Silica-Based Monolithic Columns as a Tool in HPLC—An Overview of Application in Analysis of Active Compounds in Biological Samples
Abstract
1. Introduction
2. Way of the Silica Monolith to the Commercial Market
3. Main Features and Synthesis of the Silica-Based Monolithic Rod
4. Applicability of the Monolithic Column
4.1. Plant Samples
4.2. Medical and Pharmaceutical Application
4.3. New Generation of Monolithic Columns—Short Characterization and Applications
4.4. Preparative and Semi-Preparative Silica-Based Monolithic Column—Applications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ali, I.; Gaitonde, V.D.; Aboul-Enein, H.Y. Monolithic silica stationary phases in liquid chromatography. J. Chromatogr. Sci. 2009, 47, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Svec, F. Monolithic columns: A historical overview. Electrophoresis 2017, 38, 2810–2820. [Google Scholar] [CrossRef]
- Guiochon, G. Monolithic columns in high-performance liquid chromatography. J. Chromatogr. A 2007, 1168, 101–168. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, K. Applications of silica-based monolithic HPLC columns. J. Sep. Sci. 2004, 27, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Tara, A.; Sharma, V.D. Advances in monolithic silica columns for high-performance liquid chromatography. J. Anal. Sci. Technol. 2017, 8. [Google Scholar] [CrossRef][Green Version]
- Tong, S.; Liu, S.; Wang, H.; Jia, Q. Recent advances of polymer monolithic columns functionalized with micro/nanomaterials: Synthesis and application. Chromatographia 2014, 77, 5–14. [Google Scholar] [CrossRef]
- Vyviurska, O.; Lv, Y.; Mann, B.F.; Svec, F. Comparison of commercial organic polymer-based and silica-based monolithic columns using mixtures of analytes differing in size and chemistry. J. Sep. Sci. 2018, 41, 1558–1566. [Google Scholar] [CrossRef]
- Svec, F.; Lv, Y. Advances and recent trends in the field of monolithic columns for chromatography. Anal. Chem. 2015, 87, 250–273. [Google Scholar] [CrossRef] [PubMed]
- Oberacher, H.; Huber, C.G. Capillary monoliths for the analysis of nucleic acids by high-performance liquid chromatography-electrospray ionization mass spectrometry. TrAC Trends Anal. Chem. 2002, 21, 166–174. [Google Scholar] [CrossRef]
- Štrancar, A.; Barut, M.; Podgornik, A.; Koselj, P.; Schwinn, H.; Raspor, P.; Josić, D. Application of compact porous tubes for preparative isolation of clotting factor VIII from human plasma. J. Chromatogr. A 1997, 760, 117–123. [Google Scholar] [CrossRef]
- Gupalova, T.V.; Lojkina, O.V.; Pàlàgnuk, V.G.; Totolian, A.A.; Tennikova, T.B. Quantitative investigation of the affinity properties of different recombinant forms of protein G by means of high-performance monolithic chromatography. J. Chromatogr. A 2002, 949, 185–193. [Google Scholar] [CrossRef]
- Van De Meent, M.H.M.; Eeltink, S.; De Jong, G.J. Potential of poly(styrene-co-divinylbenzene) monolithic columns for the LC-MS analysis of protein digests. Anal. Bioanal. Chem. 2011, 399, 1845–1852. [Google Scholar] [CrossRef] [PubMed]
- Jungbauer, A.; Hahn, R. Polymethacrylate monoliths for preparative and industrial separation of biomolecular assemblies. J. Chromatogr. A 2008, 1184, 62–79. [Google Scholar] [CrossRef]
- Siouffi, A.M. About the C term in the van Deemter’s equation of plate height in monoliths. J. Chromatogr. A 2006, 1126, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Corradini, D. Handbook of HPLC; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-57444-554-1. [Google Scholar]
- Urban, J. Are we approaching a post-monolithic era? J. Sep. Sci. 2020, 43, 1628–1633. [Google Scholar] [CrossRef] [PubMed]
- Pellati, F.; Calò, S.; Benvenuti, S. High-performance liquid chromatography analysis of polyacetylenes and polyenes in Echinacea pallida by using a monolithic reversed-phase silica column. J. Chromatogr. A 2007, 1149, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.G.; Moon, S.O.; Kim, S.Y.; Yang, E.J.; Min, J.S.; An, J.H.; Choi, E.A.; Liu, K.H.; Park, E.J.; Lee, H.D.; et al. Rapid HPLC determination of gastrodin in Gastrodiae Rhizoma. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 409–413. [Google Scholar] [CrossRef]
- Bhandari, P.; Kumar, N.; Singh, B.; Singh, V.; Kaur, I. Silica-based monolithic column with evaporative light scattering detector for HPLC analysis of bacosides and apigenin in Bacopa monnieri. J. Sep. Sci. 2009, 32, 2812–2818. [Google Scholar] [CrossRef]
- Maruška, A.; Kornyšova, O. Application of monolithic (continuous bed) chromatographic columns in phytochemical analysis. J. Chromatogr. A 2006, 1112, 319–330. [Google Scholar] [CrossRef]
- Abro, K.; Mahesar, S.A.; Iqbal, S.; Perveen, S. Quantification of malachite green in fish feed utilising liquid chromatography-tandem mass spectrometry with a monolithic column. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2014, 31, 827–832. [Google Scholar] [CrossRef]
- Khayoon, W.S.; Saad, B.; Lee, T.P.; Salleh, B. High performance liquid chromatographic determination of aflatoxins in chilli, peanut and rice using silica based monolithic column. Food Chem. 2012, 133, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Zacharis, C.K.; Kika, F.S.; Tzanavaras, P.D.; Rigas, P.; Kyranas, E.R. Development and validation of a rapid HPLC method for the determination of five banned fat-soluble colorants in spices using a narrow-bore monolithic column. Talanta 2011, 84, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Brabcová, I.; Kovářová, L.; Šatínský, D.; Havlíková, L.; Solich, P. A fast HPLC method for determination of vitamin E acetate in dietary supplements using monolithic column. Food Anal. Methods 2013, 6, 380–385. [Google Scholar] [CrossRef]
- Deshpande, N.M.; Gangrade, M.G.; Kekare, M.B.; Vaidya, V.V. Determination of free and liposomal Amphotericin B in human plasma by liquid chromatography-mass spectroscopy with solid phase extraction and protein precipitation techniques. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 315–326. [Google Scholar] [CrossRef]
- Alebouyeh, M.; Amini, H. Rapid determination of lamivudine in human plasma by high-performance liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 975, 40–44. [Google Scholar] [CrossRef]
- Saito, K.; Yagi, K.; Ishizaki, A.; Kataoka, H. Determination of anabolic steroids in human urine by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2010, 52, 727–733. [Google Scholar] [CrossRef]
- Rieux, L.; Niederländer, H.; Verpoorte, E.; Bischoff, R. Silica monolithic columns: Synthesis, characterisation and applications to the analysis of biological molecules. J. Sep. Sci. 2005, 28, 1628–1641. [Google Scholar] [CrossRef]
- Zacharis, C.K. Accelerating the quality control of pharmaceuticals using monolithic stationary phases: A review of recent HPLC applications. J. Chromatogr. Sci. 2009, 47, 443–451. [Google Scholar] [CrossRef]
- Bunch, D.R.; Wang, S. Applications of monolithic columns in liquid chromatography-based clinical chemistry assays. J. Sep. Sci. 2011, 34, 2003–2012. [Google Scholar] [CrossRef]
- Rigobello-Masini, M.; Penteado, J.C.P.; Masini, J.C. Monolithic columns in plant proteomics and metabolomics. Anal. Bioanal. Chem. 2013, 405, 2107–2122. [Google Scholar] [CrossRef]
- Namera, A.; Miyazaki, S.; Saito, T.; Nakamoto, A. Monolithic silica with HPLC separation and solid phase extraction materials for determination of drugs in biological materials. Anal. Methods 2011, 3, 2189–2200. [Google Scholar] [CrossRef]
- Mistry, K.; Grinberg, N. Application of monolithic columns in high performance liquid chromatography. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 1055–1074. [Google Scholar] [CrossRef]
- Zhu, T.; Row, K.H. Monolithic materials and their applications in HPLC for purification and analysis of bioactive compounds from natural plants: A review. Instrum. Sci. Technol. 2012, 40, 78–89. [Google Scholar] [CrossRef]
- Ghanem, A.; Ikegami, T. Recent advances in silica-based monoliths: Preparations, characterizations and applications. J. Sep. Sci. 2011, 34, 1945–1957. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, K.; Soga, N. Phase separation in gelling silica–organic polymer solution: Systems containing poly(sodium styrenesulfonate). J. Am. Ceram. Soc. 1991, 74, 2518–2530. [Google Scholar] [CrossRef]
- Nakanishi, K.; Soga, N. Phase separation in silica sol-gel system containing polyacrylic acid II. Effects of molecular weight and temperature. J. Non. Cryst. Solids 1992, 139, 14–24. [Google Scholar] [CrossRef]
- Nakanishi, K.; Soga, N. Phase separation in silica sol-gel system containing polyacrylic acid I. Gel formaation behavior and effect of solvent composition. J. NonCryst. Solids 1992, 139, 1–13. [Google Scholar] [CrossRef]
- Minakuchi, H.; Nakanishi, K.; Soga, N.; Ishizuka, N.; Tanaka, N. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal. Chem. 1996, 68, 3498–3501. [Google Scholar] [CrossRef]
- Cabrera, K. A new generation of silica-based monoliths HPLC columns with improved performance. LCGC Eur. 2012, 30, 30–35. [Google Scholar]
- Díaz-Bao, M.; Barreiro, R.; Miranda, J.; Cepeda, A.; Regal, P. Recent advances and uses of monolithic columns for the analysis of residues and contaminants in food. Chromatography 2015, 2, 79–95. [Google Scholar] [CrossRef]
- Gritti, F.; Guiochon, G. Measurement of the eddy diffusion term in chromatographic columns. I. Application to the first generation of 4.6 mm I.D. monolithic columns. J. Chromatogr. A 2011, 1218, 5216–5227. [Google Scholar] [CrossRef] [PubMed]
- Gritti, F.; Guiochon, G. Mass transfer kinetic mechanism in monolithic columns and application to the characterization of new research monolithic samples with different average pore sizes. J. Chromatogr. A 2009, 1216, 4752–4767. [Google Scholar] [CrossRef] [PubMed]
- Cabooter, D.; Broeckhoven, K.; Sterken, R.; Vanmessen, A.; Vandendael, I.; Nakanishi, K.; Deridder, S.; Desmet, G. Detailed characterization of the kinetic performance of first and second generation silica monolithic columns for reversed-phase chromatography separations. J. Chromatogr. A 2014, 1325, 72–82. [Google Scholar] [CrossRef]
- Hlushkou, D.; Hormann, K.; Höltzel, A.; Khirevich, S.; Seidel-Morgenstern, A.; Tallarek, U. Comparison of first and second generation analytical silica monoliths by pore-scale simulations of eddy dispersion in the bulk region. J. Chromatogr. A 2013, 1303, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Sklenářová, H.; Chocholouš, P.; Koblová, P.; Zahálka, L.; Šatínský, D.; Matysová, L.; Solich, P. High-resolution monolithic columns—A new tool for effective and quick separation. Anal. Bioanal. Chem. 2013, 405, 2255–2263. [Google Scholar] [CrossRef] [PubMed]
- Vuignier, K.; Fekete, S.; Carrupt, P.A.; Veuthey, J.L.; Guillarme, D. Comparison of various silica-based monoliths for the analysis of large biomolecules. J. Sep. Sci. 2013, 36, 2231–2243. [Google Scholar] [CrossRef]
- Hormann, K.; Müllner, T.; Bruns, S.; Höltzel, A.; Tallarek, U. Morphology and separation efficiency of a new generation of analytical silica monoliths. J. Chromatogr. A 2012, 1222, 46–58. [Google Scholar] [CrossRef]
- Cabrera, K.; Lubda, D.; Eggenweiler, H.M.; Minakuchi, H.; Nakanishi, K. A new monolithic-type HPLC column for fast separations. HRC J. High Resolut. Chromatogr. 2000, 23, 93–99. [Google Scholar] [CrossRef]
- Kele, M.; Guiochon, G. Repeatability and reproducibility of retention data and band profiles on six batches of monolithic columns. J. Chromatogr. A 2002, 960, 19–49. [Google Scholar] [CrossRef]
- Núñez, O.; Nakanishi, K.; Tanaka, N. Preparation of monolithic silica columns for high-performance liquid chromatography. J. Chromatogr. A 2008, 1191, 231–252. [Google Scholar] [CrossRef]
- Minakuchi, H.; Nakanishi, K.; Soga, N.; Ishizuka, N.; Tanaka, N. Effect of domain size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography. J. Chromatogr. A 1998, 797, 121–131. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Dondi, F.; Ciogli, A.; Gasparrini, F.; Piccin, A.; Serafini, M. Characterization of new types of stationary phases for fast and ultra-fast liquid chromatography by signal processing based on AutoCovariance Function: A case study of application to Passiflora incarnata L. extract separations. J. Chromatogr. A 2010, 1217, 4355–4364. [Google Scholar] [CrossRef] [PubMed]
- Biesaga, M.; Ochnik, U.; Pyrzynska, K. Fast analysis of prominent flavonoids in tomato using a monolithic column and isocratic HPLC. J. Sep. Sci. 2009, 32, 2835–2840. [Google Scholar] [CrossRef] [PubMed]
- Repollés, C.; Herrero-Martínez, J.M.; Ràfols, C. Analysis of prominent flavonoid aglycones by high-performance liquid chromatography using a monolithic type column. J. Chromatogr. A 2006, 1131, 51–57. [Google Scholar] [CrossRef]
- Yadav, A.K.; Manika, N.; Bagchi, G.D.; Gupta, M.M. Simultaneous determination of flavonoids in Oroxylum indicum by RP-HPLC. Med. Chem. Res. 2013, 22, 2222–2227. [Google Scholar] [CrossRef]
- Vachirapatama, N.; Chamnankid, B.; Kachonpadungkitti, Y. Determination of rutin in buckwheat tea and Fagopyrum tataricum seeds by high performance liquid chromatography and capillary electrophoresis. J. Food Drug Anal. 2011, 19, 463–469. [Google Scholar]
- Mehrdad, M.; Zebardast, M.; Abedi, G.; Koupaei, M.N.; Rasouli, H.; Talebi, M. Validated high-throughput HPLC method for the analysis of flavonol aglycones myricetin, quercetin, and kaempferol in Rhus coriaria L. using a monolithic column. J. AOAC Int. 2009, 92, 1035–1043. [Google Scholar] [CrossRef]
- Chinnici, F.; Gaiani, A.; Natali, N.; Riponi, C.; Galassi, S. Improved HPLC determination of phenolic compounds in Cv. golden delicious apples using a monolithic column. J. Agric. Food Chem. 2004, 52, 3–7. [Google Scholar] [CrossRef]
- Liazid, A.; Barbero, G.F.; Palma, M.; Brigui, J.; Barroso, C.G. Rapid determination of simple polyphenols in grapes by lc using a monolithic column. Chromatographia 2010, 72, 417–424. [Google Scholar] [CrossRef]
- Sharma, U.K.; Sharma, N.; Sinha, A.K.; Kumar, N.; Gupta, A.P. Ultrafast UPLC-ESI-MS and HPLC with monolithic column for determination of principal flavor compounds in vanilla pods. J. Sep. Sci. 2009, 32, 3425–3431. [Google Scholar] [CrossRef]
- Biesaga, M.; Ochnik, U.; Pyrzynska, K. Analysis of phenolic acids in fruits by HPLC with monolithic columns. J. Sep. Sci. 2007, 30, 2929–2934. [Google Scholar] [CrossRef] [PubMed]
- Rahim, A.A.; Nofrizal, S.; Saad, B. Rapid tea catechins and caffeine determination by HPLC using microwave-assisted extraction and silica monolithic column. Food Chem. 2014, 147, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Sparzak, B.; Dybowski, F.; Krauze-Baranowska, M. Analysis of Securinega-type alkaloids from Phyllanthus glaucus biomass. Phytochem. Lett. 2015, 11, 353–357. [Google Scholar] [CrossRef]
- Staniak, M.; Wójciak-Kosior, M.; Sowa, I.; Strzemski, M.; Sawicki, J.; Dresler, S.; Tyszczuk-Rotko, K. Applicability of a monolithic column for separation of isoquinoline alkalodis from chelidonium majus extract. Molecules 2019, 24, 3612. [Google Scholar] [CrossRef]
- Gupta, M.M.; Singh, D.V.; Tripathi, A.K.; Pandey, R.; Verma, R.K.; Singh, S.; Shasany, A.K.; Khanuja, S.P.S. Simultaneous determination of vincristine, vinblastine, catharanthine, and vindoline in leaves of Catharanthus roseus by high-performance liquid chromatography. J. Chromatogr. Sci. 2005, 43, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.P.; Govindarajan, R.; Rawat, A.K.S. Comparison of different analytical HPLC columns for determination of furocoumarins in Heracleum candicans fruits. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 421–427. [Google Scholar] [CrossRef]
- Barbero, G.F.; Liazid, A.; Palma, M.; Barroso, C.G. Fast determination of capsaicinoids from peppers by high-performance liquid chromatography using a reversed phase monolithic column. Food Chem. 2008, 107, 1276–1282. [Google Scholar] [CrossRef]
- Schmidt, A.H. Fast HPLC for quality control of Harpagophytum procumbens by using a monolithic silica column: Method transfer from conventional particle-based silica column. J. Chromatogr. A 2005, 1073, 377–381. [Google Scholar] [CrossRef]
- Schmidt, A.H. Validation of a fast-HPLC method for the separation of iridoid glycosides to distinguish between the Harpagophytum species. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 2339–2347. [Google Scholar] [CrossRef]
- Cieśla, Ł. Biological Fingerprinting of Herbal Samples by Means of Liquid Chromatography. Chromatogr. Res. Int. 2012, 2012, 532418. [Google Scholar] [CrossRef][Green Version]
- Alaerts, G.; Pieters, S.; Logie, H.; Van Erps, J.; Merino-Arévalo, M.; Dejaegher, B.; Smeyers-Verbeke, J.; Vander Heyden, Y. Exploration and classification of chromatographic fingerprints as additional tool for identification and quality control of several Artemisia species. J. Pharm. Biomed. Anal. 2014, 95, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Hefny Gad, M.; Tuenter, E.; El-Sawi, N.; Younes, S.; El-Ghadban, E.M.; Demeyer, K.; Pieters, L.; Vander Heyden, Y.; Mangelings, D. Identification of some bioactive metabolites in a fractionated methanol extract from ipomoea aquatica (aerial parts) through TLC, HPLC, UPLC-ESI-QTOF-MS and LC-SPE-NMR fingerprints analyses. Phytochem. Anal. 2018, 29, 5–15. [Google Scholar] [CrossRef]
- Ardakani, Y.H.; Rouini, M.R. Improved liquid chromatographic method for the simultaneous determination of tramadol and its three main metabolites in human plasma, urine and saliva. J. Pharm. Biomed. Anal. 2007, 44, 1168–1173. [Google Scholar] [CrossRef]
- Wenk, M.; Haegeli, L.; Brunner, H.; Krähenbühl, S. Determination of furosemide in plasma and urine using monolithic silica rod liquid chromatography. J. Pharm. Biomed. Anal. 2006, 41, 1367–1370. [Google Scholar] [CrossRef] [PubMed]
- Bugey, A.; Staub, C. Application of monolithic supports to online extraction and LC-MS analysis of benzodiazepines in whole blood samples. J. Sep. Sci. 2007, 30, 2967–2978. [Google Scholar] [CrossRef] [PubMed]
- Galaon, T.; Udrescu, S.; Sora, I.; David, V.; Medvedovici, A. High-throughput liquid-chromatography method with fluorescence detection for reciprocal determination of furosemide or norfloxacin in human plasma. Biomed. Chromatogr. 2007, 21, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Kučerová, B.; Krčmová, L.; Solichová, D.; Plíšek, J.; Solich, P. Comparison of a new high-resolution monolithic column with core-shell and fully porous columns for the analysis of retinol and α-tocopherol in human serum and breast milk by ultra-high-performance liquid chromatography. J. Sep. Sci. 2013, 36, 2223–2230. [Google Scholar] [CrossRef]
- Hoizey, G.; Lamiable, D.; Frances, C.; Trenque, T.; Kaltenbach, M.; Denis, J.; Millart, H. Simultaneous determination of amoxicillin and clavulanic acid in human plasma by HPLC with UV detection. J. Pharm. Biomed. Anal. 2002, 30, 661–666. [Google Scholar] [CrossRef]
- Karageorgou, E.G.; Samanidou, V.F. Application of ultrasound-assisted matrix solid-phase dispersion extraction to the HPLC confirmatory determination of cephalosporin residues in milk. J. Sep. Sci. 2010, 33, 2862–2871. [Google Scholar] [CrossRef]
- Koyuturk, S.; Can, N.O.; Atkosar, Z.; Arli, G. A novel dilute and shoot HPLC assay method for quantification of irbesartan and hydrochlorothiazide in combination tablets and urine using second generation C18-bonded monolithic silica column with double gradient elution. J. Pharm. Biomed. Anal. 2014, 97, 103–110. [Google Scholar] [CrossRef]
- Hefnawy, M.M.; Aboul-Enein, H.Y. Fast high-performance liquid chromatographic analysis of mianserin and its metabolites in human plasma using monolithic silica column and solid phase extraction. Anal. Chim. Acta 2004, 504, 291–297. [Google Scholar] [CrossRef]
- Lavasani, H.; Giorgi, M.; Sheikholeslami, B.; Hedayati, M.; Rouini, M.R. A rapid and sensitive HPLC-fluorescence method for determination of mirtazapine and its two major metabolites in human plasma. Iran. J. Pharm. Res. 2014, 13, 853–862. [Google Scholar]
- Foroutan, S.M.; Zarghi, A.; Shafaati, A.; Khoddam, A. Application of monolithic column in quantification of gliclazide in human plasma by liquid chromatography. J. Pharm. Biomed. Anal. 2006, 42, 513–516. [Google Scholar] [CrossRef]
- Al Bratty, M.; Alhazmi, H.A.; Javed, S.A.; Lalitha, K.G.; Asmari, M.; Wölker, J.; El Deeb, S. Development and validation of LC–MS/MS method for simultaneous determination of metformin and four gliptins in human plasma. Chromatographia 2017, 80, 891–899. [Google Scholar] [CrossRef]
- Rouini, M.R.; Ardakani, Y.H.; Moghaddam, K.A.; Solatani, F. An improved HPLC method for rapid quantitation of diazepam and its major metabolites in human plasma. Talanta 2008, 75, 671–676. [Google Scholar] [CrossRef]
- Rouini, M.; Ardakani, Y.H.; Hakemi, L.; Mokhberi, M.; Badri, G. Simultaneous determination of clobazam and its major metabolite in human plasma by a rapid HPLC method. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 823, 167–171. [Google Scholar] [CrossRef]
- Muppavarapu, R.; Guttikar, S.; Rajappan, M.; Kamarajan, K.; Mullangi, R. Sensitive LC-MS/MS-ESI method for simultaneous determination of montelukast and fexofenadine in human plasma: Application to a bioequivalence study. Biomed. Chromatogr. 2014, 28, 1048–1056. [Google Scholar] [CrossRef]
- Gupta, A.; Guttikar, S.; Shah, P.A.; Solanki, G.; Shrivastav, P.S.; Sanyal, M. Selective and rapid determination of raltegravir in human plasma by liquid chromatography-tandem mass spectrometry in the negative ionization mode. J. Pharm. Anal. 2015, 5, 101–109. [Google Scholar] [CrossRef][Green Version]
- Miresan, H.; Rosca, C.; Matei, N.; Roncea, F.; Cazacincu, R.; Iancu, I.; Stefanescu, E.; Enache, D.; Bratu, M.; Popescu, A. Simultaneous quantification of four benzodiazepines from whole blood by highperformance liquid chromatography in forensic toxicological analysis. Analele Univ. Ovidius Constanta Ser. Chim. 2014, 25, 24–27. [Google Scholar] [CrossRef]
- Curticapean, A.; Muntean, D.; Curticapean, M.; Dogaru, M.; Vari, C. Optimized HPLC method for tramadol and O-desmethyl tramadol determination in human plasma. J. Biochem. Biophys. Methods 2008, 70, 1304–1312. [Google Scholar] [CrossRef]
- Gritti, F.; Guiochon, G. Measurement of the eddy dispersion term in chromatographic columns: III. Application to new prototypes of 4.6 mm I.D. monolithic columns. J. Chromatogr. A 2012, 1225, 79–90. [Google Scholar] [CrossRef]
- Zhang, Q.; Di, Y.T.; He, H.P.; Fang, X.; Chen, D.L.; Yan, X.H.; Zhu, F.; Yang, T.Q.; Liu, L.L.; Hao, X.J. Phragmalin- and mexicanolide-type limonoids from the leaves of Trichilia connaroides. J. Nat. Prod. 2011, 74, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Malek, S.N.A.; Lee, G.S.; Hong, S.L.; Yaacob, H.; Wahab, N.A.; Weber, J.F.F.; Shah, S.A.A. Phytochemical and cytotoxic investigations of curcuma mangga rhizomes. Molecules 2011, 16, 4539–4548. [Google Scholar] [CrossRef] [PubMed]
- Bringmann, G.; Steinert, C.; Feineis, D.; Mudogo, V.; Betzin, J.; Scheller, C. HIV-inhibitory michellamine-type dimeric naphthylisoquinoline alkaloids from the Central African liana Ancistrocladus congolensis. Phytochemistry 2016, 128, 71–81. [Google Scholar] [CrossRef]
- Lai, H.Y.; Lim, Y.Y.; Kim, K.H. Isolation and characterisation of a proanthocyanidin with antioxidative, antibacterial and anti-cancer properties from fern Blechnum orientale. Pharmacogn. Mag. 2017, 13, 31–37. [Google Scholar]
- Kokotkiewicz, A.; Luczkiewicz, M.; Sowinski, P.; Glod, D.; Gorynski, K.; Bucinski, A. Isolation and structure elucidation of phenolic compounds from Cyclopia subternata Vogel (honeybush) intact plant and in vitro cultures. Food Chem. 2012, 133, 1373–1382. [Google Scholar] [CrossRef]
- Maurya, A.; Verma, R.K.; Srivastava, S.K. Silica-based monolithic coupled column for the simultaneous determination of echitamine, Nb-demethylalstogustine, and loganetin in alstonia scholaris by RP-HPLC and optimization of extraction method. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 543–549. [Google Scholar] [CrossRef]
- Pandotra, P.; Sharma, R.; Datt, P.; Kushwaha, M.; Gupta, A.P.; Gupta, S. Ultrasound-assisted extraction and fast chromolithic method development, validation and system suitability analysis for 6, 8, 10-gingerols and shogaol in rhizome of Zingiber officinale by liquid chromatography-diode array detection. Int. J. Green Pharm. 2013, 7, 189–195. [Google Scholar]
- Březinová, L.; Vlašínová, H.; Havel, L.; Humpa, O.; Slanina, J. Validated method for bioactive lignans in Schisandra chinensis in vitro cultures using a solid phase extraction and a monolithic column application. Biomed. Chromatogr. 2010, 24, 954–960. [Google Scholar]
- Fecka, I. Qualitative and quantitative determination of hydrolysable tannins and other polyphenols in herbal products from meadowsweet and dog rose. Phytochem. Anal. 2009, 20, 177–190. [Google Scholar] [CrossRef]
- Shanker, K.; Gupta, M.M.; Srivastava, S.K.; Bawankule, D.U.; Pal, A.; Khanuja, S.P.S. Determination of bioactive nitrile glycoside(s) in drumstick (Moringa oleifera) by reverse phase HPLC. Food Chem. 2007, 105, 376–382. [Google Scholar] [CrossRef]
- Merlin, J.F.; Gresti, J.; Bellenger, S.; Narce, M. Fast high performance liquid chromatography analysis in lipidomics: Separation of radiolabelled fatty acids and phosphatidylcholine molecular species using a monolithic C18 silica column. Anal. Chim. Acta 2006, 565, 163–167. [Google Scholar] [CrossRef]
- Malasoni, R.; Srivastava, A.; Pandey, R.R.; Srivastava, P.K.; Dwivedi, A.K. Development and validation of improved HPLC method for the quantitative determination of Curcuminoids in Herbal Medicament. J. Sci. Ind. Res. (India) 2013, 72, 88–91. [Google Scholar]
- Gupta, S.; Sharma, R.; Pandotra, P.; Jaglan, S.; Gupta, A.P. Chromolithic method development, validation and system suitability analysis of ultra-sound assisted extraction of glycyrrhizic acid and glycyrrhetinic acid from Glycyrrhiza glabra. Nat. Prod. Commun. 2012, 7, 991–994. [Google Scholar] [CrossRef]
- Srivastava, A.; Tripathi, A.K.; Pandey, R.; Verma, R.K.; Gupta, M.M. Quantitative determination of reserpine, ajmaline, and ajmalicine in Rauvolfia serpentina by reversed-phase high-performance liquid chromatography. J. Chromatogr. Sci. 2006, 44, 557–560. [Google Scholar] [CrossRef]
- Jin, A.; Ozga, J.A.; Lopes-Lutz, D.; Schieber, A.; Reinecke, D.M. Characterization of proanthocyanidins in pea (Pisum sativum L.), lentil (Lens culinaris L.), and faba bean (Vicia faba L.) seeds. Food Res. Int. 2012, 46, 528–535. [Google Scholar] [CrossRef]
- Arapitsas, P.; Turner, C. Pressurized solvent extraction and monolithic column-HPLC/DAD analysis of anthocyanins in red cabbage. Talanta 2008, 74, 1218–1223. [Google Scholar] [CrossRef]
- Baj, T.; Błazewicz, A.; Świa̧tek, Ł.; Wolski, T.; Kocjan, R.; Głowniak, K. Analysis of phenolic acids in Hyssop (Hyssopus officinalis L.) by HPLC-DAD with monolithic column Chromolith™ RP-18e. Ann. Univ. Mariae Curie Sklodowska Sect. DDD Pharm. 2011, 24, 59–65. [Google Scholar]
- Kennedy, J.A.; Taylor, A.W. Analysis of proanthocyanidins by high-performance gel permeation chromatography. J. Chromatogr. A 2003, 995, 99–107. [Google Scholar] [CrossRef]
- Apers, S.; Naessens, T.; Van Den Steen, K.; Cuyckens, F.; Claeys, M.; Pieters, L.; Vlietinck, A. Fast high-performance liquid chromatography method for quality control of soy extracts. J. Chromatogr. A 2004, 1038, 107–112. [Google Scholar] [CrossRef]
- Strzemski, M.; Wójciak-Kosior, M.; Sowa, I.; Rutkowska, E.; Szwerc, W.; Kocjan, R.; Latalski, M. Carlina species as a new source of bioactive pentacyclic triterpenes. Ind. Crops Prod. 2016, 94, 498–504. [Google Scholar] [CrossRef]
- Rostagno, M.A.; Palma, M.; Barroso, C.G. Solid-phase extraction of soy isoflavones. J. Chromatogr. A 2005, 1076, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Vian, M.A.; Tomao, V.; Gallet, S.; Coulomb, P.O.; Lacombe, J.M. Simple and rapid method for cis- and trans-resveratrol and piceid isomers determination in wine by high-performance liquid chromatography using Chromolith columns. J. Chromatogr. A 2005, 1085, 224–229. [Google Scholar] [CrossRef]
- Maurya, A.; Srivastava, S.K. Large-scale separation of clavine alkaloids from Ipomoea muricata by pH-zone-refining centrifugal partition chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 1732–1736. [Google Scholar] [CrossRef] [PubMed]
- Michel, T.; Destandau, E.; Elfakir, C. On-line hyphenation of centrifugal partition chromatography and high pressure liquid chromatography for the fractionation of flavonoids from hippophaë rhamnoides L. berries. J. Chromatogr. A 2011, 1218, 6173–6178. [Google Scholar] [CrossRef]
- Elendran, S.; Wang, L.W.; Prankerd, R.; Palanisamy, U.D. The physicochemical properties of geraniin, a potential antihyperglycemic agent. Pharm. Biol. 2015, 53, 1719–1726. [Google Scholar] [CrossRef]
- Van Nederkassel, A.M.; Vijverman, V.; Massart, D.L.; Vander Heyden, Y. Development of a Ginkgo biloba fingerprint chromatogram with UV and evaporative light scattering detection and optimization of the evaporative light scattering detector operating conditions. J. Chromatogr. A 2005, 1085, 230–239. [Google Scholar] [CrossRef]
- Troncoso, N.; Sierra, H.; Carvajal, L.; Delpiano, P.; Günther, G. Fast high performance liquid chromatography and ultraviolet-visible quantification of principal phenolic antioxidants in fresh rosemary. J. Chromatogr. A 2005, 1100, 20–25. [Google Scholar] [CrossRef]
- Kodamatani, H.; Saito, K.; Niina, N.; Yamazaki, S.; Tanaka, Y. Simple and sensitive method for determination of glycoalkaloids in potato tubers by high-performance liquid chromatography with chemiluminescence detection. J. Chromatogr. A 2005, 1100, 26–31. [Google Scholar] [CrossRef]
- Zarghi, A.; Foroutan, S.M.; Shafaati, A.; Khoddam, A. HPLC determination of omeprazole in human plasma using a monolithic column. Arzneim. Forsch. Drug Res. 2006, 56, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Zarghi, A.; Shafaati, A.; Foroutan, S.M.; Movahed, H.; Khoddam, A. A rapid high-performance liquid chromatographic method for the determination of pantoprazole in plasma using UV detection: Application in pharmacokinetic studies. Arzneim. Forsch. Drug Res. 2008, 58, 441–444. [Google Scholar]
- Cruz, A.D.C.; Suenaga, E.M.; Abib, E.; Pedrazzoli, J. On-line solid phase extraction coupled with liquid chromatography tandem mass spectrometry for the determination of codeine in human plasma. Quim. Nova 2017, 40, 25–29. [Google Scholar] [CrossRef]
- Abro, K.; Memon, N.; Bhanger, M.I.; Mahesar, S.A.; Perveen, S. Liquid chromatographic determination of pioglitazone in pharmaceuticals, serum and urine samples. Pak. J. Anal. Environ. Chem. 2011, 12, 49–54. [Google Scholar]
- Sora, I.; Galaon, T.; David, V.; Medvedovici, A. Determination of nimesulide and its active metabolite in plasma samples based on solvent deproteinization and HPLC-DAD analysis. Rev. Roum. Chim. 2007, 52, 499–507. [Google Scholar]
- Ali, I.; Gupta, V.K.; Singh, P.; Singh, R.; Negi, U. Analysis of chloramphenicol in biological samples by SPE-HPLC. Anal. Chem. Lett. 2013, 3, 181–190. [Google Scholar] [CrossRef]
- Leitão, S.G.; Leitão, G.G.; Vicco, D.K.T.; Pereira, J.P.B.; de Morais Simão, G.; Oliveira, D.R.; Celano, R.; Campone, L.; Piccinelli, A.L.; Rastrelli, L. Counter-current chromatography with off-line detection by ultra high performance liquid chromatography/high resolution mass spectrometry in the study of the phenolic profile of Lippia origanoides. J. Chromatogr. A 2017, 1520, 83–90. [Google Scholar] [CrossRef]
- Jeelani, S.M.; Farooq, U.; Gupta, A.P.; Lattoo, S.K. Phytochemical evaluation of major bioactive compounds in different cytotypes of five species of Rumex L. Ind. Crops Prod. 2017, 109, 897–904. [Google Scholar] [CrossRef]
- Can, N.Ö. Development of validated and stability-indicating LC-DAD and LC-MS/MS methods for determination of avanafil in pharmaceutical preparations and identification of a novel degradation product by LCMS-IT-TOF. Molecules 2018, 23, 1771. [Google Scholar] [CrossRef]
- El Kurdi, S.; Muaileq, D.A.; Alhazmi, H.A.; Al Bratty, M.; El Deeb, S. Comparing monolithic and fused core HPLC columns for fast chromatographic analysis of fat-soluble vitamins. Acta Pharm. 2017, 67, 203–213. [Google Scholar] [CrossRef][Green Version]
- Puram, S.; Batheja, R.; Vivekanand, P.A.; Nallamekala, S.R.B.; Kubal, A.; Kalaivani, R.A. Evaluation of aspirin and dipyridamole using low concentration potassium fluoride as a stabilizer in human plasma by LC-MS/MS mode. Asian J. Chem. 2016, 28, 2403–2406. [Google Scholar] [CrossRef]
- Bonde, S.L.; Bhadane, R.P.; Gaikwad, A.; Narendiran, A.S.; Srinivas, B. Simultaneous determination of dapsone and its major metabolite N-Acetyl Dapsone by LC-MS/MS method. Int. J. Pharm. Pharm. Sci. 2013, 5, 441–446. [Google Scholar]
Sample/Analytes | Part of Plant/Matrix | Type of Elution/Mobile Phase | Conditions (Flow Rate/Temperature/Numbero f Monolithic Columns) | Detector | Ref. |
---|---|---|---|---|---|
orientin, isovitexin, vitexin, luteolin-7-O-glucoside, hyperoside, luteolin, apigenin | tincture from Passiflora incarnata L. | gradient elution/ H2O/MeOH a/ACN b/THF c acidified with 0.05% acetic acid | 1.0 mL/min/30 °C/one column 2.0 mL/min/30 °C/two columns 2.5 mL/min/30 °C/three columns | PDA | [53] |
polyacetylenes and polyenes | roots from Echinacea pallida | gradient elution/ H2O/ACN | 2.0 mL/min/20 °C/one column | PDA | [17] |
(fingerprinting) | Artemisia vulgaris, A. absinthium, A. annua, A. capillaris | gradient elution/ H2O/MeOH (both with 0.05% of TFA d) | 1.0 mL/min/35 °C/four columns | DAD | [72] |
catechins and caffeine | tea samples (green tea, Oolong tea, “fermented” black tea) | isocratic elution/ H2O/ACN/MeOH (83:6:11, v/v) | 1.4 mL/min/-/one column | UV | [63] |
quercetin, naringenin, naringin, myricetin, rutin, kaempferol | tomatoes | isocratic elution/ A: 50 mM phosphate buffer (pH = 2.2)/ACN (75:25, v/v) B: 2 mM formic acid/ACN (75:25, v/v) | 1.0 mL/min/25 °C/one column | A: UV B: MS | [54] |
gallic acid, protocatechuic aldehyde, gentisic acid, catechin, vanillinic acid, caffeic acid, vanillin, epicatechin, syringaldehyde, p-coumaric acid, ferulic acid, sinapic acid, resveratrol | musts from grapes: Riesling and Monastrell | gradient elution/ 90% H2O, 2% acetic acid in MeOH/90% MeOH, 2% acetic acid in H2O | 2.5 mL/min/25 °C/one column | PDA and FL | [60] |
catechin, epicatechin, quercetin, kaempferol, apigenin, fisetin, morin, naringenin, hesperetin, chrysin | green tea, red wine, orange, propolis and Ginkgo biloba extracts | gradient elution/ H2O/MeOH/ACN each containing 0.05% (v/v) TFA | 2.0 mL/min/25 °C/one column | DAD | [55] |
(fingerprinting) | aerial parts from Ipomoea aquatica | gradient elution/ MeOH/H2O containing 0.05% TFA | 1.0 mL/min/25 °C/two columns | UV | [73] |
gastrodin | Gastrodiae Rhizoma | gradient elution/H2O/ACN | 1.0 mL/min/-/one column | DAD | [18] |
echitamine, N-demethylalstogustine, loganetin | stem, stem bark, root, root bark, fruits, leaves from Alstonia scholaris | isocratic elution/ ACN/0.01 M buffer (KH2PO4) containing 0.1% TFA (20:80, v/v) | 0.5 mL/min/25 °C/two columns (total length 150 mm) | DAD | [98] |
oroxylin A, chrysin, baicalein, hispidulin | roots from Oroxylum indicum | isocratic elution/ACN/H2O (acidified with 0.1% TFA) (34:66, v/v) | 1.0 mL/min/30 °C/one column | PDA | [56] |
6-gingerol, 8-gingerol, 10-gingerol, shogaol | rhizome from Zingiber officinale | gradient elution/ H2O/ACN | 3.0 mL/min/room temp./one column | PDA | [99] |
schizandrin, gomisin A, deoxyschizandrin, γ-schizandrin, gomisin N, wuweizisu C | callus from Schisandra chinensis | isocratic elution/ ACN/H2O (50:50, v/v) | 2.0 mL/min/-/one column | PDA | [100] |
bacopaside I, bacoside A3, bacopaside II, bacopaside X, bacopasaponin C, apigenin | herbs of Bacopa monnieri | isocratic elution/ ACN/H2O (30:70, v/v) | 0.7 mL/min/25 °C/one column | ELSD | [19] |
vanillin, vanillic acid, p-hydroxybenzoic acid, p-hydroxybenzaldehyde | pods from Vanilla planifolia | isocratic elution/ ACN/0.05% TFA in H2O (12:88, v/v) | 4.0 mL/min/35 °C/one column | PDA | [61] |
furocoumarins: heraclenol and bergapten | fruits from Heracleum candicans | gradient elution/ H2O/H3PO4 (99.7:0.3, v/v)/ ACN/H2O/H3PO4 (79.7:20:0.3, v/v) | 0.5 mL/min/-/one column | PDA | [67] |
tannins and polyphenols | commercial products Filipendula ulmaria Rosa canina | gradient elution/ACN/H2O containing 0.2% (v/v) formic acid | 2.5 mL/min/-/one column | UV | [101] |
phenolic acids: vanillic, gallic, syringic, p-coumaric, ferulic, chlorogenic, benzoic, p-hydroxybenzoic, p-hydroxyphenylacetic | plum fruits | gradient elution/ 50 mM phosphate buffer (pH = 2.2)/ACN | 1.0 mL/min/-/one column | DAD | [62] |
niaziridin and niazirin | leaves, pods, and bark from Moringa oleifera | isocratic elution/ MeOH/sodium dihydrogen phosphate–acetic acid buffer (0.1 M, pH = 3.8) (20:80, v/v) | 0.7 mL/min/25 °C/one column | PDA | [102] |
A. fatty acid methyl esters B. phosphatydylocholine | --- | isocratic elution/ A. ACN/H2O (97:3, v/v) B. ACN/MeOH/H2O (33:64.5:2, v/v/v) | 2.0 mL/min/25 °C/two columns | A. radioisotope detector B. UV | [103] |
iridoid glycosides: harpagoside and 8-p-coumaroyl-harpagide | extracts from Harpagophytum procumbens and H. zeyheri | gradient elution/ H2O (pH = 2.0)/ACN | 5.0 mL/min/30 °C/two columns | PDA | [70] |
harpagoside, acetoside, cinnamic acid, 8-p-coumaroyl-harpagide | root tubers from H. procumbens | gradient elution/ H2O (pH = 2.0)/ACN | 5.0 mL/min/30 °C/two columns | PDA | [69] |
curcuminoids: curcumin, demethoxycurcumin, bisdemethoxy curcumin | herbal medicament | isocratic elution/ H2O/ACN/glacial acetic acid (60:40:1, v/v/v) | 1.0 mL/min/-/one column | UV–Vis | [104] |
rutin | Buckwheat Tea and seeds from Fagopyrum tataricum | isocratic elution/MeOH/H2O (5:5, v/v) with 10 mM acetate buffer at pH = 4.1 | 1.5 mL/min/30 °C/one column | UV–Vis | [57] |
glycyrrhizic and glycyrrhetinic acids | roots from Glycyrrhiza glabra | gradient elution/H2O/ACN both acidified with 0.05% TFA | 2.5 mL/min/room temp./one column | PDA | [105] |
reserpine, ajmaline, ajmalicine | roots from Rauvolfia serpentina | gradient elution/ 0.01 M phosphate buffer containing 0.5% glacial acetic acid (pH = 3.5)/ACN | 1.0 mL/min/26 °C/one column | PDA | [106] |
myricetin, quercetin, kaempferol | fruits and leaves from Rhus coriaria | isocratic elution/ACN/10 mM potassium dihydrogen orthophosphate buffer (pH = 3.0) (38:62, v/v) | 4.0 mL/min/40 °C/one column | PDA | [58] |
allosecurinine, securinine | biomasses from Phyllanthus glaucus | gradient elution/H2O/ACN | 1.0 mL/min/25 °C/one column | PDA | [64] |
proanthocyanidins | pea from Pisum sativum, lentil from Lens culinaris,faba bean from Vicia faba | gradient elution/ H2O/ACN both with 1% acetic acid (v/v) | 3.0 mL/min/30 °C/two columns | DAD | [107] |
gallic acid, (+)-catechin, chlorogenic acid, procyanidin B2, p-coumaric acid, (-)-epicatechin, ferulic acid, hyperin, rutin, phloridzin | fresh peel or pulp from Golden Delicious apples | gradient elution/ 0.5% MeOH in 0.01 M H3PO4/ACN | 2.5 mL/min/25 °C/one column | PDA | [59] |
capsaicinoids: nordihydrocapsaicin, capsaicin, dihydrocapsaicin, homocapsaicin, homodihydro-capsaicin | peppers (pericarp and placenta) from Capsicum frutescens | gradient elution/ H2O/MeOH both with 0.1% acetic acid | 6.0 mL/min/30 °C/one column | FL | [68] |
anthocyanins | red cabbage Brassica oleracea | gradient elution/ 5% formic acid/ACN | 4.0 mL/min/27 °C/one column | DAD | [108] |
protopine, allocryptopine, berberine, chelidonine, chelerythrine, sanguinarine, coptisine | roots from Chelidonium majus | gradient elution/ 15 mM ammonium acetate (pH = 4.0)/ACN/MeOH | 2.0 mL/min/25 °C/three columns | DAD | [65] |
vincristine, vinblastine, catharanthine, vindoline | leaves from Catharanthus roseus | isocratic elution/ACN/0.1 M phosphate buffer containing 0.5% glacial acetic acid (pH = 3.5), (21:79, v/v) | 1.2 mL/min/25 °C/one column | PDA | [66] |
gallic acid, protocatechuic acid, gentisic acid, chlorogenic acid, caffeic acid, ferulic acid, rosmarinic acid | aerial part from Hyssopus officinalis | gradient elution/ H2O with 1% acetic acid/ACN | 2.0 mL/min/26 °C/one column | DAD | [109] |
proanthocyanidins cleavage products | hop cones from Humulus lupulus and grapes from Vitis vinifera | gradient elution/H2O/ACN (each containing 1% acetic acid) | 3.0 mL/min/30 °C/two columns | DAD | [110] |
daidzin, gycitin, genistin, acetyldaidzin, acetylglycitin, daidzein, glycitein, acetylgenistin, genistein | extracts from Gycine max | gradient elution/ ACN/H2O with acetic acid (0.1:0.99, v/v) | flow gradient 3.0 mL and 4.0 mL/min/ two columns | DAD MS | [111] |
α-amyrin, α -amyrin acetate, β-amyrin, β-amyrin acetate, lupeol, lupeol acetate | flowers, leaves, roots and stems from five species of Carlina | isocratic elution/ACN/H2O (95:5, v/v) | 2.0 mL/min/25 °C/one column | PDA | [112] |
daidzin, glycitin, genistin, malonyl daidzin, malonyl glycitin, malonyl genistin, daidzein, glycitein, genistein | extracts from soybeans | gradient elution/MeOH/H2O each containing 0.1% acetic acid | 0.8 mL/min/-/two columns | PDA | [113] |
cis-resveratrol, trans-resveratrol, cis-piceid, trans-piceid | wine samples | gradient elution/ H2O/acetic acid (94:6, v/v) /H2O/ACN/acetic acid (65:30:5, v/v/v) | gradient flow 4.0 mL and 7.0 mL/min/two columns | PDA | [114] |
lysergol and chanoclavine | seeds from Ipomea muricata | isocratic elution/ ACN/0.01 M sodium dihydrogen phosphate buffer (with 0.2% TFA) (pH = 2.5) (15:85, v/v) | 1.0 mL/min/25 °C/one column | PDA | [115] |
rutin, isorhamnetine-3-O-rutinoside, isorhamnetine-3-O-glukoside, quercetin, isorhamnetin | berries from Hippophaë rhamnoides | gradient elution/H2O/ACN (both acidified with 1% acetic acid) | 3.0 mL/min/40 °C/one column | UV | [116] |
geraniin, ellagic acid, gallic acid | rind from Nephelium lappaceum | isocratic elution/ACN/H2O (30:70, v/v) | 0.5 mL/min/room temp./one column | UV–Vis | [117] |
(fingerprinting) | Ginkgo biloba dry extract | gradient elution/ iso-propanol/THF/H2O with 0.05% TFA | 1.0 mL/min/35 °C/two columns | UV–ELS | [118] |
carnosic acid, carnosol, rosmarinic acid | leaves from Rosmarinus officinalis | binary gradient/ACN–H2O–H3PO4 (65.1%:34.9%:0.02%)/ACN–H2O–H3PO4 (22%:78%:0.25%) | 1.5 mL/min/-/one column | UV–Vis | [119] |
α-solanine and α-chaconine | potato tubers | isocratic elution/20 mM phosphate buffer (pH = 7.8)/ACN (65:35, v/v) | 0.6 mL/min/-/one column | CL | [120] |
Name of Drug | Matrix | Type of Elution/Mobile Phase | Conditions (Flow Rate/Temperature/Number of Monolithic Columns) | Detector | Ref. |
---|---|---|---|---|---|
raltegravir | human plasma | isocratic elution/10 mM ammonium formate in water (pH = 3.0)/ACN b (3:7, v/v) | 1.2 mL/min/40 °C/one column | MS/MS | [89] |
amphotericin B | human plasma | gradient elution/ 5 mM ammonium acetate (pH = 6.0)/ACN/MeOH a | 1.8 mL/min/-/one column | MS/MS | [25] |
lamivudine | human plasma | isocratic elution/ 50 mM sodium dihydrogen phosphate/triethylamine (pH = 3.2) (996:4, v/v) | 1.5 mL/min/20 °C/one column | UV | [26] |
mirtazapine and metabolites: N-desmethyl mirtazapine, 8-hydroxymirtazapine | human plasma | isocratic elution/ ACN/0.025 M monobasic potassium phosphate buffer (pH = 3.0) (20:80, v/v) | 2.0 mL/min/-/one column | FL | [83] |
montelukast and fexofenadine | human plasma | isocratic elution/ 20 mM ammonium formate/ACN (20:80, v/v) | 1.2 mL/min/5 °C/one column | MS/MS | [88] |
clonazepam, diazepam, flunitrazepam, lorazepam, midazolam, N-desalkylflurazepam, nordiazepam, oxazepam | whole blood samples | isocratic elution/ 5 mM ammonium formate (pH = 3.0)/ACN (65:35, v/v) | 1.5 mL/min/-/one column | MS | [76] |
furosemide and norfloxacin | human plasma | isocratic elution/ 0.015 M sodium heptane-sulfonate, 0.2% triethylamine (pH = 2.5)/ ACN/MeOH (70:15:15, v/v/v) | 3.0 mL/min/25 °C/one column | FL | [77] |
omeprazole | human plasma | isocratic elution/ 0.01 M disodium hydrogen phosphate buffer/ACN (pH = 7.1) (93:7, v/v), | 1.5 mL/min/-/one column | UV | [121] |
cefadroxil, cefaclor, cephalexin, cefotaxime, cefazolin, cefuroxime, cefoperazone and ceftiofur | milk | gradient elution/ 0.1% formic acid/ MeOH/ACN (75:25 v/v) | 1.5 mL/min/-/one column | PDA | [80] |
pantoprazole | human plasma | isocratic elution/ ACN/potassium dihydrogen phosphate buffer (pH = 3.0) (25:75, v/v) | 1.5 mL/min/-/one column | UV | [122] |
codeine | human plasma | isocratic elution/ ACN/10 mM acetic acid (pH = 3.5) (50:50, v/v) | 1.0 mL/min/25 °C/one column | MS/MS | [123] |
pioglitazone | human serum and urine | isocratic elution/ ACN/10 mM phosphate buffer (pH = 2.5) (30:70, v/v) | 2.0 mL/min/-/one column | DAD | [124] |
diazepam, clonazepam, lorazepam, midazolam | whole blood | isocratic elution/ phosphate buffer (pH = 2.5)/ACN (65/35, v/v) | 2.0 mL/min/-/one column | DAD | [90] |
nimesulid and major metabolite 4′-hydroxy-nimesulide | human plasma | isocratic elution/ 0.2% triethylamine (pH = 3.0)/MeOH (50:50, v/v) | 1.5 mL/min/25 °C/one column | DAD | [125] |
chloramphenicol | human blood | isocratic elution/ 100 mM phosphate buffer (pH = 2.5)/ACN (75:25, v/v) | 1.5 mL/min/28 °C/one column | UV–Vis | [126] |
Active Compound/Drug | Matrix | Type of Elution/Mobile Phase | Conditions (Flow Rate/Temperature/Number of Monolithic Columns) | Detector | Ref. |
---|---|---|---|---|---|
retinol and α-tocopherol | serum and human breast milk | 100% MeOH a | 1.5 mL/min/50 °C/one column | FL | [78] |
terpenoids and flavonoid aglycones | aerial parts from Lippia origanoides | gradient elution/H2O/MeOH both containing 0.1% (v/v) formic acid | 1.0 mL/min/32 °C/one column | UV | [127] |
rutin, piceatannol, resveratrol, naringenin, kaempferol, emodin, physcion | root, stem and leaf from five species of Rumex L. | gradient elution/ H2O (0.1% formic acid)/ACN b | 0.4 mL/min/room temp./one column | MS | [128] |
avanafil and its degradation products | pharmaceutical preparation | isocratic elution/H2O/ACN both with 0.1% formic acid (pH = 2.6,75:25, v/v) | 0.5 mL/min/40 °C and 15 °C/one column | DAD, MS/MS | [129] |
vitamins K3, D3, E, and A | capsules and pediatric drops | isocratic elution/ACN/MeOH both with 0.1% (v/v) formic acid (pH = 2.6, 25:75, v/v) | 4.0 mL/min/room temp./one column | DAD | [130] |
metformin, linagliptin, sitagliptin, vildagliptin | human plasma | isocratic elution/ 0.01 M ammonium formate buffer (pH = 3.0)/ACN (80:20, v/v) | 0.4 mL/min/20 °C/one column | MS/MS | [85] |
aspirin and dipyridamole | human plasma | isocratic elution/MeOH/0.1% formic acid in H2O (90:10, v/v) | 1.0 mL/min/-/one column | MS/MS | [131] |
irbesartan and hydrochlorothiazide | tablets and urine | gradient elution/ ACN/0.025 M phosphate buffer (pH = 6.3)/H2O (3:87:10, v/v) | flow gradient: 0.8 mL and 1.5 mL/min/40 °C/one column | DAD | [81] |
dapsone and N-acetyl dapsone | human plasma | isocratic elution/ACN/2 mM ammonium acetate in H2O (90:10, v/v) | 0.8 mL/min/-/one column | MS/MS | [132] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staniak, M.; Wójciak, M.; Sowa, I.; Tyszczuk-Rotko, K.; Strzemski, M.; Dresler, S.; Myśliński, W. Silica-Based Monolithic Columns as a Tool in HPLC—An Overview of Application in Analysis of Active Compounds in Biological Samples. Molecules 2020, 25, 3149. https://doi.org/10.3390/molecules25143149
Staniak M, Wójciak M, Sowa I, Tyszczuk-Rotko K, Strzemski M, Dresler S, Myśliński W. Silica-Based Monolithic Columns as a Tool in HPLC—An Overview of Application in Analysis of Active Compounds in Biological Samples. Molecules. 2020; 25(14):3149. https://doi.org/10.3390/molecules25143149
Chicago/Turabian StyleStaniak, Michał, Magdalena Wójciak, Ireneusz Sowa, Katarzyna Tyszczuk-Rotko, Maciej Strzemski, Sławomir Dresler, and Wojciech Myśliński. 2020. "Silica-Based Monolithic Columns as a Tool in HPLC—An Overview of Application in Analysis of Active Compounds in Biological Samples" Molecules 25, no. 14: 3149. https://doi.org/10.3390/molecules25143149
APA StyleStaniak, M., Wójciak, M., Sowa, I., Tyszczuk-Rotko, K., Strzemski, M., Dresler, S., & Myśliński, W. (2020). Silica-Based Monolithic Columns as a Tool in HPLC—An Overview of Application in Analysis of Active Compounds in Biological Samples. Molecules, 25(14), 3149. https://doi.org/10.3390/molecules25143149