Natural Deep Eutectic Solvent-Assisted Extraction, Structural Characterization, and Immunomodulatory Activity of Polysaccharides from Paecilomyces hepiali
Abstract
:1. Introduction
2. Results
2.1. Screening of DESs System for PHPS Extraction
2.1.1. The Optimal DESs System
2.1.2. Screening of Optimal Molar Ratio and Water Content
2.2. Single Factor Evaluation
2.2.1. Optimal Extraction Time
2.2.2. Optimal Liquid–Solid Ratio
2.2.3. Optimal Extraction Temperature
2.3. Optimization by RSM
2.3.1. BBD Analysis
2.3.2. Interactive Effects on PHPS-D Yield
2.4. Validation
2.5. Physicochemical Properties of PHPSs
2.5.1. Yield and Chemical Composition
2.5.2. Molecular Weights of PHPS
2.5.3. Monosaccharide Compositions of PHPS
2.5.4. FT-IR Analysis
2.5.5. AFM of Two Prepared Polysaccharides
2.6. SEM of Raw Material by Different Treatments
2.7. Immunomodulatory Activity of PHPS on RAW 264.7 Cells
2.7.1. Cell Viability
2.7.2. Pinocytotic Activity
2.7.3. Production of NO, IL-6, TNF-α, and IL-1β Cytokines
2.7.4. RT-qPCR Analysis
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of DESs
3.3. Extraction of PHPS by DESs or Traditional Methods
3.4. Selection of Molar Ratio and Water Content in DESs
3.5. Chemical Composition of PHPS
3.6. Single Factor Design
3.7. Optimization of Extraction Process
3.8. Physicochemical Properties
3.8.1. Molecular Weight Determination
3.8.2. Monosaccharide Composition
3.8.3. FT-IR Analysis
3.8.4. Conformation by AFM
3.9. Microstructure of SEM
3.10. Immunomodulatory Activity
3.10.1. Cell Viability and Cytotoxicity of RAW264.7
3.10.2. Pinocytic Assay
3.10.3. Cytokine Production of PHPS
3.10.4. RT-PCR Analysis
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Dan, A.; Hu, Y.; Chen, R.; Lin, X.Y.; Tian, Y.Q.; Wang, S.Y. Advances in research on chemical constituents and pharmacological effects of Paecilomyces hepiali. Food Sci. Hum. Well. 2021, 10, 401–407. [Google Scholar] [CrossRef]
- Wu, Z.W.; Lu, J.W.; Wang, X.Q.; Hu, B.; Ye, H.; Fan, J.L.; Abid, M.; Zeng, X.X. Optimization for production of exopolysaccharides with antitumor activity in vitro from Paecilomyces Hepiali. Carbohyd. Polym. 2014, 99, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Malucka, L.U.; Harvanova, J.; Pavlik, M.; Rajtar, M.; Jarosciak, L. Free-radical scavenging activities of cultured mycelia of Paecilomyces hepiali (Ascomycetes) extracts and structural characterization of bioactive components by nuclear magnetic resonance spectroscopy. Int. J. Med. Mushrooms 2016, 8, 895–903. [Google Scholar] [CrossRef]
- Qiao, J.; Shuai, Y.Y.; Zeng, X.; Xu, D.Y.; Rao, S.Q.; Zeng, H.W.; Li, F. Comparison of chemical compositions, bioactive ingredients, and in vitro antitumor activity of four products of Cordyceps (Ascpmyces) strains from China. Int. J. Med. Mushrooms 2019, 21, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Jung, S.J.; Ha, K.C.; Sin, H.S.; Jang, S.H.; Chae, H.J.; Chae, S.W. Anti-inflammatory effects of Cordyceps mycelium (Paecilomyces hepiali, CBG-CS-2) in raw264.7 murine macrophages. Orient. Pharm. Exp. Med. 2015, 15, 7–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.W.; Zhang, M.X.; Xie, M.H.; Dai, Z.Q.; Wang, X.Q.; Hu, B.; Ye, H.; Zeng, X.X. Extraction, characterization and antioxidant activity of mycelial polysaccharides from Paecilomyces hepiali HN1. Carbohyd. Polym. 2016, 137, 541–548. [Google Scholar] [CrossRef]
- Hu, W.J.; Wang, J.; Guo, W.Y.; Liu, Y.G.; Guo, Z.; Miao, Y.G.; Wang, D. Studies on characteristics and anti-diabetic and -nephritic effects of polysaccharides isolated from Paecilomyces hepiali fermentation mycelium in db/db mice. Carbohyd. Polym. 2020, 232, 115766. [Google Scholar] [CrossRef]
- Wang, J.; Teng, L.R.; Liu, Y.G.; Hu, W.J.; Chen, W.Q.; Hu, X.; Wang, Y.W.; Wang, D. Studies on the antidiabetic and antinephritic activities of Paecilomyces hepiali water extract in diet-streptozotocin-induced diabetic sprague dawley rats. J. Diabetes Res. 2016, 1, 1–10. [Google Scholar]
- Shang, X.C.; Chu, D.D.; Zhang, J.X.; Zheng, Y.F.; Li, Y.Q. Microwave-assisted extraction, partial purification and biological activity in vitro of polysaccharides from bladder-wrack (Fucus vesiculosus) by using deep eutectic solvents. Sep. Purif. Technol. 2021, 259, 118169. [Google Scholar] [CrossRef]
- Yu, S.J.; Zhang, Y.; Li, C.R.; Zhang, Q.; Ma, Z.Y.; Miao, Y.G.; Fang, M.Z. Optimization of ultrasonic extraction of mycelial polysaccharides from Paecilomyces hepiali using response surface methodology and its antioxidant activity. Afr. J. Biotechnol. 2011, 10, 17241–17250. [Google Scholar]
- Chen, H.; Shi, X.Q.; Zhang, L.; Yao, L.; Cen, L.Y.; Li, L.; Lv, Y.Y.; Wei, C.Y. Ultrasonic extraction process of polysaccharides from Dendrobium nobile Lindl.: Optimization, physicochemical properties and anti-inflammatory activity. Foods 2022, 11, 2957. [Google Scholar] [CrossRef] [PubMed]
- Zdanowicz, M.; Wilpiszewska, K.; Spychaj, T. Deep eutectic solvents for polysaccharides processing. A review. Carbohyd. Polym. 2018, 200, 361–380. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.A.R.; Pinho, S.P.; Coutinho, J.A.P. Insights into the nature of eutectic and deep eutectic mixtures. J. Solut. Chem. 2019, 48, 962–982. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.K.; Tan, J.Q.; Li, Q.; Tang, J.T.; Cai, X. Optimization ultrasound-assisted deep eutectic solvent extraction of anthocyanins from raspberry using response surface methodology coupled with genetic algorithm. Foods 2020, 9, 1409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.J.; Wang, M.S. Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposite Thunb. Int. J. Biol. Macromol. 2017, 95, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; He, L.; Li, Q.; Cheng, J.W.; Wang, Y.B.; Zhao, J.C.; Yuan, S.F.; Chen, Y.J.; Shi, R. Optimization of ultrasonic-assisted deep eutectic solvent for the extraction of polysaccharides from Indocalamus tessellatus leaves and their biological studies. Sustain. Chem. Pharm. 2022, 30, 100855. [Google Scholar] [CrossRef]
- Guo, H.; Fu, M.X.; Zhao, Y.X.; Li, H.; Li, H.B.; Wu, D.T.; Gan, R.Y. The chemical, structural, and biological properties of crude polysaccharides from sweet tea (Lithocarpus litseifolius (Hance) Chun) based on different extraction technologies. Foods 2021, 10, 1779. [Google Scholar] [CrossRef]
- Shafie, M.H.; Yusof, R.; Gan, C.Y. Deep eutectic solvents (DES) mediated extraction of pectin from Averrhoa bilimbi: Optimization and characterization studies. Carbohyd. Polym. 2019, 216, 303–311. [Google Scholar] [CrossRef]
- Wu, D.T.; Feng, K.L.; Huang, L.; Gan, R.Y.; Hu, Y.C.; Zhou, L. Deep eutectic solvent-assisted extraction, partially structural characterization, and bioactivities of acidic polysaccharides from lotus leaves. Foods 2021, 10, 2330. [Google Scholar] [CrossRef]
- Bednar, B.; Hennessey, J.P. Molecular size analysis of capsular polysaccharide preparations from Streptococcus pneumoniae. Carbohyd. Res. 1993, 243, 115–130. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Li, S.; Wang, X.H.; Zhang, L.; Cheung, P.C.K. Advances in lentinan: Isolation, structure, chain conformation and bioactivities. Food Hyd. 2011, 25, 196–206. [Google Scholar] [CrossRef]
- Xu, S.; Xu, X.; Zhang, L. Branching structure and chain conformation of water-soluble glucan extracted from Auricularia auricula-judae. J. Agri. Food Chem. 2002, 60, 3498–3506. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Harvanova, J.; Uhrinova, A.; Salayova, A.; Pavlik, M.; Rajtar, M. Antioxidant activity and infrared spectroscopy analysis of alcoholic extracts obtained from Paecilomyces hepiali (Ascomyces). Int. J. Med. Mushrooms 2018, 20, 595–605. [Google Scholar]
- Baca-Bocanegra, B.; Martínez-Lapuente, L.; Nogales-Bueno, J.; Hern´andez-Hierro, J.M.; Ferrer-Gallego, R. Feasibility study on the use of ATR-FTIR spectroscopy as a tool for the estimation of wine polysaccharides. Carbohyd. Polym. 2022, 287, 119365. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.Q.; Zhang, L.M. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohyd. Polym. 2009, 76, 349–361. [Google Scholar] [CrossRef]
- Zhang, F.R.; Zheng, J.; Li, Z.Y.; Cai, Z.X.; Wang, F.Q.; Yang, D. Purification, characterization, and self-assembly of the polysaccharide from Allium schoenoprasum. Foods 2021, 10, 1352. [Google Scholar] [CrossRef] [PubMed]
- Medronho, B.; Lindman, B. Competing forces during cellulose dissolution: From solvents to mechanism. Curr. Opin. Colloid Interface Sci. 2014, 19, 32–40. [Google Scholar] [CrossRef]
- Li, H.; Li, J.H.; Shi, H.; Li, C.L.; Huang, W.J.; Zhang, M.; Luo, Y.Y.; Song, L.Y.; Yu, R.M.; Zhu, J.H. Structural characterization and immunoregulatory activity of a novel acidic polysaccharide from Scapharca subcrenata. Int. J. Biol. Macromol. 2022, 210, 439–454. [Google Scholar] [CrossRef]
- Wu, F.F.; Zhou, C.H.; Zhou, D.D.; Ou, S.Y.; Huang, H.H. Structural characterization of a novel polysaccharide fraction from Hericium erinaceus and its signaling pathways involved in macrophage immunomodulatory activity. J. Funct. Foods 2017, 37, 574–585. [Google Scholar] [CrossRef]
- Guan, X.F.; Wang, Q.; Lin, B.; Sun, M.L.; Zheng, Q.; Huang, J.Q.; Lai, Q.T. Structural characterization of a soluble polysaccharide SSPS1 from soy whey and its immunoregulatory activity in macrophages. Int. J. Biol. Macromol. 2022, 27, 131–141. [Google Scholar] [CrossRef]
- Wei, C.Y.; Li, W.Q.; Shao, S.S.; He, L.; Cheng, J.W.; Han, S.F.; Liu, Y.; Shao, S.S. Structure and chain conformation of a neutral intracellular heteropolysaccharide from mycelium of Paecilomyces cicadae. Carbohyd. Polym. 2016, 136, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.B.; He, P.F.; He, L.; Huang, Q.R.; Cheng, J.W.; Li, W.Q.; Wei, C.Y. Structural elucidation, antioxidant and immunomodulatory activities of a novel heteropolysaccharide from cultured Paecilomyces cicadae (Miquel.) Samson. Carbohyd. Polym. 2019, 216, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Luo, Y.X.; Sang, Y.X.; Kan, J.Q. Isolation, purification, structural characterization, and hypoglycemic activity assessment of polysaccharides from Hovenia dulcis (Guai Zao). Int. J. Biol. Macromol. 2022, 208, 1106–1115. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.; Hamilton, J.; Rebers, P.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Btter, T.; Muir, H.M. A modified uronic acid carbazole reaction. Anal. Biochem. 1962, 4, 330–334. [Google Scholar] [CrossRef]
- Lv, Y.; Yang, X.B.; Zhao, Y.; Ruan, Y.; Yang, Y.; Wang, Z.Z. Separation and quantification of component monosaccharides of the tea polysaccharides from Gynostemma pentaphyllum by HPLC with indirect UV detection. Food Chem. 2009, 12, 742–746. [Google Scholar] [CrossRef]
- Weng, S.W.; Chou, C.J.; Lin, L.C.; Wsai, W.J.; Kuo, Y.C. Immunomodulatory functions of extracts from the Chinese medicinal fungus Cordyceps cicadae. J. Ethnopharmacol. 2002, 83, 79–85. [Google Scholar] [CrossRef]
- Lee, J.S.; Kwon, J.S.; Yun, J.S.; Pahk, J.W.; Shin, W.C.; Lee, S.Y.; Hong, E.K. Structural characterization of immunostimulating polysaccharide from cultured mycelia of Cordyceps militaris. Carbohyd. Polym. 2010, 80, 1011–1017. [Google Scholar] [CrossRef]
Run | Variable Levels | Extraction Yield of PHPS-D/% | |||
---|---|---|---|---|---|
X1 (Liquid–Solid Ratio/mL/g) | X2 (Extraction Temperature/°C) | X3 (Extraction Time/h) | Experimental | Predicted | |
1 | 30 | 80 | 1.5 | 11.07 | 10.97 |
2 | 50 | 80 | 1.5 | 12.51 | 12.57 |
3 | 30 | 100 | 1.5 | 11.32 | 11.27 |
4 | 50 | 100 | 1.5 | 11.95 | 12.05 |
5 | 30 | 90 | 1.0 | 10.84 | 10.96 |
6 | 50 | 90 | 1.0 | 12.41 | 12.38 |
7 | 30 | 90 | 2.0 | 11.54 | 11.57 |
8 | 50 | 90 | 2.0 | 12.65 | 12.53 |
9 | 40 | 80 | 1.0 | 11.23 | 11.21 |
10 | 40 | 100 | 1.0 | 11.92 | 11.85 |
11 | 40 | 80 | 2.0 | 12.28 | 12.35 |
12 | 40 | 100 | 2.0 | 11.45 | 11.47 |
13 | 40 | 90 | 1.5 | 12.52 | 12.47 |
14 | 40 | 90 | 1.5 | 12.46 | 12.47 |
15 | 40 | 90 | 1.5 | 12.36 | 12.47 |
16 | 40 | 90 | 1.5 | 12.53 | 12.47 |
17 | 40 | 90 | 1.5 | 12.49 | 12.47 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 5.75 | 9 | 0.64 | 52.63 | <0.0001 ** |
X1 | 2.82 | 1 | 2.82 | 232.25 | <0.0001 ** |
X2 | 0.025 | 1 | 0.025 | 2.08 | 0.1920 |
X3 | 0.29 | 1 | 0.29 | 23.78 | 0.0018 ** |
X1X2 | 0.16 | 1 | 0.16 | 13.51 | 0.0079 ** |
X1X3 | 0.053 | 1 | 0.053 | 4.36 | 0.0753 |
X2X3 | 0.58 | 1 | 0.58 | 47.56 | 0.0002 ** |
X12 | 0.40 | 1 | 0.40 | 33.27 | 0.0007 ** |
X22 | 0.85 | 1 | 0.85 | 70.13 | <0.0001 ** |
X32 | 0.38 | 1 | 0.38 | 31.68 | 0.0008 ** |
Residual | 0.085 | 7 | 0.012 | ||
Lack of Fit | 0.066 | 3 | 0.022 | 4.73 | 0.0836 |
Pure Error | 0.019 | 4 | 4.670 × 10−3 | ||
Cor Total | 5.84 | 16 |
PHPS-D a | PHPS-W a | |
---|---|---|
Chemical compositions | ||
Extraction yield (%) | 12.78 ± 0.17 | 8.67 ± 0.21 |
Total sugars (%) | 80.92 ± 1.23 | 74.53 ± 2.36 |
Protein (%) | 4.49 ± 0.74 | 6.75 ± 0.97 |
Uronic acid (%) | 22.34 ± 1.38 | 5.28 ± 0.16 |
Molecular characteristics | ||
Mw × 104 (Da) b | 32.6 ± 2.4 | 4.37 ± 1.3 |
Rg (nm) c | 78.2 ± 3.6 | 20.1 ± 2.7 |
Monosaccharides components | ||
Mannose | 16.7 ± 0.5 | 14.2 ± 0.6 |
Ribose | 4.1 ± 0.9 | 7.8 ± 0.7 |
Glucuronic acid | 22.5 ± 0.4 | 4.9 ± 0.8 |
Glucose | 40.3 ± 0.5 | 30.1 ± 0.4 |
Galactose | 10.2 ± 0.2 | 20.6 ± 0.5 |
Arabinose | 6.2 ± 0.3 | 22.4 ± 0.7 |
NO. | HBA | HBD | Mole Ratio | Water Content | Abbreviation |
---|---|---|---|---|---|
DES-1 | choline chloride | 1,2-propylene glycol | 1:1 | 10% | Chcl-Pro |
DES-2 | choline chloride | malonic acid | 1:1 | 10% | Chcl-MA |
DES-3 | choline chloride | DL-malic acid | 1:1 | 10% | Chcl-MAA |
DES-4 | choline chloride | glycerol | 1:1 | 10% | Chcl-Gly |
DES-5 | choline chloride | D-sorbitol | 1:1 | 10% | Chcl-Sor |
DES-6 | choline chloride | citric acid | 1:1 | 10% | Chcl-CA |
DES-7 | choline chloride | succinic acid | 1:2 | 10% | Chcl-SA |
DES-8 | choline chloride | urea | 1:2 | 10% | Chcl-UR |
DES-9 | choline chloride | 1,4-butanediol | 1:1 | 10% | Chcl-Bu4 |
DES-10 | choline chloride | ethylene glycol | 1:1 | 10% | Chcl-EG |
DES-11 | choline chloride | 1,3-butanediol | 1:2 | 10% | Chcl-Bu3 |
DES-12 | betaine | 1,2-propylene glycol | 1:2 | 10% | Bet-PG |
DES-13 | betaine | 1,3-butanediol | 1:2 | 10% | Bet-Bu3 |
DES-14 | betaine | urea | 1:2 | 10% | Bet-UR |
DES-15 | betaine | malonic acid | 1:2 | 10% | Bet-MA |
Variable | Units | Coded Levels | |||
---|---|---|---|---|---|
Symbol | −1 | 0 | 1 | ||
Liquid–solid ratio | mL/g | X1 | 30 | 40 | 50 |
Extraction temperature | °C | X2 | 80 | 90 | 100 |
Extraction time | h | X3 | 1.0 | 1.5 | 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xu, F.; Cheng, J.; Wu, X.; Xu, J.; Li, C.; Li, W.; Xie, N.; Wang, Y.; He, L. Natural Deep Eutectic Solvent-Assisted Extraction, Structural Characterization, and Immunomodulatory Activity of Polysaccharides from Paecilomyces hepiali. Molecules 2022, 27, 8020. https://doi.org/10.3390/molecules27228020
Wang Y, Xu F, Cheng J, Wu X, Xu J, Li C, Li W, Xie N, Wang Y, He L. Natural Deep Eutectic Solvent-Assisted Extraction, Structural Characterization, and Immunomodulatory Activity of Polysaccharides from Paecilomyces hepiali. Molecules. 2022; 27(22):8020. https://doi.org/10.3390/molecules27228020
Chicago/Turabian StyleWang, Yanbin, Feijia Xu, Junwen Cheng, Xueqian Wu, Juan Xu, Chunru Li, Weiqi Li, Na Xie, Yuqin Wang, and Liang He. 2022. "Natural Deep Eutectic Solvent-Assisted Extraction, Structural Characterization, and Immunomodulatory Activity of Polysaccharides from Paecilomyces hepiali" Molecules 27, no. 22: 8020. https://doi.org/10.3390/molecules27228020
APA StyleWang, Y., Xu, F., Cheng, J., Wu, X., Xu, J., Li, C., Li, W., Xie, N., Wang, Y., & He, L. (2022). Natural Deep Eutectic Solvent-Assisted Extraction, Structural Characterization, and Immunomodulatory Activity of Polysaccharides from Paecilomyces hepiali. Molecules, 27(22), 8020. https://doi.org/10.3390/molecules27228020