Various Patterns of Composition and Accumulation of Steroids and Triterpenoids in Cuticular Waxes from Screened Ericaceae and Caprifoliaceae Berries during Fruit Development
Abstract
:1. Introduction
2. Results and Discussion
2.1. Lingonberry (Vaccinium vitis-idaea L., Family Ericaceae)
2.2. Bilberry (Vaccinium myrtillus L., Family Ericaceae)
2.3. Strawberry Tree (Arbutus unedo L., Family Ericaceae)
2.4. Edible Honeysuckle (Lonicera caerulea L., Family Caprifoliaceae)
3. Material and Methods
3.1. Plant Material
3.2. Chemicals and Standards
3.3. Extraction and Fractionation
3.3.1. Extraction of Waxes
3.3.2. Fractionation of Chloroform Extracts
3.4. Derivatization of Triterpenoid Acids
3.5. Alkaline Hydrolysis
3.6. Identification and Quantification of Steroids and Triterpenoids by GC-MS/FID
3.7. Statistical Analysis of Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yeats, T.H.; Rose, J.K.C. The formation and function of plant cuticles. Plant Physiol. 2013, 163, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Pollard, M.; Beisson, F.; Li, Y.; Ohlrogge, J.B. Building lipid barriers: Biosynthesis of cutin and suberin. Trends Plant Sci. 2008, 13, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Riederer, M. Plant surface properties in chemical ecology. J. Chem. Ecol. 2005, 31, 2621–2651. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.F.; Koper, G.J.M.; Ursen, W.N.J. UV-protective coatings: Botanical approach. Prog. Org. Coat. 2007, 58, 166–177. [Google Scholar] [CrossRef]
- Samuels, L.; Kunst, L.; Jetter, R. Sealing plant surfaces: Cuticular wax formation by epidermal cells. Annu. Rev. Plant Biol. 2008, 59, 683–707. [Google Scholar] [CrossRef]
- Jetter, R.; Schäffer, S.; Riederer, M. Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: Evidence from Prunus laurocerasus L. Plant Cell Environ. 2000, 23, 619–628. [Google Scholar] [CrossRef]
- Buschhaus, C.; Jetter, R. Composition differences between epicuticular and intracuticular wax substructures: How do plants seal their epidermal surfaces? J. Exp. Bot. 2011, 62, 841–853. [Google Scholar] [CrossRef]
- Szakiel, A.; Pączkowski, C.; Pensec, F.; Bertsch, C. Fruit cuticular waxes as a source of biologically active triterpenoids. Phytochem. Rev. 2012, 11, 263–284. [Google Scholar] [CrossRef] [Green Version]
- Jetter, R.; Kunst, L.; Samuels, A.L. Composition of plant cuticular waxes. In Biology of the Plant Cuticle; Riederer, M., Müller, C., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2006; Volume 23, pp. 155–157. [Google Scholar]
- Pensec, F.; Pączkowski, C.; Grabarczyk, M.; Woźniak, A.; Bénard-Gellon, M.; Bertsch, C.; Chong, J.; Szakiel, A. Changes in the triterpenoid content of cuticular waxes during fruit ripening of eight grape (Vitis vinifera) cultivars grown in the Upper Rhine Valley. J. Agric. Food Chem. 2014, 62, 7998–8007. [Google Scholar] [CrossRef]
- Szakiel, A.; Pączkowski, C.; Huttunen, S. Triterpenoid content of berries and leaves of bilberry Vaccinium myrtillus from Finland and Poland. J. Agric. Food Chem. 2012, 60, 11839–11849. [Google Scholar] [CrossRef]
- Szakiel, A.; Niżyński, B.; Pączkowski, C. Triterpenoid profile of flower and leaf cuticular waxes of heather Calluna vulgaris. Nat. Prod. Res. 2013, 27, 1404–1407. [Google Scholar] [CrossRef] [PubMed]
- Lara, I.; Belge, B.; Goulao, L.F. A focus on the biosynthesis and composition of cuticle in fruits. J. Agric. Food Chem. 2015, 63, 4005–4019. [Google Scholar] [CrossRef] [PubMed]
- Becker, R.; Pączkowski, C.; Szakiel, A. Triterpenoid profile of fruit and leaf cuticular waxes of edible honeysuckle Lonicera caerulea var. kamtschatica. Acta Soc. Bot. Poloniae 2017, 86, 3539. [Google Scholar] [CrossRef]
- Lara, I.; Belge, B.; Goulao, L.F. The fruit cuticle as a modulator of postharvest quality. Postharvest Biol. Technol. 2014, 87, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Peschel, S.; Franke, R.; Schreiber, L.; Knoche, M. Composition of the cuticle of developing sweet cherry fruit. Phytochemistry 2007, 68, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Guinda, A.; Rada, M.; Delgado, T.; Gutiérez-Adánez, P.; Castellano, J.M. Pentacyclic triterpenoids from olive fruit and leaf. J. Agric. Food Chem. 2010, 58, 9685–9691. [Google Scholar] [CrossRef] [PubMed]
- Szakiel, A.; Pączkowski, C.; Koivuniemi, H.; Huttunen, S. Comparison of the triterpenoid content of berries and leaves of lingonberry Vaccinium vitis-idaea from Finland and Poland. J. Agric. Food Chem. 2012, 60, 4994–5002. [Google Scholar] [CrossRef]
- Santier, S.; Chamel, A. Reassessment of the role of cuticular waxes in the transfer of organic molecules through plant cuticles. Plant Physiol. Biochem. 1998, 36, 225–231. [Google Scholar] [CrossRef]
- Fonseca, D.F.S.; Salvador, A.C.; Santos, S.A.O.; Vilela, C.; Freire, C.S.R.; Silvester, A.J.D.; Rocha, S.M. Bioactive Phytochemicals from wild Arbutus unedo L. berries from different locations in Portugal: Quantification of lipophilic components. Int. J. Mol. Sci. 2015, 16, 14194–14209. [Google Scholar] [CrossRef]
- Tsubaki, S.; Sugimura, K.; Teramoto, Y.; Yonemori, K.; Azuma, J. Cuticular membrane of Fuyu persimmon fruit is strengthened by triterpenoid nano-fillers. PLoS ONE 2013, 8, e75275. [Google Scholar] [CrossRef]
- Casado, C.G.; Heredia, A. Structure and dynamics of reconstituted cuticular waxes of grape berry cuticle (Vitis vinifera L.). J. Exp. Bot. 1999, 50, 175–182. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Compound | Content [mg/g Wax Extract ± SD (Standard Deviation)] | ||
---|---|---|---|
June | July | August | |
α-amyrin/lupeol | 50.89 ± 5.25a | 53.18 ± 5.62a | 59.01 ± 6.40a |
β-amyrin | 6.11 ± 0.59a | 8.28 ± 0.90b | 10.78 ± 1.14c |
betulin | 0.37 ± 0.04a | 1.46 ± 0.12b | 4.66 ± 0.42c |
erythrodiol | 0.44 ± 0.05a | 0.81 ± 0.09b | 1.03 ± 0.11c |
fernenol | 13.26 ± 1.24a | 15.12 ± 1.50a | 17.44 ± 1.68a |
friedelin | 3.14 ± 0.33a | 5.26 ± 0.48b | 7.82 ± 0.84c |
oleanolic aldehyde | 0.34 ± 0.03a | 1.12 ± 0.12b | 2.48 ± 0.25c |
svertenol | 3.12 ± 0.29a | 4.68 ± 0.42b | 5.26 ± 0.58b |
taraxasterol | 1.48 ± 0.13a | 2.93 ± 0.27b | 3.18 ± 0.32c |
ursolic aldehyde | 2.08 ± 0.18a | 4.15 ± 0.38b | 6.24 ± 0.52c |
uvaol | 0.50 ± 0.05a | 2.01 ± 0.23b | 4.75 ± 0.49c |
Sum of neutral pentacyclic triterpenoids | 8.73 | 99.00 | 122.65 |
oleanolic acid | 106.80 ± 12.62a | 87.03 ± 8.75b | 82.50 ± 7.98b |
ursolic acid | 496.77 ± 52.11a | 329.15 ± 33.09b | 331.81 ±35.73b |
Sum of triterpenoid acids | 603.57 | 416.18 | 414.31 |
campesterol | 3.30 ± 0.34a | 2.07 ± 0.21b | 4.18 ± 0.44c |
cycloartanol | 1.95 ± 0.17a | 1.08 ± 0.11b | 2.12 ± 0.20a |
24-methylenecycloartanol | 1.84 ± 0.19a | 0.97 ± 0.11b | 1.76 ± 0.18a |
sitostanol | 0.87 ± 0.09a | 0.06 ± 0.01b | 1.04 ± 0.11a |
sitosterol | 14.55 ± 0.17a | 11.29 ± 2.04b | 19.01 ± 2.23c |
stigmasterol | 2.91 ± 0.32a | 1.42 ± 0.15b | 3.43 ± 0.37a |
tremulone | 4.03 ± 0.41a | 2.76 ± 0.28b | 4.54 ± 0.52a |
Sum of steroids | 29.45 | 19.65 | 36.08 |
esters: | |||
α-amyrin | 2.06 ± 0.25a | 3.72 ± 0.38b | 5.89 ± 0.64c |
β-amyrin | 0.02 ± 0.01a | 1.05 ± 0.22b | 1.74 ± 0.19c |
fernenol | 3.14 ± 0.37a | 4.07 ± 0.51b | 5.62 ± 0.65c |
24-methylenecycloartanol | n.d. | n.d. | 0.09 ± 0.01 |
oleanolic acid | 0.93 ± 0.11a | 1.68 ± 0.23b | 2.22 ± 0.20c |
ursolic acid | 3.25 ± 0.28a | 3.94 ± 0.42a | 4.16 ± 0.38a |
sitosterol | 6.32 ± 0.64a | 4.57 ± 0.51b | 8.98 ± 0.93c |
stigmasterol | n.d. | n.d. | 1.04 ± 0.01 |
Sum of esters | 15.72 | 19.03 | 29.74 |
Total | 730.47 | 553.86 | 602.78 |
Compound | Content [mg/g Wax Extract ± SD] | ||
---|---|---|---|
May | June | July | |
α-amyrin/lupeol | 6.46 ± 0.66a | 8.74 ± 0.88a | 10.35 ± 0.91a |
α-amyrenone | 1.9 ± 0.10a | 2.81 ± 0.16b | 3.15 ± 0.30b |
β-amyrin | 7.70 ± 0.53a | 9.64 ± 0.63b | 10.92 ± 1.15b |
β-amyrenone | 3.92 ± 0.28a | 4.22 ± 0.35a | 4.71 ± 0.43a |
friedours-7-en-3-ol | 4.81 ± 0.35a | 5.09 ± 0.44a | 5.68 ± 0.48a |
taraxasterol | 4.80 ± 0.29a | 4.96 ± 0.28a | 5.12 ± 0.50a |
Sum of neutral pentacyclic triterpenoids | 29.59 | 35.46 | 39.93 |
oleanolic acid | 131.95 ± 11.84a | 153.90 ± 14.65a | 105.09 ± 8.81b |
ursolic acid | 115.92 ± 10.01a | 121.05 ± 12.82a | 91.47±5.09b |
3-oxo-oleanolic acid | 0.95 ± 0.01a | 3.14 ± 0.28b | 4.85 ± 0.30c |
3-oxo-ursolic acid | 1.82 ± 0.12a | 6.34 ±0.58b | 14.31 ± 1.03c |
maslinic acid | 0.31 ± 0.01a | 4.85 ± 0.41b | 11.87 ± 0.65c |
corosolic acid | 2.47 ± 0.25a | 2.66 ± 0.12a | 3.34 ± 0.22b |
oleanolic acid acetate | 2.10 ± 0.18a | 24.59 ± 1.35b | 45.46 ± 1.66c |
Sum of triterpenoid acids | 255.52 | 316.53 | 276.39 |
campesterol | 4.35 ± 0.39a | 2.48 ± 0.22b | 3.95 ± 0.38a |
cycloartanol | 4.14 ± 0.36a | 1.37 ± 0.10b | 3.95 ± 0.35a |
24-methylenecycloartanol | 4.06 ± 0.38a | 2.19 ± 0.15b | 3.84 ± 0.28a |
sitostanol | 4.08 ± 0.30a | 2.63 ± 0.24b | 4.78 ± 0.40a |
sitosterol | 43.12 ± 4.06a | 28.08 ± 2.60b | 40.83 ± 4.02a |
stigmasterol | 3.06 ± 0.28a | 0.91 ± 0.08b | 2.90 ± 0.23a |
tremulone | 8.38 ± 0.74a | 8.95 ± 0.83a | 10.16 ± 1.08a |
Sum of steroids | 71.19 | 46.61 | 70.41 |
esters: | |||
α-amyrin | 0.08 ± 0.01a | 0.24 ± 0.02b | 0.28 ± 0.03b |
β-amyrin | 0.16 ± 0.01a | 0.48 ± 0.05b | 0.55 ± 0.06b |
24-methylenecycloartanol | 0.23 ± 0.02a | 0.57 ± 0.06b | 0.69 ± 0.06b |
oleanolic acid | 0.95 ± 0.08a | 1.60 ± 0.15b | 1.72 ± 0.16b |
ursolic acid | 0.70 ± 0.05a | 1.24 ± 0.11b | 1.3 ± 0.14b |
sitosterol | 0.99 ± 0.07a | 1.70 ± 0.16b | 1.95 ± 0.20b |
stigmasterol | tr. | tr. | 0.12 ± 0.01 |
Sum of esters | 2.12 | 5.83 | 6.69 |
Total | 358.42 | 404.43 | 393.42 |
Compound | Content [mg/g Wax Extract ± SD] | ||
---|---|---|---|
Green | Yellow | Red | |
α-amyrin/lupeol | 246.32 ± 26.84a | 235.41 ± 24.10a | 227.65 ± 30.67a |
β-amyrin | 78.29 ± 6.61a | 76.09 ± 7.10a | 73.58 ± 6.92a |
α-amyrenone | 3.38 ± 0.42a | 3.84 ± 0.36a | 4.97 ± 0.45b |
β-amyrenone | 2.75 ± 0.21a | 3.49 ± 0.33b | 4.30 ± 0.39c |
betulin | 0.73 ± 0.08a | 1.07 ± 0.10b | 1.35 ± 0.11c |
erythrodiol | 1.12 ± 0.10a | 1.14 ± 0.12a | 1.18 ± 0.12a |
hopenone | 12.97 ± 1.35a | 13.58 ± 1.44a | 13.87 ± 1.45a |
lupeol acetate | 6.90 ± 0.72a | 6.44 ± 0.58a | 5.86 ± 0.60a |
moretenol | 15.41 ± 1.65a | 15.04 ± 1.48a | 13.39 ± 1.43a |
oleandione | 1.02 ± 0.10a | 0.90 ± 0.08a | 0.76 ± 0.08a |
oleanolic aldehyde | 3.62 ± 0.34a | 3.88 ± 0.42a | 4.35 ± 0.45a |
taraxasterol | 51.85 ± 4.80a | 56.34 ± 5.26a | 58.05 ± 6.01a |
ursolic aldehyde | 10.65 ± 1.09a | 11.47 ± 1.11a | 11.86 ± 1.20a |
uvaol | 2.74 ± 0.26a | 3.16 ± 0.32a | 3.77 ± 0.40a |
Sum of neutral pentacyclic triterpenoids | 438.90 | 431.85 | 424.94 |
oleanolic acid | 30.81 ± 2.95 | 26.79 ± 2.50 | 11.54 ± 2.02 |
ursolic acid | 157.15 ± 17.01 | 141.96 ± 16.06 | 87.52 ± 8.22 |
olean-2,12-dien-28-oic acid | n.d. | 0.32 ± 0.01 | 0.13 ± 0.01 |
ursa-2,12-dien-28-oic acid | n.d. | 1.33 ± 0.11 | 0.61 ± 0.05 |
3-oxo-oleanolic acid | 0.58 ± 0.01 | 0.31 ± 0.01 | n.d. |
3-oxo-ursolic acid | 1.78 ± 0.18 | 0.83 ± 0.09 | 0.62 ± 0.05 |
maslinic acid | 1.85 ± 0.20 | 0.91 ± 0.10 | 0.17 ± 0.01 |
corosolic acid | 0.74 ± 0.08 | n.d. | n.d. |
pomolic acid | 3.76 ± 0.34 | n.d. | n.d. |
Sum of triterpenoid acids | 196.67 | 173.18 | 100.59 |
campesterol | 0.91 ± 0.10a | 0.76 ± 0.08a | 1.43 ± 0.11b |
cycloartanol | 1.15 ± 0.11a | 0.73 ± 0.07b | 1.37 ± 0.12a |
sitosterol | 9.99 ± 0.89a | 7.86 ± 0.82b | 13.58 ± 0.14c |
stigmasterol | 0.19 ± 0.02a | 0.17 ± 0.02a | 0.50 ± 0.04cb |
tremulone | 2.45 ± 0.21a | 2.19 ± 0.20a | 2.47 ± 0.23a |
Sum of steroids | 14.69 | 11.71 | 19.35 |
esters: | |||
α-amyrin | 4.76 ± 0.52a | 5.20 ± 0.48a | 5.92 ± 0.62a |
β-amyrin | 0.81 ± 0.08a | 1.08 ± 0.10a | 1.12 ± 0.10a |
taraxasterol | 0.64 ± 0.07a | 0.79 ± 0.08a | 0.86 ± 0.09a |
oleanolic acid | 0.54 ± 0.06a | 0.65 ± 0.06a | 0.78 ± 0.08a |
ursolic acid | 0.52 ± 0.05a | 0.83 ± 0.08b | 1.04 ± 0.10b |
sitosterol | 0.95 ± 0.10a | 0.88 ± 0.09a | 1.23 ± 0.12b |
Sum of esters | 8.22 | 9.43 | 11.05 |
Total | 658.48 | 626.17 | 555.93 |
Compound | Content [mg/g Wax Extract ± SD] | ||
---|---|---|---|
April | May | June | |
α-amyrin | 3.39 ± 0.41a | 4.92 ± 0.54b | 3.48 ± 0.36a |
β-amyrin | 2.05 ± 0.19a | 3.16 ± 0.32b | 2.19 ± 0.23a |
hopenone | 5.17 ± 0.48a | 6.18 ± 0.63a | 4.67 ± 0.51a |
Sum of neutral pentacyclic triterpenoids | 10.61 | 14.26 | 10.34 |
oleanolic acid | 0.45 ± 0.05a | 0.54 ± 0.04a | 0.38 ± 0.03a |
ursolic acid | 1.62 ± 0.17a | 1.83 ± 0.20a | 1.49 ± 0.12a |
Sum of triterpenoid acids | 2.07 | 2.37 | 1.82 |
campesterol | 3.58 ± 0.41a | 1.16 ± 0.10b | 2.45 ± 0.21c |
cholesterol | 4.34 ± 0.39a | 2.87 ± 0.31b | 4.68 ± 0.49a |
cycloartanol | 3.17 ± 0.33a | 1.52 ± 0.16b | 3.04 ± 0.32a |
cycloartenediol | 1.14 ± 0.10a | tr. | 0.89 ± 0.09a |
sitosterol | 25.53 ± 3.05a | 9.18 ± 1.26b | 23.15 ± 3.03a |
stigmasterol | 1.87 ± 0.27a | 0.46 ± 0.05b | 1.16 ± 0.12c |
tremulone | 4.72 ± 0.56a | 2.91 ± 0.35b | 4.82 ± 0.56a |
Sum of steroids | 44.35 | 18.10 | 40.19 |
esters: | |||
cholesterol | 0.32 ± 0.04a | 0.33 ± 0.03a | 0.76 ± 0.09b |
sitosterol | 0.84 ± 0.11a | 0.79 ± 0.09a | 1.83 ± 0.22b |
stigmasterol | 0.57 ± 0.07a | 0.52 ± 0.06a | 1.09 ± 0.11b |
Sum of esters | 1.73 | 1.64 | 3.68 |
Total | 58.76 | 36.37 | 56.08 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dashbaldan, S.; Becker, R.; Pączkowski, C.; Szakiel, A. Various Patterns of Composition and Accumulation of Steroids and Triterpenoids in Cuticular Waxes from Screened Ericaceae and Caprifoliaceae Berries during Fruit Development. Molecules 2019, 24, 3826. https://doi.org/10.3390/molecules24213826
Dashbaldan S, Becker R, Pączkowski C, Szakiel A. Various Patterns of Composition and Accumulation of Steroids and Triterpenoids in Cuticular Waxes from Screened Ericaceae and Caprifoliaceae Berries during Fruit Development. Molecules. 2019; 24(21):3826. https://doi.org/10.3390/molecules24213826
Chicago/Turabian StyleDashbaldan, Soyol, Rafał Becker, Cezary Pączkowski, and Anna Szakiel. 2019. "Various Patterns of Composition and Accumulation of Steroids and Triterpenoids in Cuticular Waxes from Screened Ericaceae and Caprifoliaceae Berries during Fruit Development" Molecules 24, no. 21: 3826. https://doi.org/10.3390/molecules24213826
APA StyleDashbaldan, S., Becker, R., Pączkowski, C., & Szakiel, A. (2019). Various Patterns of Composition and Accumulation of Steroids and Triterpenoids in Cuticular Waxes from Screened Ericaceae and Caprifoliaceae Berries during Fruit Development. Molecules, 24(21), 3826. https://doi.org/10.3390/molecules24213826