Integrated Adsorption–Photodegradation of Organic Pollutants by Carbon Xerogel/Titania Composites
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Properties of CXTi
2.2. Adsorption Kinetics
2.3. Adsorption Isotherm Study
2.4. Photocatalytic Study
3. Materials and Method
3.1. Synthesis of CXTi
3.2. Structural Characterisation
3.3. Adsorption and Photocatalytic Performance
3.4. Antimicrobial Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manikandan, S.; Karmegam, N.; Subbaiya, R.; Devi, G.K.; Arulvel, R.; Ravindran, B.; Awasthi, M.K. Emerging nano-structured innovative materials as adsorbents in wastewater treatment. Bioresour. Technol. 2021, 320, 124394. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Song, A.; Duan, Y.; Zheng, S. Enhanced photocatalytic activity of TiO2/zeolite composite for abatement of pollutants. Microporous Mesoporous Mater. 2018, 255, 61–68. [Google Scholar] [CrossRef]
- Lakshmi, S.; Renganathan, R.; Fujita, S. Study on TiO2-mediated photocatalytic degradation of methylene blue. J. Photochem. Photobiol. A Chem. 1995, 88, 163–167. [Google Scholar] [CrossRef]
- Kumari, P.; Alam, M.; Siddiqi, W.A. Usage of nanoparticles as adsorbents for waste water treatment: An emerging trend. Sustain. Mater. Technol. 2019, 22, e00128. [Google Scholar] [CrossRef]
- Wang, H.; Lewis, J. Second-generation photocatalytic materials: Anion-doped TiO2. J. Phys. Condens. Matter 2005, 18, 421. [Google Scholar] [CrossRef]
- Khalid, N.; Majid, A.; Tahir, M.B.; Niaz, N.; Khalid, S. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review. Ceram. Int. 2017, 43, 14552–14571. [Google Scholar] [CrossRef]
- Malekshahi Byranvand, M.; Nemati Kharat, A.; Fatholahi, L.; Malekshahi Beiranvand, Z. A review on synthesis of nano-TiO2 via different methods. J. Nanostructures 2013, 3, 1–9. [Google Scholar]
- Mehta, A.; Mishra, A.; Basu, S.; Shetti, N.P.; Reddy, K.R.; Saleh, T.A.; Aminabhavi, T.M. Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production—A review. J. Environ. Manag. 2019, 250, 109486. [Google Scholar] [CrossRef]
- Thapliyal, P.C.; Singh, K. Aerogels as promising thermal insulating materials: An overview. J. Mater. 2014. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Drewes, J.E.; Heil, D.; Wang, G. Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water Res. 2008, 42, 2605–2617. [Google Scholar] [CrossRef]
- Das, S.; Heasman, P.; Ben, T.; Qiu, S. Porous organic materials: Strategic design and structure–function correlation. Chem. Rev. 2017, 117, 1515–1563. [Google Scholar] [CrossRef] [PubMed]
- Awadallah-F, A.; Al-Muhtaseb, S.A. Nanofeatures of resorcinol–formaldehyde carbon microspheres. Mater. Lett. 2012, 87, 31–34. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, B.; Guan, D.; Dong, X. Mesoporous activated carbon spheres derived from resorcinol-formaldehyde resin with high performance for supercapacitors. J. Solid State Electrochem. 2015, 19, 1783–1791. [Google Scholar] [CrossRef]
- Awadallah-F, A.; Elkhatat, A.M.; Al-Muhtaseb, S.A. Impact of synthesis conditions on meso-and macropore structures of resorcinol–formaldehyde xerogels. J. Mater. Sci. 2011, 46, 7760–7769. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, H.; Xiang, J.; Dong, X.; Cao, Y. Enhanced photocatalytic activities of TiO2-reduced graphene oxide nanocomposites controlled by TiOC interfacial chemical bond. Mater. Res. Bull. 2018, 99, 29–36. [Google Scholar] [CrossRef]
- Jiang, Y.; Meng, L.; Mu, X.; Li, X.; Wang, H.; Chen, X.; Wang, X.; Wang, W.; Wu, F.; Wang, X. Effective TiO2 hybrid heterostructure fabricated on nano mesoporous phenolic resol for visible-light photocatalysis. J. Mater. Chem. 2012, 22, 23642–23649. [Google Scholar] [CrossRef]
- Safri, A.; Fletcher, A.J. Effective carbon/TiO2 gel for enhanced adsorption and demonstrable visible light driven photocatalytic performance. Gels 2022, 8, 215. [Google Scholar] [CrossRef]
- Zaleska, A. Doped-TiO2: A review. Recent Pat. Eng. 2008, 2, 157–164. [Google Scholar] [CrossRef]
- Bardestani, R.; Patience, G.S.; Kaliaguine, S. Experimental methods in chemical engineering: Specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can. J. Chem. Eng. 2019, 97, 2781–2791. [Google Scholar] [CrossRef]
- Aranovich, G.L.; Donohue, M.D. Adsorption isotherms for microporous adsorbents. Carbon 1995, 33, 1369–1375. [Google Scholar] [CrossRef]
- Azeez, F.; Al-Hetlani, E.; Arafa, M.; Abdelmonem, Y.; Nazeer, A.A.; Amin, M.O.; Madkour, M. The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Azizian, S. Kinetic models of sorption: A theoretical analysis. J. Colloid Interface Sci. 2004, 276, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater. 2010, 177, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Ebelegi, A.N.; Ayawei, N.; Wankasi, D. Interpretation of adsorption thermodynamics and kinetics. Open J. Phys. Chem. 2020, 10, 166. [Google Scholar] [CrossRef]
- Tan, K.; Hameed, B. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. Eng. 2017, 74, 25–48. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Tran, H.N.; Wang, Y.-F.; You, S.-J.; Chao, H.-P. Insights into the mechanism of cationic dye adsorption on activated charcoal: The importance of π–π interactions. Proc. Saf. Environ. Prot. 2017, 107, 168–180. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and interpretation of adsorption isotherms. J. Chem. 2017. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Zhu, L.; Huang, Y.; She, Y.; Yu, Y.; Tang, H. Drastically enhanced visible-light photocatalytic degradation of colorless aromatic pollutants over TiO2 via a charge-transfer-complex path: A correlation between chemical structure and degradation rate of the pollutants. J. Catal. 2009, 266, 199–206. [Google Scholar] [CrossRef]
- Fujisawa, J.-i.; Matsumura, S.; Hanaya, M. A single TiOC linkage induces interfacial charge-transfer transitions between TiO2 and a π-conjugated molecule. Chem. Phys. Lett. 2016, 657, 172–176. [Google Scholar] [CrossRef]
- Zhang, G.; Choi, W. A low-cost sensitizer based on a phenolic resin for charge-transfer type photocatalysts working under visible light. Chem. Commun. 2012, 48, 10621–10623. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Ghafoor, K.; Lee, J.; Feng, M.; Hong, J.; Lee, D.-U.; Park, J. Bacterial inactivation in water, DNA strand breaking, and membrane damage induced by ultraviolet-assisted titanium dioxide photocatalysis. Water Res. 2013, 47, 4403–4411. [Google Scholar] [CrossRef]
- do Carmo Batista, W.V.F.; da Cunha, R.; dos Santos, A.C.; dos Reis, P.M.; Furtado, C.A.; Silva, M.C.; de Fátima Gorgulho, H. Synthesis of a reusable magnetic photocatalyst based on carbon xerogel/TiO2 composites and its application on acetaminophen degradation. Ceram. Int. 2022, 48, 34395–34404. [Google Scholar] [CrossRef]
- da Cunha, R.; do Carmo Batista, W.V.F.; de Oliveira, H.L.; dos Santos, A.C.; dos Reis, P.M.; Borges, K.B.; Martelli, P.B.; Furtado, C.A.; de Fátima Gorgulho, H. Carbon Xerogel/TiO2 composites as photocatalysts for acetaminophen degradation. J. Photochem. Photobiol. A Chem. 2021, 412, 113248. [Google Scholar] [CrossRef]
- Bailón-García, E.; Elmouwahidi, A.; Álvarez, M.A.; Carrasco-Marín, F.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J. New carbon xerogel-TiO2 composites with high performance as visible-light photocatalysts for dye mineralization. Appl. Catal. B Environ. 2017, 201, 29–40. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, J.; Liu, H.; Shi, J. Enhancement of the photocatalytic activity of a TiO2/carbon aerogel based on a hydrophilic secondary pore structure. RSC Adv. 2016, 6, 68416–68423. [Google Scholar]
- Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 2001, 31, 145–157. [Google Scholar] [CrossRef]
- Barışçı, S.; Turkay, O.; Dimoglo, A. Review on greywater treatment and dye removal from aqueous solution by ferrate (VI). In Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environmental Remediation; ACS Symposium Series; ACS Publications: Washington, DC, USA, 2016; Volume 1238, pp. 349–409. [Google Scholar] [CrossRef]
- de Dicastillo, C.L.; Correa, M.G.; Martínez, F.B.; Streitt, C.; Galotto, M.J. Antimicrobial effect of titanium dioxide nanoparticles. In Antimicrobial Resistance: A One Health Perspective; BoD—Books on Demand: Norderstedt, Germany, 2020. [Google Scholar] [CrossRef] [Green Version]
- Albukhaty, S.; Al-Bayati, L.; Al-Karagoly, H.; Al-Musawi, S. Preparation and characterization of titanium dioxide nanoparticles and in vitro investigation of their cytotoxicity and antibacterial activity against Staphylococcus aureus and Escherichia coli. Anim. Biotechnol. 2022, 33, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Stankic, S.; Suman, S.; Haque, F.; Vidic, J. Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties. J. Nanobiotechnology 2016, 14, 1–20. [Google Scholar] [CrossRef] [Green Version]
- American Public Health Association. 9222 Membrane filter technique for members of the coliform group. In Standard Methods For the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2018; Volume 27. [Google Scholar] [CrossRef]
- Khan, M.A.; Akhtar, M.S.; Yang, O.-B. Synthesis, characterization and application of sol–gel derived mesoporous TiO2 nanoparticles for dye-sensitized solar cells. Sol. Energy 2010, 84, 2195–2201. [Google Scholar] [CrossRef]
- Lin, C.; Ritter, J. Effect of synthesis pH on the structure of carbon xerogels. Carbon 1997, 35, 1271–1278. [Google Scholar] [CrossRef]
- Fonseca-Correa, R.A.; Giraldo, L.; Moreno-Piraján, J.C. Dataset of xerogel synthesis in basic medium at different resorcinol/catalyst ratios. Data Brief 2018, 17, 1056–1061. [Google Scholar] [CrossRef]
- Singh, S.; Bhatnagar, A.; Dixit, V.; Shukla, V.; Shaz, M.; Sinha, A.; Srivastava, O.; Sekkar, V. Synthesis, characterization and hydrogen storage characteristics of ambient pressure dried carbon aerogel. Int. J. Hydrog. Energy 2016, 41, 3561–3570. [Google Scholar] [CrossRef]
50 mg L−1 | 100 mg L−1 | 150 mg L−1 | 200 mg L−1 | |
---|---|---|---|---|
qexp | 113 | 217 | 220 | 221 |
Pseudo first order | ||||
qt mg g−1 | 112 | 211 | 216 | 217 |
k1 min−1 | 0.104 | 0.119 | 0.114 | 0.177 |
R2 | 0.963 | 0.959 | 0.947 | 0.975 |
Pseudo second order | ||||
qt mg g−1 | 120 | 225 | 230 | 229 |
k2 (10−3) g mg−1 min−1 | 1.40 | 0.875 | 0.839 | 1.43 |
R2 | 0.993 | 0.993 | 0.990 | 0.999 |
Elovich | ||||
R2 | 0.976 | 0.977 | 0.979 | 0.979 |
Isotherm Model | Parameters | |
---|---|---|
Experimental | qe (mg g−1) | 218 |
Langmuir | qL (mg g−1) | 255 |
KL (L mg−1) | 0.087 | |
RL | 0.103 | |
R2 | 0.951 | |
Freundlich | KF mg g−1 (L mg−1)1/n | 60.5 |
nF | 3.35 | |
R2 | 0.861 | |
Sips | qs (mg g−1) | 217 |
Ks (L mg−1) | 0.007 | |
ns | 2.28 | |
R2 | 0.992 |
Material | Procedure | Inorganic Content | Surface Area m2 g−1 | Band gap (eV) | Pollutant | Removal Efficiency | Ref. |
---|---|---|---|---|---|---|---|
Magnet photocatalyst based on Carbon Xerogels/TiO2 | Photoinactivation under UV irradiation | Fe3O4/SiO2/N-CXTi = 70% Fe3O4/N-CXTi = 67% | Fe3O4/SiO2/N-CXTi = 388 Fe3O4/N-CXTi = 212 | Fe3O4/SiO2/N-CXTi = 3.22 Fe3O4/SiO2/N-CXTi = 3.10 | Acetaminophen | Fe3O4/SiO2/N-CXTi = 98% Fe3O4/SiO2/N-CXTi = 85% | [35] |
Carbon/TiO2 gels | Adsorption–Photodegradation under UV–Vis irradiation | 10% | 588 | 2.97 | Methylene blue, microbes | 74% | [17] |
Carbon Xerogel/Ti | Simultaneous adsorption–photodegradation | 38% | 650 | 2.68 | Acetaminophen | 96% | [36] |
Carbon Xerogel/TiO2 composite | Adsorption–photodegradation | 33% | 401 | 2.60 | Orange G | 70% | [37] |
TiO2/Carbon Aerogel composite | Photoinactivation under UV irradiation | 85% | 124 | - | Dimethyl phthalate (DMP) | 83% | [38] |
Carbon Xerogel/Titania | Adsorption–photodegradation | 30% | 384 | 2.24 | Methylene blue, Indicator microorganisms | 99% | This work |
Total Coliform | Faecal Coliform | E. coli | |
---|---|---|---|
Control | 210 | 180 | 176 |
Post Treatment with CXTi | <1 | <1 | <1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safri, A.; Fletcher, A.J.; Safri, R.; Rasheed, H. Integrated Adsorption–Photodegradation of Organic Pollutants by Carbon Xerogel/Titania Composites. Molecules 2022, 27, 8483. https://doi.org/10.3390/molecules27238483
Safri A, Fletcher AJ, Safri R, Rasheed H. Integrated Adsorption–Photodegradation of Organic Pollutants by Carbon Xerogel/Titania Composites. Molecules. 2022; 27(23):8483. https://doi.org/10.3390/molecules27238483
Chicago/Turabian StyleSafri, Anam, Ashleigh Jane Fletcher, Ramsha Safri, and Hifza Rasheed. 2022. "Integrated Adsorption–Photodegradation of Organic Pollutants by Carbon Xerogel/Titania Composites" Molecules 27, no. 23: 8483. https://doi.org/10.3390/molecules27238483
APA StyleSafri, A., Fletcher, A. J., Safri, R., & Rasheed, H. (2022). Integrated Adsorption–Photodegradation of Organic Pollutants by Carbon Xerogel/Titania Composites. Molecules, 27(23), 8483. https://doi.org/10.3390/molecules27238483