem. 1980, 31, 209–216. [Google Scholar] [CrossRef]
- Imbert, P. Etude par effet mossbauer de GeFe2O4. Comptes Rendus Ser. B 1966, 263, 184–187. [Google Scholar]
- Blasse, G.; Fast, J.F. Neel temperatures of some antiferromagnetic oxides with spinel structure. Philips Res. Repts 1963, 18, 393–399. [Google Scholar]
- Tarte, P. Etude infra-rouge des orthosilicates et des orthogermanates—III Structures du type spinelle. Spectrochim. Acta 1963, 19, 49–71. [Google Scholar] [CrossRef]
- Mathur, H.B.; Sinha, A.P.B.; Yagnik, C.M. The Mossbauer spectra of spinel oxides containing ferrous ion. Solid State Commun. 1965, 3, 401–403. [Google Scholar] [CrossRef]
- Welch, M.D.; Cooper, M.A.; Hawthorne, F.C. The crystal structure of brunogeierite, Fe2GeO4 spinel. Mineral. Mag. 2001, 65, 441–444. [Google Scholar] [CrossRef] [Green Version]
- Fleischer, M. Glossary of Mineral Species; The Mineralogical Record Inc.: Tucson, AZ, USA, 1980; pp. 1–191. [Google Scholar]
- Otteman, J.; Nuber, B. Brunogeierit, ein germanium-ferritspinel von Tsumeb. Neues Jahrb. Mineral. Mon. 1972, 6, 263–267. [Google Scholar]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Shtin, S.V.; Lykasov, A.A. Investigation into the Equilibrium of the Wustite and Spinel Solutions in the Fe–Ge–O System. Russ. J. Non-Ferr. Met. 2013, 54, 429–432. [Google Scholar] [CrossRef]
- Perversi, G.; Arevalo-Lopez, A.M.; Ritter, C.; Attfield, J.P. Frustration wave order in iron(II) oxide spinels. Commun. Phys. 2018, 1, 69. [Google Scholar] [CrossRef]
- Setkova, T.V.; Spivak, A.V.; Borovikova, E.Y.; Voronin, M.V.; Zakharchenko, E.S.; Balitsky, V.S.; Kuzmin, A.V.; Sipavina, L.V.; Iskrina, A.V.; Khasanov, S.S. Synthetic brunogeierite Fe2GeO4: XRD, Mössbauer and Raman high-pressure study. Spectrochim. Acta Part Mol. Biomol. Spectrosc. 2022, 267, 120597. [Google Scholar] [CrossRef] [PubMed]
- Sepelak, V.; Bergmann, I.; Diekmann, A.; Heitjans, P.; Becker, K.D. Mechanosynthesis of nanocrystalline iron germanate Fe2GeO4 with a nonequilibrium cation distribution. Rev. Adv. Mater. Sci. 2008, 18, 349–352. [Google Scholar]
- Yuvaraj, S.; Park, M.S.; Veerasubramani, G.K.; Lee, Y.S.; Kim, D.W. Synthesis and electrochemical performance of carbon-coated Fe2GeO4 as an anode material for sodium-ion batteries. Mat. Chem. Phys. 2019, 224, 129–136. [Google Scholar] [CrossRef]
- Yuvaraj, S.; Park, M.S.; Kumar, V.G.; Lee, Y.S.; Kim, D.W. Electrochemical Performance of M2GeO4 (M = Co, Fe and Ni) as Anode Materials with High Capacity for Lithium-Ion Batteries. J. Electrochem. Sci. Technol. 2017, 8, 323–330. [Google Scholar] [CrossRef]
- Choi, H.; Surendran, S.; Kim, D.; Lim, Y.; Lim, J.; Park, J.; Kim, J.K.; Han, M.K.; Sim, U. Boosting eco-friendly hydrogen generation by urea-assisted water electrolysis using spinel M2GeO4 (M = Fe, Co) as an active electrocatalyst. Environ. Sci. Nano 2021, 8, 3110–3121. [Google Scholar] [CrossRef]
- Han, J.; Qin, J.; Guo, L.; Qin, K.; Zhao, N.; Shi, C.; Liu, E.; He, F.; Ma, L.; He, C. Ultrasmall Fe2GeO4 nanodots anchored on interconnected carbon nanosheets as high-performance anode materials for lithium and sodium ion batteries. Appl. Surf. Sci. 2018, 427, 670–679. [Google Scholar] [CrossRef]
- Lavina, B.; Dera, P.; Downs, R.T.; Prakapenka, V.; Rivers, M.; Sutton, S.; Nicol, M. Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition. Geophys. Res. Lett. 2009, 36, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Lobanov, S.S.; Hsu, H.; Lin, J.F.; Yoshino, T.; Goncharov, A.F. Optical signatures of low spin Fe3+ in NAL at high pressure. J. Geophys. Res. Solid Earth 2017, 122, 3565–3573. [Google Scholar] [CrossRef]
- Luo, J.; Chern, G.W. Frustrated Kondo chains and glassy magnetic phases on the pyrochlore lattice. Phys. Rev. B 2018, 98, 214423. [Google Scholar] [CrossRef] [Green Version]
- Pramanik, P.; Ghosh, S.; Yanda, P.; Joshi, D.C.; Pittala, S.; Sundaresan, A.; Mishra, P.K.; Thota, S.; Seehra, M.S. Magnetic ground state, field-induced transitions, electronic structure, and optical band gap of the frustrated antiferromagnet GeCo2O4. Phys. Rev. B 2019, 99, 134422. [Google Scholar] [CrossRef]
- Vasiukov, D.M.; Kareev, M.; Wen, F.; Wu, L.; Shafer, P.; Arenholz, E.; Liu, X.; Chakhalian, J. Epitaxial stabilization of thin films of the frustrated Ge-based spinels. Phys. Rev. Mater. 2021, 5, 064419. [Google Scholar] [CrossRef]
- Jin, S.; Wang, C. Synthesis and first investigation of excellent lithium storage performances of Fe2GeO4/reduced graphene oxide nanocomposite. Nano Energy 2014, 7, 63–71. [Google Scholar] [CrossRef]
- Zhu, B.; Liang, Z.; Zou, R. Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction. Small 2020, 16, 1906133. [Google Scholar] [CrossRef]
Single Crystals | ||||
---|---|---|---|---|
Synthesis | Reagents | Temperature/Time | Purity | Refs. |
Chemical vapour transport method | TeCl4 (transporting agent); Fe, Fe2O3 and GeO2 | 920–760 °C; 11–20 days | - | [15] |
Thermo-gradient hydrothermal conditions | Fe wire, GeO2, a solution of 30 wt% of boric acid | 600–650 °C; 20 days | - | [26] |
Powders | ||||
Solid-state | GeO2, Fe, Fe2O3 | 40 h at 800 °C and 24 h at 950 °C | Traces of Fe3O4 | [15] |
Solid state | GeO2, Fe, Fe2O3 | Pellet heated at 900 °C for 60 h, and cooled to room temperature in 12 h | Pure | [25] |
Mechano-chemical | α-Fe2O3, Fe, GeO2 | Milling at 600 rpm in WC jars up to 2 h | Pure only after 2h of milling | [27] |
Hydrothermal | FeCl2, GeO2 and NaOH in water | 180 °C for 24 h (or 160 °C for 24h) in autoclave. Then heating at 500 °C for 3 h | Pure | [28,29,30] |
Freeze-drying | C6H5O7(NH4)3, FeCl2 and NaOH in water (pH 2–3 by HCl), NaCl | Solution frozen at −20 °C for 24 h. Annealing at 500 °C for 2 h under Ar, washing with water to remove NaCl | Pure | [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambrosetti, M.; Bini, M. The Renewed Interest on Brunogeierite, GeFe2O4, a Rare Mineral of Germanium: A Review. Molecules 2022, 27, 8484. https://doi.org/10.3390/molecules27238484
Ambrosetti M, Bini M. The Renewed Interest on Brunogeierite, GeFe2O4, a Rare Mineral of Germanium: A Review. Molecules. 2022; 27(23):8484. https://doi.org/10.3390/molecules27238484
Chicago/Turabian StyleAmbrosetti, Marco, and Marcella Bini. 2022. "The Renewed Interest on Brunogeierite, GeFe2O4, a Rare Mineral of Germanium: A Review" Molecules 27, no. 23: 8484. https://doi.org/10.3390/molecules27238484
APA StyleAmbrosetti, M., & Bini, M. (2022). The Renewed Interest on Brunogeierite, GeFe2O4, a Rare Mineral of Germanium: A Review. Molecules, 27(23), 8484. https://doi.org/10.3390/molecules27238484