Bioactive Compounds, Pharmacological Actions, and Pharmacokinetics of Genus Acacia
Abstract
:1. Introduction
2. Chemical Components Isolated from Acacia
2.1. Alkaloids and Amines
2.2. Cyanogenic Glycosides
2.3. Hydrocarbons
2.4. Fatty Acids
2.5. Gums
2.6. Non-Protein Amino Acids
2.7. Terpenoids
2.8. Flavonoids
2.9. Tannins
3. Pharmacological Activities
3.1. Anti-Hypertensive and Anti-Spasmodic Activity
3.2. Anticancer and Anti-Mutagenic Properties
3.3. Analgesic and Anti-Pyretic Activity
3.4. Anti-Inflammatory
3.5. Anti-Microbial Activity
3.6. Antioxidant Activity
3.7. Anti-Filarial and Antidiabetic Activity
3.8. Antiviral and Nematicidal Activity
4. Pharmaceutical Preparation That Have Acacia its Main Molecules
4.1. Auromere’s Ayurvedic Formula, Name of Brand: Auromere Ayurvedic, Item: 327045-172138
4.2. Glyconutrient Powder, Name of Brand: Now Foods, Item: 355483-186295
4.3. Powder of Organic Acacia Fiber, Name of Brand: Now Foods, Item: 415 723-206319
5. Herb–Drug Interaction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maslin, B.; Orchard, A.; West, J. Nomenclatural and Classification History of Acacia (Leguminosae: Mimosoideae), and the Implications of Generic Subdivision; Department of Conservation & Land Management: Kensington, WA, USA, 2003. [Google Scholar]
- Sanchez, C.; Nigen, M.; Tamayo, V.M.; Doco, T.; Williams, P.; Amine, C.; Renard, D. Acacia gum: History of the future. Food Hydrocoll. 2018, 78, 140–160. [Google Scholar] [CrossRef]
- Bhargava, A.; Srivastava, A.; Kumbhare, V. Antifungal activity of polyphenolic complex of Acacia nilotica bark. Indian For. 1998, 124, 292–298. [Google Scholar]
- Kosalec, I.; Pepeljnjak, S.; Kuštrak, D. Antifungal activity of fluid extract and essential oil from anise fruits (Pimpinella anisum L., Apiaceae). Acta Pharm. 2005, 55, 377–385. [Google Scholar]
- Sadiq, M.B.; Tharaphan, P.; Chotivanich, K.; Tarning, J.; Anal, A.K. In vitro antioxidant and antimalarial activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del. BMC Complement. Alter. Med. 2017, 17, 372. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Farid, I.; Sheded, M.; Mohamed, E. Metabolomic profiling and antioxidant activity of some Acacia species. Saudi J. Biol. Sci. 2014, 21, 400–408. [Google Scholar] [CrossRef] [Green Version]
- Alajmi, M.F.; Alam, P.; Alqasoumi, S.I.; Siddiqui, N.A.; Basudan, O.A.; Hussain, A.; Husain, F.M.; Khan, A.A. Comparative anticancer and antimicrobial activity of aerial parts of Acacia salicina, Acacia laeta, Acacia hamulosa and Acacia tortilis grown in Saudi Arabia. Saudi Pharm. J. 2017, 25, 1248–1252. [Google Scholar] [CrossRef] [PubMed]
- Seigler, D.S. Phytochemistry of Acacia—sensu lato. Biochem. Syst. Ecol. 2003, 31, 845–873. [Google Scholar] [CrossRef]
- Gilani, A.; Shaheen, F.; Zaman, M.; Janbaz, K.; Shah, B.; Akhtar, M. Studies on antihypertensive and antispasmodic activities of methanol extract of Acacia nilotica pods. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Product Deriva. 1999, 13, 665–669. [Google Scholar] [CrossRef]
- Das, N.; Chatterjee, P. Evaluation of Antimicrobial Potentiality of 50% Aqueous Ethanoloic Leaf Extract of Clitoria ternatea L. Asian J. Pharm. Clin. Research. Innovare Acad. 2014, 7 (Suppl. S1), 80–82. [Google Scholar]
- Abid, F.; Saleem, M.; Leghari, T.; Rafi, I.; Maqbool, T.; Fatima, F.; Arshad, A.M.; Khurshid, S.; Naz, S.; Hadi, F.; et al. Evaluation of in vitro anticancer potential of pharmacological ethanolic plant extracts Acacia modesta and Opuntia monocantha against liver cancer cells. Braz. J. Biol. 2022, 84, e252526. [Google Scholar] [CrossRef] [PubMed]
- Afsar, T.; Khan, M.R.; Razak, S.; Ullah, S.; Mirza, B. Antipyretic, anti-inflammatory and analgesic activity of Acacia hydaspica R. Parker and its phytochemical analysis. BMC Complement. Altern. Med. 2015, 15, 136. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.-H.; Tung, Y.-T.; Chien, S.-C.; Wang, S.-Y.; Kuo, Y.-H.; Shyur, L.-F.; Chang, S.-T. Effect of Phytocompounds from the Heartwood of Acacia confusa on Inflammatory Mediator Production. J. Agric. Food Chem. 2008, 56, 1567–1573. [Google Scholar] [CrossRef]
- Ziani, B.E.; Carocho, M.; Abreu, R.M.; Bachari, K.; Alves, M.J.; Calhelha, R.C.; Talhi, O.; Barros, L.; Ferreira, I.C. Phenolic profiling, biological activities and in silico studies of Acacia tortilis (Forssk.) Hayne ssp. raddiana extracts. Food Biosci. 2020, 36, 100616. [Google Scholar] [CrossRef]
- Mutai, C.; Rukunga, G.; Vagias, C.; Roussis, V. In vivo screening of antimalarial activity of Acacia mellifera (Benth)(Leguminosae) on Plasmodium berghei in mice. Afr. J. Tradit. Complement. Alter. Med. 2008, 5, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Amoussa, A.M.O.; Lagnika, L.; Bourjot, M.; Vonthron-Senecheau, C.; Sanni, A. Triterpenoids from Acacia ataxacantha DC: Antimicrobial and antioxidant activities. BMC Complement. Altern. Med. 2016, 16, 284. [Google Scholar] [CrossRef] [Green Version]
- Afsar, T.; Razak, S.; Almajwal, A.; Khan, M.R. Acacia hydaspica R. Parker ameliorates cisplatin induced oxidative stress, DNA damage and morphological alterations in rat pulmonary tissue. Complement. Altern. Med. 2018, 18, 49. [Google Scholar] [CrossRef] [Green Version]
- Badr, J.M.; Shaala, L.A.; Youssef, D.T. Loranthin: A new polyhydroxylated flavanocoumarin from Plicosepalus acacia with significant free radical scavenging and antimicrobial activity. Phytochem. Lett. 2013, 6, 113–117. [Google Scholar] [CrossRef]
- Sánchez, E.; Heredia, N.; Mdel, R.C.; García, S. Isolation, characterization and mode of antimicrobial action against Vibrio cholerae of methyl gallate isolated from Acacia farnesiana. J. Appl. Microbiol. 2013, 115, 1307–1316. [Google Scholar] [CrossRef]
- Deboshree, B.; Roymon, M. LC/TOF/ESI/MS based detection of bioactive compounds present in leaf and bark extract of Acacia arabica. Recent Res. Sci. Technol. 2013, 5, 37–40. [Google Scholar]
- Ghribia, L.; Ghouilaa, H.; Omrib, A.; Besbesb, M.; Janneta, H.B. Antioxidant and anti–acetylcholinesterase activities of extracts and secondary metabolites from Acacia cyanophylla. Asian Pac. J. Trop. Biomed. 2014, 4, S417–S423. [Google Scholar] [CrossRef] [Green Version]
- Prayogo, Y.H.; Syafii, W.; Sari, R.K.; Batubara, I. Pharmacological Activity and Phytochemical Profile of Acacia Heartwood Extracts. Sci. Pharm. 2021, 89, 37. [Google Scholar] [CrossRef]
- Cavazos, P.; Gonzalez, D.; Lanorio, J.; Ynalvez, R. Secondary metabolites, antibacterial and antioxidant properties of the leaf extracts of Acacia rigidula benth. and Acacia berlandieri benth. SN Appl. Sci. 2021, 3, 522. [Google Scholar] [CrossRef]
- Karoune, S.; Falleh, H.; Kechebar, M.S.A.; Halis, Y.; Mkadmini, K.; Belhamra, M.; Rahmoune, C.; Ksouri, R. Evaluation of antioxidant activities of the edible and medicinal Acacia albida organs related to phenolic compounds. Nat. Product Res. 2015, 29, 452–454. [Google Scholar] [CrossRef] [PubMed]
- Paula, V.; Pedro, S.I.; Campos, M.G.; Delgado, T.; Estevinho, L.M.; Anjos, O. Special Bioactivities of Phenolics from Acacia dealbata L. with Potential for Dementia, Diabetes and Antimicrobial Treatments. Appl. Sci. 2022, 12, 1022. [Google Scholar] [CrossRef]
- Gedara, S.R.; Galala, A.A. New cytotoxic spirostane saponin and biflavonoid glycoside from the leaves of Acacia saligna (Labill.) H.L. Wendl. Nat. Prod. Res. 2014, 28, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Nyila, M.A.; Leonard, C.M.; Hussein, A.A.; Lall, N. Activity of South African medicinal plants against Listeria monocytogenes biofilms, and isolation of active compounds from Acacia karroo. South Afr. J. Botany 2012, 78, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, T.; Sinhababu, S.; Sukul, N. Antifilarial Effect of a Plant Acacia auriculiformis on Canine Dirofilariasis. Trop. Med. 1995, 37, 35–37. [Google Scholar]
- Sharma, D.; Verma, S.; Kumar, S.; Singh, J.; Kumar, R.; Jangra, A.; Kumar, D. Hydroethanolic leaf extract of Acacia auriculiformis exhibited antidiabetic and antioxidant activities. Egypt. J. Basic Appl. Sci. 2022, 9, 372–382. [Google Scholar] [CrossRef]
- Feregrino-Perez, A.; Pacheco, I.; Hernández, M.; Munguia-Fragozo, P.; Mendoza-Diaz, S.; Ocampo-Velázquez, R.; Rico-García, E.; Guevara-Gonzalez, R. Antioxidant and antimutagenic activities of Acacia pennatula pods. J. Sci. Ind. Res. 2011, 70, 859–864. [Google Scholar]
- Gupta, A.; Chaphalkar, S.R. Cytotoxic and anti-viral activity of Acacia catechu on human peripheral blood mononuclear cells. Indones. J. Pharm. 2016, 27, 111. [Google Scholar] [CrossRef]
- Mattana, C.M.; Satorres, S.E.; Escobar, F.; Sabini, C.; Sabini, L.; Fusco, M.; Alcaráz, L.E. Antibacterial and cytotoxic activities of Acacia aroma extracts. Emir. J. Food Agric. 2012, 24, 308–313. [Google Scholar]
- Clement, B.A.; Goff, C.M.; Forbes, T.D.A. Toxic amines and alkaloids from Acacia berlandieri. Phytochemistry 1997, 46, 249–254. [Google Scholar] [CrossRef]
- Haridas, V.; Higuchi, M.; Jayatilake, G.S.; Bailey, D.; Mujoo, K.; Blake, M.E.; Arntzen, C.J.; Gutterman, J.U. Avicins: Triterpenoid saponins from Acacia victoriae (Bentham) induce apoptosis by mitochondrial perturbation. Proc. Natl. Acad. Sci. USA 2001, 98, 5821–5826. [Google Scholar] [CrossRef] [Green Version]
- Readel, K.; Seigler, D.; Hwang, K.; Keesy, J.; Seilheimer, S. Tannins from mimosoid legumes of Texas and Mexico. Econ. Botany 2001, 55, 212–222. [Google Scholar] [CrossRef]
- Singh, B.N.; Singh, B.; Singh, R.; Prakash, D.; Sarma, B.; Singh, H. Antioxidant and anti-quorum sensing activities of green pod of Acacia nilotica L. Food Chem. Toxicol. 2009, 47, 778–786. [Google Scholar] [CrossRef]
- Singh, R.; Singh, S.; Kumar, S.; Arora, S. Evaluation of antioxidant potential of ethyl acetate extract/fractions of Acacia auriculiformis A. Cunn. Food Chem. Toxicol. 2007, 45, 1216–1223. [Google Scholar] [CrossRef]
- Singh, R.; Singh, B.; Singh, S.; Kumar, N.; Kumar, S.; Arora, S. Umbelliferone–an antioxidant isolated from Acacia nilotica (L.) Willd. Ex. Del. Food Chem. 2010, 120, 825–830. [Google Scholar] [CrossRef]
- Evans, C.S.; Bell, E.A. Non-protein amino acids of Acacia species and their effect on the feeding of the acridids Anacridium melanorhodon and Locusta migratoria. Phytochemistry 1979, 18, 1807–1810. [Google Scholar] [CrossRef]
- Forbes, T.; Pemberton, I.; Smith, G.; Hensarling, C. Seasonal variation of two phenolic amines in Acacia berlandieri. J. Arid Environ. 1995, 30, 403–415. [Google Scholar] [CrossRef]
- Fitzgerald, J. Alkaloids of the Australian Leguminosae. III. The occurrence of phenylethylamine derivatives in Acacia species. Aust. J. Chem. 1964, 17, 160–162. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, J.; Sioumis, A. Alkaloids of the Australian Leguminosae. V. The occurrence of methylated tryptamines in Acacia maidenii F. Muell. Aust. J. Chem. 1965, 18, 433–434. [Google Scholar] [CrossRef] [Green Version]
- Ebinger, J.E.; Seigler, D.S.; Clarke, H.D. Taxonomic revision of South American species of the genus Acacia subgenus Acacia (Fabaceae: Mimosoideae). Syst. Botany 2000, 25, 588–617. [Google Scholar] [CrossRef]
- Seigler, D.; Hernandez, J.F. Comparative tanning ability of extracts from four North American species of Acacia. J. Am. Leather Chem. Assoc. 1989, 84, 315–328. [Google Scholar]
- Maslin, B.R.; Conn, E.E.; Dunn, J.E. Cyanogenic Australian Species of Acacia: A Preliminary Account of Their Toxicity Potential; Australian Centre for International Agricultural Research: Canberra, Australia, 1987; pp. 107–111. [Google Scholar]
- Seigler, D.; Maslin, B.; Conn, E. Cyanogenesis in the Leguminosae. Adv. Legume Biol. Monogr. Syst. Bot. Missouri Bot. Garden 1989, 29, 645–672. [Google Scholar]
- Bai, S.; Seasotiya, L.; Malik, A.; Bharti, P.; Dalal, S. GC-MS analysis of chloroform extract of Acacia nilotica L. leaves. J. Pharmacogn. Phytochem. 2014, 2, 79–82. [Google Scholar]
- Josm, K.; Tholia, M.; Sharma, T. Chemical examination of Acacia modesta. Planta Medica 1975, 27, 281–283. [Google Scholar] [CrossRef]
- Brown, A.; Cherikoff, V.; Roberts, D. Fatty acid composition of seeds from the Australian Acacia species. Lipids 1987, 22, 490–494. [Google Scholar] [CrossRef]
- Abdel-Raouf, A.M.; Mansour, S.R. Improving soil physical properties and its effect on Acacia tortilis seedlings growth under field conditions. Asian J. Plant Sci. 2003, 2, 861–868. [Google Scholar]
- Harrison, G.; Hawke, F. Studies of the Fats from Indigenous South African Plants. III:∆-9, 12-Hexadecadienoic Acid: Its Constitution and Occurrence in the Seed Fat and Seed Pod Fat of Acacia giraffae (Kameeldoorn). J. South Afr. Chem. Inst. 1952, 5, 23–30. [Google Scholar]
- Grindley, D. Investigation of the seed oils of some Sudan Mimosaceae. J. Soc. Chem. Ind. 1945, 64, 152. [Google Scholar]
- Earle, F.; Melvin, E.; Mason, L.; van Etten, C.; Wolff, I.; Jones, Q. Search for new industrial oils. I. Selected oils from 24 plant families. J. Am. Oil Chem. Soc. 1959, 36, 304–307. [Google Scholar] [CrossRef]
- Maslin, B.R.; Dunn, J.E.; Conn, E.E. Cyanogenesis in Australian species of Acacia. Phytochemistry 1988, 27, 421–428. [Google Scholar] [CrossRef]
- Vikrant, V.; Kumar, S.U.; Kumar, S.A.; Suparna, S.; Brijendra, S.; Prashant, G.; Rahul, S. A review on Acacia nilotica Linn. and its ethnobotany, phytochemical and pharmacological profile. Int. J. Pharm. Res. Dev. 2012, 4, 251. [Google Scholar]
- Seigler, D.S. Economic potential from Western Australian Acacia species: Secondary plant products. Conserv. Sci. West. Aust. 2002, 4, 109–116. [Google Scholar]
- Bemiller, J.N.; Whistler, R.L.; Barkalow, D.G.; Chen, C.-C. Aloe, chia, flaxseed, okra, psyllium seed, quince seed, and tamarind gums. In Industrial Gums; Elsevier: Amsterdam, The Netherlands, 1993; pp. 227–256. [Google Scholar]
- Evert, R.F. Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development; John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]
- Anderson, D.; Farquhar, J.; McNab, C. The gum exudates from some Acacia subspecies of the series Botryocephalae. Phytochemistry 1984, 23, 579–580. [Google Scholar] [CrossRef]
- Anderson, D.; Weiping, W. Acacia gum exudates from Somalia and Tanzania: The Acacia senegal complex. Biochem. Syst. Ecol. 1990, 18, 413–418. [Google Scholar] [CrossRef]
- Brockwell, J.; Searle, S.D.; Jeavons, A.C.; Waayers, M. Nitrogen fixation in acacias: An untapped resource for sustainable plantations, farm forestry and land reclamation; Monograph No. 115; Australian Centre for International Agricultural Research: Bruce, ACT, Australia, 2005; 132p. [Google Scholar]
- Guinko, S. Etude Surle role des Acacia dans Le development rural au Burkin Faso et au Niger. Ouagaduogu (Mimeo) 1991, 1, 6–10. [Google Scholar]
- Whibley, D.J.; Symon, D.E. Acacias of South Australia, Flora and Fauna of South Australia Handbooks Committee; The University of Michigan: St. Ann Arbor, MI, USA, 1992. [Google Scholar]
- Mohammadifar, M.A.; Musavi, S.M.; Kiumarsi, A.; Williams, P.A. Solution properties of targacanthin (water-soluble part of gum tragacanth exudate from Astragalus gossypinus). Int. J. Biol. Macromol. 2006, 38, 31–39. [Google Scholar] [CrossRef]
- Karamallah, K. Gum Arabic–Quality and Quantity Assured. In Gums and Stabilisers for the Food Industry 10; Elsevier: Amsterdam, The Netherlands, 2000; pp. 37–52. [Google Scholar]
- Al-Assaf, S.; Phillips, G.O.; Amar, V. Gum ghatti. Handbook of Hydrocolloids; Elsevier: Amsterdam, The Netherlands, 2021; pp. 653–672. [Google Scholar]
- Anderson, D.; McDougall, F. The composition of the proteinaceous gums exuded by Acacia gerrardii and Acacia goetzii subsp. goetzii. Food Hydrocoll. 1987, 1, 327–331. [Google Scholar] [CrossRef]
- Daoub, R.M.; Elmubarak, A.H.; Misran, M.; Hassan, E.A.; Osman, M.E. Characterization and functional properties of some natural Acacia gums. J. Saudi Soc. Agric. Sci. 2018, 17, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Younes, A. Physicochemical Studies on Some Acacia Gum Sand Their Fractions. Ph.D. Thesis, Chemistry Department, Faculty of Science, Sudan University, Khartoum, Sudan, 2009. [Google Scholar]
- Satti, A.A.E. Characterization and Toxicological Study of Acacia nilotica var. nilotica Gum from Sudan. Ph.D. Thesis, Sudan University of Science and Technology, Khartoum, Sudan, 2011. [Google Scholar]
- Ibrahim, O.B.; Osman, M.E.; Hassan, E.A. Characterization and simple fractionation of Acacia Senegal. J. Chem. Acta 2013, 2, 11–17. [Google Scholar]
- Anderson, D.M.W.; Bell, P.C. The composition and properties of gum exudates from subspecies of Acacia tortilis. Phytochemistry 1974, 13, 1875–1877. [Google Scholar] [CrossRef]
- Sharma, A.; Bhushette, P.R.; Annapure, U.S. Physicochemical and rheological properties of Acacia catechu exudate gum. Carbohydr. Polym. Technol. Appl. 2021, 2, 100127. [Google Scholar] [CrossRef]
- Krauss, G.-J.; Reinbothe, H. Die freien aminosäuren in samen von mimosaceae. Phytochemistry 1973, 12, 125–142. [Google Scholar] [CrossRef]
- Gmelin, R.; Kjaer, A.; Larsen, P.O. N-acetyl-l-djenkolic acid, a novel amino acid isolated from Acacia farnesiana willd. Phytochemistry 1962, 1, 233–236. [Google Scholar] [CrossRef]
- Evans, C.S.; Clardy, J.; Hughes, P.F.; Bell, E.A. 2-Amino-4-acetylaminobutyric acid, 2, 4-diaminobutyric acid and 2-amino-6N-oxalylureidopropionic acid (oxalylalbizziine) in seeds of Acacia angustissima. Phytochemistry 1985, 24, 2273–2275. [Google Scholar] [CrossRef]
- Murphy, D.J. A review of the classification of Acacia (Leguminosae, Mimosoideae). Muelleria 2008, 26, 10–26. [Google Scholar] [CrossRef]
- Gmelin, R. Mimosaceen-Aminosauren. 7. Isolierung von Willardiin (3-(1-uracyl)-L-alanin) aus den samen von Acacia millefolia, Acacia lemmoni und mimosa asperata, munksgaard INT publ LTD 35 norre Sogade, Po BOX 2148, DK-1016 copenhagen. Acta Chem. Scand. 1961, 15, 1188. [Google Scholar] [CrossRef]
- Saayman, H.; Roux, D. The origins of tannins and flavonoids in black-wattle barks and heartwoods, and their associatednon-tannin’components. Biochem. J. 1965, 97, 794. [Google Scholar] [CrossRef] [Green Version]
- Clark-Lewis, J.; Porter, L. Phytochemical survey of the heartwood flavonoids of Acacia species from arid zones of Australia. Aust. J. Chem. 1972, 25, 1943–1955. [Google Scholar] [CrossRef]
- Demole, E.; Enggist, P.; Stoll, M. Sur les constituants odorants de l’essence absolue de Cassie (Acacia farnesiana Willd.). Helvetica Chim. Acta 1969, 52, 24–32. [Google Scholar] [CrossRef]
- Oyen, L.; Dung, N.X. Plant Resources of South-East Asia no. 19: Essential-Oil Plants; Backhuys Publishers: Leiden, The Netherlands, 1999. [Google Scholar]
- Flath, R.A.; Mon, T.R.; Lorenz, G.; Whitten, C.J.; Mackley, J.W. Volatile components of Acacia sp. blossoms. J. Agric. Food Chem. 1983, 31, 1167–1170. [Google Scholar] [CrossRef]
- Guenther, E. The Essential Oils; D. Van Nostrand Company: New York, NY, USA, 1952; Volume 6. [Google Scholar]
- Joshi, K.; Bansal, R.; Sharma, T.; Murray, R.; Forbes, I.; Cameron, A.; Maltz, A. Two novel cassane diterpenoids from Acacia jacquemontii. Tetrahedron 1979, 35, 1449–1453. [Google Scholar] [CrossRef]
- Forster, P.G.; Ghisalberti, E.L.; Jefferies, P.R. Labdane diterpenes from an Acacia species. Phytochemistry 1985, 24, 2991–2993. [Google Scholar] [CrossRef]
- Anjaneyulu, A.; Bapuji, M.; Row, L.R.; Sree, A. Structure of acacigenin-B, a novel triterpene ester isolated from Acacia concinna. Phytochemistry 1979, 18, 463–466. [Google Scholar] [CrossRef]
- Mahato, S.B.; Pal, B.C.; Price, K.R. Structure of Acaciaside, a triterpenoid trisaccharide from Acacia auriculiformis. Phytochemistry 1989, 28, 207–210. [Google Scholar] [CrossRef]
- Eade, R.; McDonald, F.; Simes, J. Extractives of Australian timbers. XIV. Triterpene glycosides of Acacia myrtifolia. Aust. J. Chem. 1973, 26, 839–844. [Google Scholar] [CrossRef]
- Haridas, V.; Arntzen, C.J.; Gutterman, J.U. Avicins, a family of triterpenoid saponins from Acacia victoriae (Bentham), inhibit activation of nuclear factor-κB by inhibiting both its nuclear localization and ability to bind DNA. Proc. Natl. Acad. Sci. USA 2001, 98, 11557–11562. [Google Scholar] [CrossRef] [Green Version]
- Hanausek, M.; Ganesh, P.; Walaszek, Z.; Arntzen, C.J.; Slaga, T.J.; Gutterman, J.U. Avicins, a family of triterpenoid saponins from Acacia victoriae (Bentham), suppress H-ras mutations and aneuploidy in a murine skin carcinogenesis model. Proc. Natl. Acad. Sci. USA 2001, 98, 11551–11556. [Google Scholar] [CrossRef] [Green Version]
- Tindale, M.D.; Roux, D. A phytochemical survey of the Australian species of Acacia. Phytochemistry 1969, 8, 1713–1727. [Google Scholar] [CrossRef]
- Malan, E.; Roux, D.G. Flavonoids and tannins of Acacia species. Phytochemistry 1975, 14, 1835–1841. [Google Scholar] [CrossRef]
- Drewes, S.; Ilsley, A. Isomeric leucofisetinidins from Acacia mearnsii. Phytochemistry 1969, 8, 1039–1042. [Google Scholar] [CrossRef]
- Tindale, M.D.; Roux, D.G. Phytochemical studies on the heart woods and barks of African and Australian species of Acacia. Boissiera 1975, 24, 299–305. [Google Scholar]
- Hammer, R.H.; Cole, J.R. Phytochemical investigation of Acacia angustissima. J. Pharm. Sci. 1965, 54, 235–239. [Google Scholar] [CrossRef]
- El-Mousallamy, A.; Barakat, H.; Souleman, A.; Awadallah, S. Polyphenols of Acacia raddiana. Phytochemistry 1991, 30, 3767–3768. [Google Scholar] [CrossRef]
- Van Heerden, F.R.; Brandt, E.V.; Ferreira, D.; Roux, D.G. Metabolites from the purple heartwoods of the mimosoideae. Part 4. Acacia fasciculifera F. Muell ex. Benth: Fasciculiferin, fasciculiferol, and the synthesis of 7-aryl-and 7-flavanyl-peltogynoids. J. Chem. Soc. Perkin Transact. 1981, 1, 2483–2490. [Google Scholar]
- Noreljaleel, A.E.M.; Wilhelm, A. Analysis of Commercial Proanthocyanidins. Part 6: Sulfitation of Flavan-3-Ols Catechin and Epicatechin, and Procyanidin B-3. Molecules 2020, 25, 4980. [Google Scholar] [CrossRef]
- Malan, J.C.; Steynberg, P.J.; Steynberg, J.P.; Young, D.A.; Bezuidenhoudt, B.B.; Ferreira, D. Oligomeric flavanoids. part 14. Proguibourtinidins based on (-)-fisetinidol and (+)-epifisetinidol units. Tetrahedron 1990, 46, 2883–2890. [Google Scholar] [CrossRef]
- Mugedo, J.Z.; Waterman, P.G. Sources of tannin: Alternatives to wattle (Acacia mearnsii) among indigenous Kenyan species. Econ. Botany 1992, 46, 55–63. [Google Scholar] [CrossRef]
- Ferreira, D.; Preez, I.C.d.; Wijnmaalen, J.C.; Roux, D.G. Biflavanoid proguibourtinidin carboxylic acids and their biflavanoid homologues from Acacia luederitzii. Phytochemistry 1985, 24, 2415–2422. [Google Scholar] [CrossRef]
- Gandhi, P. A new proanthocyanidin from the stem bark of Acacia suma. Experientia 1977, 33, 1272. [Google Scholar] [CrossRef]
- Ferreira, D.; van Rensburg, H.; Malan, E.; Coetzee, J.; Nel, R.J. Recent advances in the chemistry of proanthocyanidins. In Phytochemicals in Human Health Protection, Nutrition, and Plant Defense; Springer: Berlin/Heidelberg, Germany, 1999; pp. 255–288. [Google Scholar]
- Malan, E. A (4β→ 5)-linked proteracacinidin dimer from the heartwood of Acacia caffra. Phytochemistry 1995, 40, 1519–1521. [Google Scholar] [CrossRef]
- Searle, S. The Rise and Demise of the Black Wattle Bark Industry in Australia; Division of Forestry and Forest Products, CSIRO: Clayton, Australia, 1991. [Google Scholar]
- Young, D.A.; Ferreira, D.; Roux, D.G. Stereochemistry and dynamic behavior of some synthetic angular profisetinidin tetraflavanoid derivatives. J. Polym. Sci. Part A Polym. Chem. 1986, 24, 835–849. [Google Scholar] [CrossRef]
- Imran, I.; Hussain, L.; Zia-Ul-Haq, M.; Janbaz, K.H.; Gilani, A.H.; de Feo, V. Gastrointestial and respiratory activities of Acacia leucophloea. J. Ethnopharmacol. 2011, 138, 676–682. [Google Scholar] [CrossRef]
- Rai, S.; Prasad, M.S.; Singh, K. Evaluation of the Antifungal Activity of the Potent Fraction of Hexane Extract Obtained from the bark of Acacia nilotica. IJSR 2014, 3, 730–738. [Google Scholar]
- Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod. 2003, 66, 1022–1037. [Google Scholar] [CrossRef]
- Meena, P.D.; Kaushik, P.; Shukla, S.; Soni, A.K.; Kumar, M.; Kumar, A. Anticancer and antimutagenic properties of Acacia nilotica (Linn.) on 7, 12-dimethylbenz (a) anthracene-induced skin papillomagenesis in Swiss albino mice. Asian Pac. J. Cancer Prev. 2006, 7, 627–632. [Google Scholar]
- Kannan, N.; Sakthivel, K.M.; Guruvayoorappan, C. Protective effect of Acacia nilotica (L.) against acetaminophen-induced hepatocellular damage in wistar rats. Adv. Pharmacol. Sci. 2013, 2013, 987692. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Shimoi, K.; Nakamura, Y.; Tomita, I.; Kada, T. Preliminary study on the desmutagenic and antimutagenic effect of some natural products. Current Sci. 1987, 56, 1266–1269. [Google Scholar]
- Monga, J.; Chauhan, C.S.; Sharma, M. Human breast adenocarcinoma cytotoxicity and modulation of 7, 12-dimethylbenz [a] anthracene-induced mammary carcinoma in Balb/c mice by Acacia catechu (Lf) Wild heartwood. Integr. Cancer Ther. 2013, 12, 347–362. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, B.; Aryal, B.; Bhattarai, B.R. A Comprehensive Review on the Chemical Composition and Pharmacological Activities of Acacia catechu (Lf) Willd. J. Chem. 2021, 2021, 2575598. [Google Scholar] [CrossRef]
- Sharma, M.; Gupta, A.; Mukherji, A. Invasive Acacia nilotica a problematic weed is a source of potent methyl gallate. Int. J. Sci. Res. 2014, 3, 1193–1195. [Google Scholar]
- Dafallah, A.A.; Al-Mustafa, Z. Investigation of the anti-inflammatory activity of Acacia nilotica and Hibiscus sabdariffa. Am. J. Chin. Med. 1996, 24, 263–269. [Google Scholar] [CrossRef]
- Alli, L.A.; Nafiu, M.O.; Adesokan, A.A.; Akanji, M.A.; Tijani, A.Y.; Salawu, Q. Antipyretic and analgesic activities of aqueous extract of Acacia nilotica root. Biokemistri 2014, 26, 55–62. [Google Scholar]
- Iqbal, A.; Din, S.U.; Bakht, J.; Khan, I.U. Evaluation of Acacia cyanophylla for their analgesic, anti-pyretic and anti-inflammatory potentials. Pak. J. Pharm. Sci. 2022, 35, 835–840. [Google Scholar]
- Eldeen, I.; van Heerden, F.; van Staden, J. In vitro biological activities of niloticane, a new bioactive cassane diterpene from the bark of Acacia nilotica subsp. kraussiana. J. Ethnopharmacol. 2010, 128, 555–560. [Google Scholar] [CrossRef]
- Chaubal, R.; Mujumdar, A.; Puranik, V.G.; Deshpande, V.; Deshpande, N. Isolation and X-ray study of an anti-inflammatory active androstene steroid from Acacia nilotica. Planta Medica 2003, 69, 287–288. [Google Scholar] [CrossRef]
- Sokeng, S.; Koubé, J.; Dongmo, F.; Sonnhaffouo, S.; Nkono, B.; Taïwé, G.; Cherrah, Y.; Kamtchouing, P. Acute and chronic anti-inflammatory effects of the aqueous extract of Acacia nilotica (L.) Del.(Fabaceae) pods. Acad. J. Med. Plants 2013, 1, 1–5. [Google Scholar]
- Latif, S.; Ismail, H.; Khan, M.R.; Rahim, A.A.; Mehboob, R.; Dilshad, E.; Sajid, M.; Haider, S.I.; Anwaar, S.; Majeed, M.N. Pharmacological evaluation of Acacia modesta bark for antipyretic, anti-inflammatory, analgesic, antidepressant and anticoagulant activities in Sprague Dawley rats. Pak. J. Pharm. Sci. 2020, 33, 1015–1023. [Google Scholar]
- Dashtdar, M.; Dashtdar, M.R.; Dashtdar, B.; Khan, S.A. In-vitro, anti-bacterial activities of aqueous extracts of Acacia catechu (LF) Willd, Castanea sativa, Ephedra sinica stapf and shilajita mumiyo against Gram positive and Gram negative bacteria. J. Pharmacopunct. 2013, 16, 15. [Google Scholar] [CrossRef]
- Patel, J.D.; Kumar, V.; Bhatt, S.A. Antimicrobial screening and phytochemical analysis of the resin part of Acacia catechu. Pharm. Biol. 2009, 47, 34–37. [Google Scholar] [CrossRef]
- Joshi, S.; Subedi, Y.P.; Paudel, S.K. Antibacterial and antifungal activity of heartwood of Acacia catechu of Nepal. J. Nepal Chem. Soc. 2011, 27, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Joshi, S.G.; Shettar, L.G.; Agnihotri, P.S.; Acharya, A.; Thakur, S.L. Solanum xanthocarpum and Acacia catechu Willd-an ayurvedic soothe: A randomized clinical trial. J. Ayurvedic Herb. Med. 2021, 7, 1–4. [Google Scholar] [CrossRef]
- Amoussa, A.M.O.; Sanni, A.; Lagnika, L. Chemical diversity and pharmacological properties of genus Acacia. Asian J. Appl. Sci. 2020, 13, 40–59. [Google Scholar]
- Abbas, G.; Saqib, M.; Akhtar, J.; Murtaza, G. Physiological and biochemical characterization of Acacia stenophylla and Acacia albida exposed to salinity under hydroponic conditions. Can. J. For. Res. 2017, 47, 1293–1301. [Google Scholar] [CrossRef] [Green Version]
- Kalaivani, T.; Mathew, L. Free radical scavenging activity from leaves of Acacia nilotica (L.) Wild. ex Delile, an Indian medicinal tree. Food Chem. Toxicol. 2010, 48, 298–305. [Google Scholar] [CrossRef]
- Aryal, B.; Niraula, P.; Khadayat, K.; Adhikari, B.; Chhetri, D.K.; Sapkota, B.K.; Bhattarai, B.R.; Aryal, N.; Parajuli, N. Antidiabetic, antimicrobial, and molecular profiling of selected medicinal plants. Evid.-Based Complement. Altern. Med. 2021, 2021, 5510099. [Google Scholar] [CrossRef]
- Patil, A.; Modak, M. Comparative evaluation of oxidative stress modulating and DNA protective activities of aqueous and methanolic extracts of Acacia catechu. Medicines 2017, 4, 65. [Google Scholar] [CrossRef]
- Anderson, D. Chemotaxonomic Aspects of the Chemistry of Acacia Gum Exudates. Kew Bull. 1978, 32, 529–536. [Google Scholar] [CrossRef]
- Ghosh, M.; Babu, S.; Sukul, N.; Mahato, S. Antifilarial effect of two triterpenoid saponins isolated from Acacia auriculiformis. Indian J. Exp. Biol. 1993, 31, 604–606. [Google Scholar]
- Behera, D.R.; Bhatnagar, S. In-vitro and in silico efficacy of isolated alkaloid compounds from Rauvolfia tetraphylla L. against bovine filarial parasite Setaria cervi: A drug discovery approach. J. Parasit. Dis. 2019, 43, 103–112. [Google Scholar] [CrossRef]
- Ghosh, N.; Babu, S.S.; Sukul, N.; Ito, A. Cestocidal activity of Acacia auriculiformis. J. Helminthol. 1996, 70, 171–172. [Google Scholar] [CrossRef]
- Okokon, J.; Jackson, O.; Opara, K.; Emmanuel, E. In vivo antimalarial activity of ethanolic leaf extract of Acacia auriculiformis. Int. J. Drug. Dev. Res. 2010, 2, 482–487. [Google Scholar]
- Singh, K.; Chandra, V.; Barthwal, K. Letter to the editor: Hypoglycaemic activity of Acacia arabica, Acacia benthami and Acacia modesta leguminous seed diets in normal young albino rats. Indian J. Physiol. Pharmacol. 1975, 19, 167. [Google Scholar]
- Khadayat, K.; Marasini, B.P.; Gautam, H.; Ghaju, S.; Parajuli, N. Evaluation of the alpha-amylase inhibitory activity of Nepalese medicinal plants used in the treatment of diabetes mellitus. Clin. Phytosci. 2020, 6, 1–8. [Google Scholar] [CrossRef]
- Kumar Bhateja, P.; Singh, R. Antidiabetic activity of Acacia tortilis (Forsk.) Hayne ssp. raddiana polysaccharide on streptozotocin-nicotinamide induced diabetic rats. BioMed. Res. Int. 2014, 2014, 572013. [Google Scholar] [CrossRef] [Green Version]
- Patil, R.N.; Patil, R.Y.; Ahirwar, B.; Ahirwar, D. Evaluation of antidiabetic and related actions of some Indian medicinal plants in diabetic rats. Asian Pac. J. Trop. Med. 2011, 4, 20–23. [Google Scholar] [CrossRef] [Green Version]
- Pandey, B.; Mohan, J. Inhibition of turnip mosaic virus by plant extracts. Indian Phytopathol. 1986, 39, 489–491. [Google Scholar]
- Sharma, W.; Trivedi, P. Nemeticial and nematostatic response of aqueous extract of certain plants of semi-arid niche. Curr. Nematol. 1995, 6, 43–53. [Google Scholar]
- Ahovègbé, L.Y.J.; Ogwang, P.E.; Peter, E.L.; Mtewa, A.G.; Kasali, F.M.; Tolo, C.U.; Gbenoudon, J.; Weisheit, A.; Pakoyo, K.F. Therapeutic potentials of Vachellia nilotica (L.) extracts in Hepatitis C infection: A review. Sci. Afr. 2021, 13, e00918. [Google Scholar] [CrossRef]
- Pradeep, A.; Happy, D.; Garg, G. Short-term clinical effects of commercially available gel containing Acacia arabica: A randomized controlled clinical trial. Aust. Dental J. 2010, 55, 65–69. [Google Scholar] [CrossRef]
- Rajvaidhya, S.; Nagori, B.; Singh, G.; Dubey, B.; Desai, P.; Jain, S. A review on Acacia arabica—An Indian medicinal plant. Int. J. Pharm. Sci. Res. 2012, 3, 1995. [Google Scholar]
- Rawi, M.H.; Abdullah, A.; Ismail, A.; Sarbini, S.R. Manipulation of Gut Microbiota Using Acacia gum Polysaccharide. ACS Omega 2021, 6, 17782–17797. [Google Scholar] [CrossRef]
- Rather, L.J.; Mohammad, F. Acacia nilotica (L.): A review of its traditional uses, phytochemistry, and pharmacology. Sustain. Chem. Pharm. 2015, 2, 12–30. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Zhou, Y.; Lian, X.; Yan, L.; Pan, T.; Jin, T.; Xie, H.; Liang, Z.; Qiu, W.; et al. NPCDR: Natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Res. 2022, 50, 1324–1333. [Google Scholar] [CrossRef]
- Izzo, A.A. Interactions between Herbs and Conventional Drugs: Overview of the Clinical Data. Med. Princ. Pract. 2012, 21, 404–428. [Google Scholar] [CrossRef]
- Eltayeb, I.B.; Awad, A.I.; Elderbi, M.A.; Shadad, S.A. Effect of gum arabic on the absorption of a single oral dose of amoxicillin in healthy Sudanese volunteers. J. Antimicrob. Chemother. 2004, 54, 577–578. [Google Scholar]
- Al-Mohizea, A.M.; Raish, M.; Ahad, A.; Al-Jenoobi, F.I.; Alam, M.A. Pharmacokinetic interaction of Acacia catechu with CYP1A substrate theophylline in rabbits. J. Tradit. Chin. Med. 2015, 35, 588–593. [Google Scholar] [CrossRef]
Acacia Species | Plant Part Used | Extraction Solvents | Phytochemicals | Pharmaceutical Action | Reference |
---|---|---|---|---|---|
Acacia nilotica | Pods/Leaves | Methanol, Ethanol | Phentolamine | Antihypertensive, Antispasmodic, Antimicrobial | [9,10] |
Acacia modesta | Whole plant | Ethanol | Steroids, Tannins, Phenols, Alkaloids, Saponins, Flavonoids, Anthraquinone | Anticancer | [11] |
Acacia hydaspica | Bark/twigs/leaves | Methanol | Polyphenolic | Antipyretic, Anti-inflammatory, Analgesic | [12] |
Acacia confusa | Heartwood | Ethanol | Flavonoids (i.e., 7,3′,4′-trihydroxy-3-methoxyflavone) Melanoxetin (3,7,8,3′,4′-pentahydroxyflavone) | Anti-inflammatory | [13] |
Acacia tortilis | Leaves | Ethanol | flavan-3-ols galloyl | Cytotoxic, Anti-inflammatory | [14] |
Acacia arabica | Leaves | Ethanol | Flavonoids, Terpenoids, Tannins | Abortifacient | [15] |
Acacia mellifera | Stem bark | Methanol | 3-(Z)-trans coumaroylbetulin, 3-(E)-cis coumaroylbetulin | Antimalarial | [15] |
Acacia ataxacantha | Stem bark | Hexane, Dichloromethane, Ethyl acetate Methanol | betulinic acid, betulinic acid-3-trans-caffeate | Antimicrobial, Antioxidant | [16] |
Acaciahydaspica | Aerial parts | Methanol | polyphenol | Antioxidant | [17] |
Acacia plicosepalus | Whole plant | Methanol | loranthin, quercetin | Antimicrobial | [18] |
Acacia farnesiana | Barks | Hexane, Chlorofom, Methanol | methyl gallate | Antimicrobial | [19] |
Acacia arabica | Leaves/bark | Methanol | quercetine 3-O- (4′-O-acetyl)-rhamnopyranoside | Antioxidant | [20] |
Acacia cyanophylla | Flowers | Ethyl acetate | naringenin | Antioxidant | [21] |
Acacia crassicarpa | Heartwood | Methanol | quercetin, 5,7,2′,5′-Tetrahydroxyflavone | Antioxidant | [22] |
Acacia rigidula | Leaves | Acetone, Methanol, Acetic acid | diterpenes, tannins | Antimicrobial, Antioxidant | [23] |
Acaciaalbida | Leaves/bark | Ethanol | polyphenol | Antioxidant | [24] |
Acacia dealbata | Flowers | Ethanol | acetylcholinesterase | Antioxidant | [25] |
Acacia saligna | Leaves | -- | myricetin-3-O-α-l-rhamnoside, quercetin-3-O-α-l-rhamnoside | Antioxidant, Cytotoxic | [26] |
Acacia karro | Leaves | Ethyl acetate, Chloroform | β-sitosterol, epigallocatechin | Antilisterial | [27] |
Acaciaauriculiformis | Whole plant/Leaves | Ethanol, Hydroethanolic Extract | saponins, 2,4-dinitrophenyl salicylic acid | Antifilarial, Antidiabetic | [28,29] |
Acacia pennatula | Pods | Methanol | 4-nitro-O-phenylenediamine | Antioxidant, Antimutagenic | [30] |
Acaciacatechu | Leaves | Aqueous, | Cytotoxic, Antiviral | [31] | |
Acacia aroma | Leaves | Ethanol | 5-diphenyl tetrazolium bromide | Antibacterial, Cytotoxic | [32] |
Acacia Species | Moisture Content (%) | Ash Content (%) | Nitrogen Content (%) | Total Protein (%) | pH | Molecular Weight ×106 | Viscosity cm3 g−1 | Sp. Rot | Acid Equivalent Weight | Glucouronic Acid% | References |
---|---|---|---|---|---|---|---|---|---|---|---|
Acacia nilotica var. tomentosa | 5.80 | 0.04 | 0.10 | 0.62 | 4.48 | - | - | +80.16 | - | - | [65] |
Acacia nilotica | - | - | - | 4.7 | - | - | 35 | +21 | - | 21 | [66] |
A. nilotica | - | 2.48 | 0.02 | - | - | 2.2 | 9.5 | +108° | 1890 | 9 | [67] |
Acacia senegal var. senegal | - | 3.32 | 0.37 | 2.4 | - | - | 15.4 | −31.5 | 1153.8 | 16.8 | [68] |
Acacia seyal var. seyal | - | 2.43 | 0.14 | 0.95 | - | - | 11.6 | +61 | 1185.8 | 16.4 | [68] |
Acacia senegal var. senegal | - | 4.89 | 0.35 | 2.3 | 4.78 | - | 18.9 | −30 | 1620 | 11.89 | [69] |
Acacia seyal var. seyal | - | 4.47 | 0.22 | 1.4 | 5.16 | - | 15.5 | +52 | 1180 | 16.34 | [69] |
Acacia nilotica var. nilotica | 10.81 | 1.91 | 0.02 | 0.16 | 5.15 | - | 10.19 | +99.17 | 1908.37 | 10.18 | [70] |
Acacia senegal var. senegal | 13.49 | 3.27 | 0.35 | 2.31 | - | - | 14.61 | −32 | 1161 | 15.2 | [71] |
Acacia senegal var. senegal | 9.76 | 3.40 | 0.33 | 2.16 | 4.94 | 0.24 | - | −31.75 | - | - | [68] |
Acacia seyal var. seyal | 9.56 | 2.50 | 0.63 | 4.16 | 4.53 | 2.01 | - | +48.25 | - | - | [68] |
Acacia mellifera | 8.35 | 3.13 | 0.24 | 1.61 | 4.84 | 2.95 | - | +56.00 | - | - | [68] |
Acacia tortilis var. raddiana | 8.49 | 2.05 | 1.55 | 10.34 | 4.45 | 2.06 | - | +86.75 | - | - | [72] |
Acacia catechu | 13.9 | 03.4 | - | 04.8 | 4.59 | - | −28.17 | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batiha, G.E.-S.; Akhtar, N.; Alsayegh, A.A.; Abusudah, W.F.; Almohmadi, N.H.; Shaheen, H.M.; Singh, T.G.; De Waard, M. Bioactive Compounds, Pharmacological Actions, and Pharmacokinetics of Genus Acacia. Molecules 2022, 27, 7340. https://doi.org/10.3390/molecules27217340
Batiha GE-S, Akhtar N, Alsayegh AA, Abusudah WF, Almohmadi NH, Shaheen HM, Singh TG, De Waard M. Bioactive Compounds, Pharmacological Actions, and Pharmacokinetics of Genus Acacia. Molecules. 2022; 27(21):7340. https://doi.org/10.3390/molecules27217340
Chicago/Turabian StyleBatiha, Gaber El-Saber, Nosheen Akhtar, Abdulrahman A. Alsayegh, Wafaa Fouzi Abusudah, Najlaa Hamed Almohmadi, Hazem M. Shaheen, Thakur Gurjeet Singh, and Michel De Waard. 2022. "Bioactive Compounds, Pharmacological Actions, and Pharmacokinetics of Genus Acacia" Molecules 27, no. 21: 7340. https://doi.org/10.3390/molecules27217340
APA StyleBatiha, G. E. -S., Akhtar, N., Alsayegh, A. A., Abusudah, W. F., Almohmadi, N. H., Shaheen, H. M., Singh, T. G., & De Waard, M. (2022). Bioactive Compounds, Pharmacological Actions, and Pharmacokinetics of Genus Acacia. Molecules, 27(21), 7340. https://doi.org/10.3390/molecules27217340