Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (560)

Search Parameters:
Keywords = SIBs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2141 KB  
Article
Biochar–Sponge Iron Modified Bioretention System Improved Nitrogen Removal Efficiency for Aquaculture Wastewater Treatment
by Jiang Wang, Wenqiang Jiang, Luting Wen, Chengcai Zhang, Junneng Liang, Linyuan Jiang, Xueming Yang and Shumin Wang
Water 2026, 18(2), 270; https://doi.org/10.3390/w18020270 - 21 Jan 2026
Abstract
To address the challenge of low nitrogen removal efficiency, particularly the difficulty in meeting total nitrogen (TN) discharge standards during low-temperature seasons and intermittent emission modes in conventional aquaculture wastewater treatment, this study proposed the novel application of bioretention systems. Biochar and sponge [...] Read more.
To address the challenge of low nitrogen removal efficiency, particularly the difficulty in meeting total nitrogen (TN) discharge standards during low-temperature seasons and intermittent emission modes in conventional aquaculture wastewater treatment, this study proposed the novel application of bioretention systems. Biochar and sponge iron were used as fillers to construct three bioretention systems: biochar-based (B-BS), sponge iron-based (SI-BS), and a composite system (SIB-BS), for evaluating their nitrogen removal performance for aquaculture wastewater treatment. Experimental results demonstrated that under intermittent flooding conditions at 8.0–13.0 °C and increasing TN loading (9.48 mg/L–31.13 mg/L), SIB-BS maintained stable TN removal (79.7–86.7%), outperforming B-BS and SI-BS (p < 0.05). Under continuous inflow (influent TN = 8.4 ± 0.5 mg/L) at 8.0–13.0 °C, SIB-BS achieved significantly lower effluent TN (2.57 ± 1.5 mg/L) than B-BS (5.6 ± 1.6 mg/L) and SI-BS (5.0 ± 1.5 mg/L) (p < 0.05). Meanwhile, when the temperature ranged from 8.0 to 26.3 °C, SIB-BS exhibited a more stable and efficient denitrification ability. Mechanistic investigations revealed that coupling biochar with sponge iron promoted denitrifying microbial activity and enhanced the functional potential for nitrogen transformation (p < 0.05). Specifically, biochar provided porous attachment sites and improved mass transfer, while sponge iron supplied readily available Fe2+ as an electron donor; their combination buffered iron oxidation and facilitated Fe2+-mediated electron transfer. At low temperature, SIB-BS further stimulated extracellular polymeric substances (EPS) secretion, strengthened biofilm stability without causing blockage, and improved the protective interactions between fillers, thereby increasing metabolic efficiency and sustaining TN removal under variable loading. This study provided a technical reference for the efficient denitrification of aquaculture wastewater. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

14 pages, 760 KB  
Article
Two-Generation Genetic Evaluation of Female Reproductive Performance in Pacific White Shrimp (Penaeus vannamei) Under SPF Conditions
by Jiaqi Yu, Jie Kong, Sheng Luan, Jiawang Cao, Mianyu Liu, Kun Luo, Jian Tan, Ping Dai, Zhaoxin Wang, Juan Sui and Xianhong Meng
Animals 2026, 16(2), 235; https://doi.org/10.3390/ani16020235 - 13 Jan 2026
Viewed by 158
Abstract
Reproductive inefficiency remains a major constraint in Penaeus vannamei hatcheries due to high rates of non-spawning females. This study presents the first two-generational quantitative genetic analysis of female reproductive performance under standardized SPF (Specific Pathogen-Free) conditions. A total of 986 females across two [...] Read more.
Reproductive inefficiency remains a major constraint in Penaeus vannamei hatcheries due to high rates of non-spawning females. This study presents the first two-generational quantitative genetic analysis of female reproductive performance under standardized SPF (Specific Pathogen-Free) conditions. A total of 986 females across two generations (2021–2022) from 198 full-sib and 68 half-sib families were evaluated. Traits analyzed included spawning frequency (SF), mean spawning interval (MSI), number of eggs laid for the first time (NE1), average spawning (AS), total spawning (TS), and spawning success (SS). Heritability estimates for SF, SS, and TS were moderate (0.30 ± 0.06, 0.23 ± 0.06 and 0.28 ± 0.07, respectively), while MSI, NE1, and AS showed low heritability (0.10–0.16). When analyzed separately by year, heritability estimates declined substantially for most traits in the second generation. Strong positive genetic correlations were observed between SF, MSI, NE1, AS, and TS, with pairwise estimates ranging from 0.82 to 0.99, indicating that these traits are under shared genetic control. Despite not being direct selection objects, all reproductive traits exhibited relative genetic progress (246–488% per generation), which is attributable to the high selection intensity applied to the parental generation. Our findings provide a robust foundation for integrating reproductive performance into breeding programs for P. vannamei, particularly under biosecurity and commercial feed-dominated conditions. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

13 pages, 2863 KB  
Article
Waste-Towel-Derived Hard Carbon as High Performance Anode for Sodium Ion Battery
by Daofa Ying, Kuo Chen, Jiarui Liu, Ziqian Xiang, Jiazheng Lu, Chuanping Wu, Baohui Chen, Yang Lyu, Yutao Liu and Zhen Fang
Polymers 2026, 18(2), 206; https://doi.org/10.3390/polym18020206 - 12 Jan 2026
Viewed by 264
Abstract
Developing cost-effective yet high-performance hard carbon anodes is critical for advancing the commercialization of sodium-ion batteries (SIBs), as they offer a balance of low cost, high capacity, and compatibility with Na+ storage mechanisms. Herein, waste towels, an abundant, low-cost precursor with a [...] Read more.
Developing cost-effective yet high-performance hard carbon anodes is critical for advancing the commercialization of sodium-ion batteries (SIBs), as they offer a balance of low cost, high capacity, and compatibility with Na+ storage mechanisms. Herein, waste towels, an abundant, low-cost precursor with a high carbon yield (>49%), were utilized to synthesize hard carbons via a two-step process: pre-oxidation at 250 °C to stabilize the fibrous structure, followed by carbonization at 1100 °C (THC-1100), 1300 °C (THC-1300), or 1500 °C (THC-1500). Electrochemical evaluations revealed that THC-1300, carbonized at an intermediate temperature, exhibited superior Na+ storage performance compared to its counterparts: it delivered a high reversible specific capacity of ~320 mAh/g at 1.0 C (1 C = 320 mA/g), with 78% capacity retention after 200 cycles, demonstrating excellent long-term cyclic stability. Its rate capability was equally impressive, achieving specific capacities of 341.5, 331.2, 302.0 and 234.8 mAh/g at 0.2, 0.5, 2.0 and 5.0 C, respectively, indicating efficient Na+ diffusion even at high current densities. Notably, THC-1300 also showed an improved initial Coulombic efficiency (ICE) of 75.4%, reflecting reduced irreversible Na+ consumption during the first cycle. These enhancements are attributed to the synergistic effects of THC-1300’s optimized structural and textural properties: a balanced interlayer spacing (d(002) = 0.387 nm) that facilitates rapid Na+ intercalation, a low BET surface area (1.62 m2/g) helps to minimize electrolyte side reactions. The combined advantages of high specific capacity, improved ICE, and remarkable cycling stability position this waste-towel-derived hard carbon as a highly viable and sustainable candidate for anode materials in next-generation SIBs, addressing both performance and cost requirements for large-scale energy storage applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

14 pages, 228 KB  
Review
Understanding Self-Restraint in Neurodevelopmental Conditions: A Primer for Assessment and Treatment
by Kayla Mann and John Michael Falligant
Behav. Sci. 2026, 16(1), 60; https://doi.org/10.3390/bs16010060 - 30 Dec 2025
Viewed by 276
Abstract
Self-restraint, characterized by self-initiated restriction of movement (e.g., intertwining limbs, sitting on hands), is most commonly observed in individuals with neurodevelopmental conditions who also engage in self-injurious behavior (SIB). These behaviors may serve to prevent SIB but can also cause injury and interfere [...] Read more.
Self-restraint, characterized by self-initiated restriction of movement (e.g., intertwining limbs, sitting on hands), is most commonly observed in individuals with neurodevelopmental conditions who also engage in self-injurious behavior (SIB). These behaviors may serve to prevent SIB but can also cause injury and interfere with everyday functioning. Findings from past research suggest that self-restraint encompasses a heterogeneous class of behaviors and may serve multiple operant functions. We review conceptual models and empirical studies of the structural and functional dimensions of self-restraint, including procedures for identifying controlling contingencies and reducing the occurrence or impact of self-restraint on daily life. Available interventions, such as noncontingent reinforcement, differential reinforcement, functional communication training, and restraint fading, are discussed in the context of their limitations and successes. We conclude with recommendations for future research aimed at clarifying the functional properties of self-restraint and developing systematic approaches to its assessment and treatment. Full article
22 pages, 8743 KB  
Article
Deep Learning-Based State Estimation for Sodium-Ion Batteries Using Long Short-Term Memory Network
by Yunzhe Li, Yuhao Li, Jiangong Zhu, Haifeng Dai, Zhi Li and Bo Jiang
Batteries 2026, 12(1), 6; https://doi.org/10.3390/batteries12010006 - 25 Dec 2025
Viewed by 500
Abstract
Sodium-ion batteries (SIBs) have attracted growing attention as an alternative to lithium-ion technologies for electric mobility and stationary energy-storage applications, owing to the wide availability of sodium resources, cost advantages, and comparatively favorable safety characteristics. Accurate state-of-health (SOH) estimation is essential for safe [...] Read more.
Sodium-ion batteries (SIBs) have attracted growing attention as an alternative to lithium-ion technologies for electric mobility and stationary energy-storage applications, owing to the wide availability of sodium resources, cost advantages, and comparatively favorable safety characteristics. Accurate state-of-health (SOH) estimation is essential for safe and reliable SIB deployment, yet existing data-driven methods still suffer from limited accuracy and interpretability, as well as a lack of dedicated aging datasets. This study proposes an explainable SOH estimation methodology based on a long short-term memory (LSTM) network combined with model-agnostic KernelSHAP analysis. Thirteen health indicators (HIs) are extracted from charge/discharge data and post-charge relaxation segments, and the most relevant indicators are selected via Pearson correlation screening as model inputs. Built on these HIs, an LSTM-based multi-step framework is developed to take HI sequences as input and forecast the SOH trajectory over the subsequent 20 cycles. Experimental results show that the proposed method achieves high accuracy and robust cross-cell generalization, with mean absolute error (MAE) below 1.0%, root-mean-square error (RMSE) below 1.2% across all cells, and an average RMSE of about 0.75% in the main cross-cell setting. KernelSHAP-based global and temporal analyses further clarify how different HIs and time positions influence SOH estimates, enhancing model transparency and physical interpretability. Full article
(This article belongs to the Special Issue Control, Modelling, and Management of Batteries)
Show Figures

Figure 1

14 pages, 1142 KB  
Article
Quantitative Genetics of Vachellia nilotica (L.) P. J. H. Hunter & Mabb. (Fabaceae) in Provenance/Progeny Trial
by Isaac Theophile Ndjepel Yetnason, Adrian Christopher Brennan, Dorothy Tchatchoua Tchapda and Chimene Abib Fanta
Int. J. Plant Biol. 2026, 17(1), 1; https://doi.org/10.3390/ijpb17010001 - 19 Dec 2025
Viewed by 183
Abstract
(1) Background: In the Sudano-Sahelian zone of Cameroon, which is affected by drought and forest decline, Vachellia nilotica leaves and seeds are fodder for livestock. (2) Methods: A provenance and progeny study on growth performance and heritability of V. nilotica was carried out [...] Read more.
(1) Background: In the Sudano-Sahelian zone of Cameroon, which is affected by drought and forest decline, Vachellia nilotica leaves and seeds are fodder for livestock. (2) Methods: A provenance and progeny study on growth performance and heritability of V. nilotica was carried out to provide a reliable database for tree selection, improvement programs, and the creation of future forested areas in this region. Open-pollinated seeds from 120 mother trees (10 half-sib families per provenance) representing twelve provenances, 50–100 km apart, were used for a progeny trial near Maroua, the Far North region of Cameroon. The experimental design was a Fisher block. (3) Results: The results reveal significant differences among provenances only for the number of leaves, and the variability was marked by coefficients of variation ranging from 0.24−0.63. Narrow-sense heritability was measured, varying from 0.01 ± 0.009 to 0.74 ± 0.02, and genetic gain reached 21.83 at the selection intensity of 5% for the number of leaves per plant. The phenotypic coefficient of variation varied between 14% and 90%. Half-sib families were classified into three subgroups using hierarchical ascending classification, and provenances were grouped into five groups using principal component analysis. (4) Conclusions: These results could contribute to initiating tree selection, but more provenances, longer-term experiments, and molecular genetic testing are needed to complement these nursery-level observations. Full article
(This article belongs to the Section Plant Ecology and Biodiversity)
Show Figures

Figure 1

29 pages, 46454 KB  
Article
Hybrid Graphite–Carbon Fiber Anodes and NFM Cathodes for Structural Sodium-Ion Batteries
by Giulio Siciliano, Bridgette Sims, Thomas C. Burns, Wout De Backer, Paul Ziehl, Ralph E. White and Paul T. Coman
Solids 2026, 7(1), 1; https://doi.org/10.3390/solids7010001 - 19 Dec 2025
Viewed by 418
Abstract
Sodium-ion batteries (SIBs) present a sustainable alternative to lithium-ion systems due to the abundance and low environmental impact of sodium. However, their integration into multifunctional structural battery systems that combine electrochemical and mechanical properties remains unexplored. This work investigates the electrochemical performance of [...] Read more.
Sodium-ion batteries (SIBs) present a sustainable alternative to lithium-ion systems due to the abundance and low environmental impact of sodium. However, their integration into multifunctional structural battery systems that combine electrochemical and mechanical properties remains unexplored. This work investigates the electrochemical performance of sodium-ion chemistry within a structural battery framework using unsized carbon fiber (UCF) as both a structural substrate and active electrode material. Ultrasonic spray coating was employed to deposit Mesocarbon Microbeads (MCMB) and NaNi1/3Fe1/3Mn1/3O2 (NFM) on UCF to form hybrid anode and cathode half-cells, respectively, with 1 M NaPF6 in diglyme electrolyte. The MCMB on UCF hybrid anode demonstrated dual graphitic and carbon fiber storage mechanisms, achieving 50 mAh g−1 capacity over 500 cycles at 1C with excellent Coulombic efficiency. The NFM–UCF cathode exhibited an initial capacity of 27.5 mAh g−1 and maintained over 80% capacity retention for 230 cycles, continuing to cycle stably beyond 400 cycles. Post-cycling SEM imaging revealed surface cracking, particle expansion, and gas-pocket formation in both electrodes. These results demonstrate the electrochemical viability of sodium-ion chemistry in a multifunctional structural configuration and establish ultrasonic coating as a scalable, precise method for fabricating carbon fiber electrodes toward future sodium-ion structural batteries. Full article
Show Figures

Figure 1

25 pages, 5133 KB  
Article
Evaluating the Potential of Sodium-Ion Batteries for Low Voltage Mobility
by Alexander Fandakov, Brahim Soltani, Sébastien Sallard, Oliver Nolte, Johannes Werfel, Karsten Mueller and Marc Sens
World Electr. Veh. J. 2026, 17(1), 5; https://doi.org/10.3390/wevj17010005 - 19 Dec 2025
Viewed by 457
Abstract
The automotive industry is under pressure to reduce greenhouse gas emissions. While the growth of electric vehicles is crucial, optimizing low-voltage batteries for conventional powertrain architecture (12–48 V) can help reduce carbon dioxide emissions. Currently, lithium iron phosphate (LFP) batteries dominate the low-voltage [...] Read more.
The automotive industry is under pressure to reduce greenhouse gas emissions. While the growth of electric vehicles is crucial, optimizing low-voltage batteries for conventional powertrain architecture (12–48 V) can help reduce carbon dioxide emissions. Currently, lithium iron phosphate (LFP) batteries dominate the low-voltage battery market due to their stability, safety, and ecological benefits as replacement to lead-acid. However, sodium-ion batteries (SIB) are emerging as a promising alternative to LFP, offering advantages in power, lifespan, cold temperature performance, integration, cost, material availability, and sustainability. These advantages of sodium-ion batteries make them a perfect candidate for fulfilling the requirements typically associated with 48 V applications as well. This contribution evaluates low-voltage SIB prototypes developed by the company IAV GmbH and its partners and explores their potential for automotive applications, aiming to share insights and assess future prospects. Full article
Show Figures

Figure 1

18 pages, 2520 KB  
Article
Reproductive and Vegetative Yield Component Trade-Offs in Selection of Thinopyrum Intermedium
by Andrés Locatelli, Valentín D. Picasso, Pablo R. Speranza and Lucía Gutiérrez
Agronomy 2025, 15(12), 2895; https://doi.org/10.3390/agronomy15122895 - 16 Dec 2025
Viewed by 371
Abstract
Integrating perennial grain crops into agricultural systems can become a key milestone for increasing the provision of ecosystem services of food production systems. Intermediate wheatgrass is a novel perennial grain and forage crop that is undergoing domestication. Potential trade-offs between resource allocation and [...] Read more.
Integrating perennial grain crops into agricultural systems can become a key milestone for increasing the provision of ecosystem services of food production systems. Intermediate wheatgrass is a novel perennial grain and forage crop that is undergoing domestication. Potential trade-offs between resource allocation and reproductive and vegetative plant structures can challenge the response to selection for both grain and forage production under dual-purpose use. Our goal was to understand the genetic relationship between grain and forage yield components, quantify potential trade-offs between vegetative and reproductive allocation, and optimize the response to selection under dual-purpose management. Phenological, grain, and forage traits were evaluated in 30 half-sib families across two field experiments conducted over three years. No trade-offs were detected between grain and forage yield traits, indicating that the simultaneous improvement of both traits is feasible. Grain yield per spike and spikes per plant are promising secondary traits for indirect selection, given their moderate-to-high heritability (h2 = 0.58 and 0.41) and strong Pearson correlation coefficients with grain yield per plant (0.68 and 0.82). These traits could be assessed in the first year, increasing genetic gain per unit time. Intermediate wheatgrass germplasm could therefore be efficiently developed by shortening the time to first evaluation, using secondary traits, and performing selection under dual-purpose management. Full article
(This article belongs to the Special Issue The Revision of Production Potentials and Yield Gaps in Field Crops)
Show Figures

Figure 1

16 pages, 1505 KB  
Article
Intraspecific Variation in Drought and Nitrogen-Stress Responses in Pedunculate Oak (Quercus robur L.) Half-Sib Progeny
by Tatiana A. Grodetskaya, Anna A. Popova, Vladlena S. Ryzhkova, Ekaterina I. Trapeznikova, Petr M. Evlakov, Vadim G. Lebedev, Konstantin A. Shestibratov and Konstantin V. Krutovsky
Plants 2025, 14(24), 3814; https://doi.org/10.3390/plants14243814 - 15 Dec 2025
Viewed by 328
Abstract
Pedunculate oak (Quercus robur L.) face increasing threats from drought and nutrient limitation under climate change, yet their genetic variation may have adaptive potential. We examined the responses of pedunculate oak (Quercus robur L.) half-sib progeny from five maternal trees (1, [...] Read more.
Pedunculate oak (Quercus robur L.) face increasing threats from drought and nutrient limitation under climate change, yet their genetic variation may have adaptive potential. We examined the responses of pedunculate oak (Quercus robur L.) half-sib progeny from five maternal trees (1, 12, 32, 57, and 60) to water stress (WS), nitrogen limitation (NL), and combined WS+NL. WS reduced leaf relative water content (RWC) by 18–32% in all families and decreased proline only in two families (233.57 and 209.1), while four families (63.12, 149.1, 303.32, and 339.57) showed 1.7–2.0-fold proline accumulation. Exposure to WS+NL inhibited height and diameter growth in family 339.57 and diameter growth in families 23.12, 303.32 and 405.60, relative to the control. NL decreased chlorophyll (Chl) in two families (23.12 and 405.60) 1.5-fold and increased carotenoids in one of them (405.60) and RWC by 29% and 12% in 23.12 and 303.32 families, respectively. ROS-scavenging activities of catalase (CAT), guaiacol-dependent peroxidase (POD), and superoxide dismutase (SOD) enzymes increased 1.4- to 26.7-fold across all families except 151.1. Overall, families 303.32 and 339.57 were the most resilient to WS, NL, and WS+NL, whereas 233.57 and 151.1 were the most sensitive to WS, 23.12 to NL, and 405.60 to both stresses. These results highlight the family-level variation in stress responses and provide a basis for selecting resilient oak genotypes for forestry and conservation. Full article
Show Figures

Figure 1

13 pages, 616 KB  
Article
Impact of Music Interventions on Depression in Care Home Residents with Dementia: UK Results from Music Interventions for Depression and Dementia in Elderly Care RCT
by Justine Schneider, Joanne Ablewhite, Jodie Bloska, Martin Orrell, Helen Odell-Miller, Jorg Assmus, Christian Gold and Vigdis Sveinsdottir
Geriatrics 2025, 10(6), 166; https://doi.org/10.3390/geriatrics10060166 - 15 Dec 2025
Cited by 1 | Viewed by 556
Abstract
Background: We report UK findings from Music Interventions for Depression and Dementia in Elderly care (MIDDEL), a cross-national, clustered, randomised trial undertaken in 2018–2023 to evaluate the effectiveness of music interventions for depression symptoms in care home residents living with dementia (NCT03496675, clinicaltrials.gov [...] Read more.
Background: We report UK findings from Music Interventions for Depression and Dementia in Elderly care (MIDDEL), a cross-national, clustered, randomised trial undertaken in 2018–2023 to evaluate the effectiveness of music interventions for depression symptoms in care home residents living with dementia (NCT03496675, clinicaltrials.gov (accessed on 1 December 2024)). The trial compared the effects of Group Music Therapy (GMT) with Recreational Choir Singing (RCS); GMT and RCS combined; and treatment as usual (TAU). Methods: In the intervention arms, the protocolized music interventions were delivered in care home units twice per week for three months, then once per week for three months. The primary outcome was depressive symptoms after six months, measured by MADRS. Secondary outcomes included well-being—EQ-5D-5L, Visual Analogue Scale (VAS); quality of life—QOL-AD; symptoms of dementia—SIB-8, NPI-Q; and caregiver distress—NPI-Q. The change in MADRS score from baseline to 6 months was assessed using a linear mixed-effects model. We report the multivariate model having both treatments as predictors, both unadjusted and adjusted, for the interaction between the treatments. Results: The UK trial started in 2022 after the pandemic lockdown, when 16 care home units were recruited and randomised, four per arm; 192 residents aged over 65 with depression and dementia participated. An ITT analysis of 146 participants retained at 6 months found neither intervention had a significant positive effect on any outcome. Significant unfavourable effects were found for RCS participants on MADRS, NPI symptom severity, and EQ-VAS. The combination of RCS + GMT had a detrimental effect on caregiver distress. Conclusions: MIDDEL UK findings do not support the use of GMT or RCS to alleviate depression in care home residents with dementia. Full article
Show Figures

Figure 1

20 pages, 1462 KB  
Review
Sustainable Solutions in Sodium-Ion Battery Cathode Materials: A Mini-Review of Strategies for Upgraded Performance Through Modification Techniques
by Mudhar A. Al-Obaidi, Farhan Lafta Rashid, Ahmed K. Ali, Mohammed Mahdi, Ahmad Al Astal and Iqbal M. Mujtaba
ChemEngineering 2025, 9(6), 143; https://doi.org/10.3390/chemengineering9060143 - 12 Dec 2025
Viewed by 786
Abstract
Sodium-ion batteries (SIBs) have arisen as a potential alternative to lithium-ion batteries (LIBs) as a result of the abundant availability of sodium resources at low production costs, making them in line with the United Nations Sustainable Development Goals (SDGs) for affordable and clean [...] Read more.
Sodium-ion batteries (SIBs) have arisen as a potential alternative to lithium-ion batteries (LIBs) as a result of the abundant availability of sodium resources at low production costs, making them in line with the United Nations Sustainable Development Goals (SDGs) for affordable and clean energy (Goal 7). The current review intends to comprehensively analyse the various modification techniques deployed to improve the performance of cathode materials for SIBs, including element doping, surface coating, and morphological control. These techniques have demonstrated prominent improvements in electrochemical properties, such as specific capacity, cycling stability, and overall efficiency. The findings indicate that element doping can optimise electronic and ionic conductivity, while surface coatings can enhance stability in addition to mitigating side reactions throughout cycling. Furthermore, morphological control is an intricate technique to facilitate efficient ion diffusion and boost the use of active materials. Statistically, the Cr-doped NaV1−xCrxPO4F achieves a reversible capacity of 83.3 mAh/g with a charge–discharge performance of 90.3%. The sodium iron–nickel hexacyanoferrate presents a discharge capacity of 106 mAh/g and a Coulombic efficiency of 97%, with 96% capacity retention over 100 cycles. Furthermore, the zero-strain cathode Na4Fe7(PO4)6 maintains about 100% capacity retention after 1000 cycles, with only a 0.24% change in unit-cell volume throughout sodiation/desodiation. Notwithstanding these merits, this review ascertains the importance of ongoing research to resolve the associated challenges and unlock the full potential of SIB technology, paving the way for sustainable and efficient energy storage solutions that would aid the conversion into greener energy systems. Full article
Show Figures

Figure 1

31 pages, 5231 KB  
Review
Recent Advances in MoS2-Based Nanocomposites: Synthesis, Structural Features, and Electrochemical Applications
by Gaukhar Omashova, Aidyn Tussupzhanov, Sherzod Ramankulov, Karakoz Katpayeva, Dilnoza Baltabaeyeva, Nurken Mussakhan and Berik Kaldar
Crystals 2025, 15(12), 1037; https://doi.org/10.3390/cryst15121037 - 4 Dec 2025
Viewed by 802
Abstract
This article presents a review of current research on the use of molybdenum disulfide (MoS2) and its composites as promising materials for energy storage systems and functional coatings. Various MoS2 morphologies, including nanoflowers, nanoplatelets, and nanorods, are considered, as well [...] Read more.
This article presents a review of current research on the use of molybdenum disulfide (MoS2) and its composites as promising materials for energy storage systems and functional coatings. Various MoS2 morphologies, including nanoflowers, nanoplatelets, and nanorods, are considered, as well as their effects on electrochemical properties and specific capacity. Particular attention is paid to strategies for modifying MoS2 using carbon nanomaterials (graphene, carbon nanotubes, porous carbon) and conductive polymers, which improve electrical conductivity, structural stability, and durability of electrodes. The important role of chemical vapor deposition (CVD), which allows the formation of uniform coatings with high purity, controlled thickness, and improved performance characteristics, is noted. A comparative analysis of advances in the application of MoS2 in sodium-ion batteries, supercapacitors, and microwave absorbers is provided. It has been shown that the synergy of MoS2 with carbon and polymer components, as well as the use of advanced deposition technologies, including CVD, opens new prospects for the development of low-cost, stable, and highly efficient energy storage devices. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

23 pages, 7113 KB  
Article
Evaluation of Sasa kurilensis Biomass-Derived Hard Carbon as a Promising Anode Material for Sodium-Ion Batteries
by Polina A. Marmaza, Oleg O. Shichalin, Zlata E. Priimak, Alina I. Seroshtan, Nikita P. Ivanov, Grigory P. Lakienko, Alexei S. Korenevskiy, Sergey A. Syubaev, Vitaly Yu. Mayorov, Maria A. Ushkova, Eduard A. Tokar, Roman I. Korneikov, Vadim V. Efremov, Alexy V. Ognev, Eugeniy K. Papynov and Ivan G. Tananaev
J. Compos. Sci. 2025, 9(12), 668; https://doi.org/10.3390/jcs9120668 - 3 Dec 2025
Viewed by 633
Abstract
The depletion of global lithium reserves, coupled with the necessity for environmentally sustainable and economically accessible energy storage systems, has driven the development of sodium-ion batteries (SIBs) as a promising alternative to lithium-ion technologies. Among various anode materials for SIBs, hard carbon exhibits [...] Read more.
The depletion of global lithium reserves, coupled with the necessity for environmentally sustainable and economically accessible energy storage systems, has driven the development of sodium-ion batteries (SIBs) as a promising alternative to lithium-ion technologies. Among various anode materials for SIBs, hard carbon exhibits obvious advantages and significant commercial potential owing to its high energy density, low operating potential, and stable capacity retention during prolonged cycling. Biomass represents the most attractive source of non-graphitizable carbon from a practical standpoint, being readily available, renewable, and low-cost. However, the complex internal structure of biomass precursors creates significant challenges for precise control of microstructure and properties of the resulting hard carbon materials, requiring further research and optimization of synthesis methodologies. This work reports the synthesis of hard carbon from Sasa kurilensis via pyrolysis at 900 °C and investigates the effect of alkaline pretreatment on the structural and electrochemical characteristics of the anode material for SIBs. Sasa kurilensis is employed for the first time as a source for non-graphitizable carbon synthesis, whose unique natural vascular structure forms optimal hierarchical porosity for sodium-ion intercalation upon thermal treatment. The materials were characterized by X-ray diffraction, infrared and Raman spectroscopy, scanning electron microscopy, X-ray microtomography and low-temperature nitrogen adsorption–desorption. Electrochemical properties were evaluated by galvanostatic cycling in the potential range of 0.02–2 V at a current density of 25 mAhg−1 in half-cells with sodium metal counter electrodes. The unmodified sample demonstrated a discharge capacity of 160 mAhg−1 by the 6th cycle, with an initial capacity of 77 mAhg−1. The alkaline-treated material exhibited lower discharge capacity (114 mAhg−1) and initial Coulombic efficiency (40%) due to increased specific surface area, leading to excessive electrolyte decomposition. Full article
(This article belongs to the Special Issue Composite Materials for Energy Management, Storage or Transportation)
Show Figures

Figure 1

27 pages, 9786 KB  
Article
Evaluation of Commercial Sodium-Ion Batteries by State-of-the-Art Lithium-Ion Battery Configurations
by Dominik Droese, Paul-Martin Luc, Martin Otto, Anton Schlösser, Daniel Evans and Julia Kowal
Batteries 2025, 11(11), 420; https://doi.org/10.3390/batteries11110420 - 14 Nov 2025
Viewed by 1147
Abstract
Sodium-ion batteries (SIBs) are gaining attention in research and industry as a sustainable alternative to lithium-ion batteries (LIBs). However, the advantages of sodium over lithium in terms of accessibility, price, and environmental impact are currently not fully exploited because of inexperience in production, [...] Read more.
Sodium-ion batteries (SIBs) are gaining attention in research and industry as a sustainable alternative to lithium-ion batteries (LIBs). However, the advantages of sodium over lithium in terms of accessibility, price, and environmental impact are currently not fully exploited because of inexperience in production, leading to inhomogeneities in their behavior. Using electrical (e.g., open-circuit voltage curve (OCV), electrochemical impedance spectroscopy) and non-electrical measurement methods (e.g., laser scanning microscopy, computed tomography), three widely used LIB technologies and one SIB technology, all with the same rated capacity (1500 mAh) and format (18650), are compared in this article. The study reveals significant differences, such as a 12% lower cell weight at the same rated capacity of the SIB using less windings in the jelly roll, as well as a high energy density cell configuration and a much more severe dependency of the discharge capacity on temperature, exceeding the LIBs by at least a factor of 5. Additionally, the impedance of the SIB differs due to slower ion kinetics on the electrodes, showing relevant differences in both the frequency behavior and the pulse relaxation to the LIBs. An OCV reconstruction indicates the sparsity in the available literature data and the necessity to further investigate the characteristics of the SIB to validate it as a drop-in technology on the market. Full article
Show Figures

Graphical abstract

Back to TopTop