Peptides for Skin Protection and Healing in Amphibians
Abstract
1. Introduction
2. Amphibian Skin Glands
3. Wound Healing Process
4. Amphibian Peptides Involved in WH
5. Amphibian Peptides Known for Antioxidant/Free Radical Scavenging Activities
6. Amphibian Peptide Production for Ultraviolet Irradiation Adaptation
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duellman, W.E.; Trueb, L. Biology of Amphibians, 2nd ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 1994; pp. 367–414. [Google Scholar]
- Felsemburgh, F.A.; de Almeida, P.G.; de Carvalho, E.S.S.P.; de Brito-Gitirana, L. Microscopical methods promote the understanding of the integument biology of Rhinella ornata. Micron 2009, 40, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Wells, K.D. The Ecology and Behaviour of Amphibians, 1st ed.; University of Chicago Press: Chicago, IL, USA, 2007. [Google Scholar]
- Schumacher, U.; Adam, E.; Hauser, F.; Probst, J.C.; Hoffmann, W. Molecular anatomy of a skin gland: Histochemical and biochemical investigations on the mucous glands of Xenopus laevis. J. Histochem. Cytochem. 1994, 42, 57–65. [Google Scholar] [CrossRef]
- Ramsey, J.P.; Reinert, L.K.; Harper, L.K.; Woodhams, D.C.; Rollins-Smith, L.A. Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the South African clawed frog, Xenopus laevis. Infect. Immun. 2010, 78, 3981–3992. [Google Scholar] [CrossRef] [PubMed]
- Rollins-Smith, L.A.; Conlon, J.M. Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations. Dev. Comp. Immunol. 2005, 29, 589–598. [Google Scholar] [CrossRef]
- Rollins-Smith, L.A.; Ramsey, J.P.; Pask, J.D.; Reinert, L.K.; Woodhams, D.C. Amphibian immune defenses against chytridiomycosis: Impacts of changing environments. Integr. Comp. Biol. 2011, 51, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Gammill, W.M.; Fites, J.S.; Rollins-Smith, L.A. Norepinephrine depletion of antimicrobial peptides from the skin glands of Xenopus laevis. Dev. Comp. Immunol. 2012, 37, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.K.; Pasmans, F.; Dhaenens, M.; Deforce, D.; Bonte, D.; Verheyen, K.; Lens, L.; Martel, A. Skin mucosome activity as an indicator of Batrachochytrium salamandrivorans susceptibility in salamanders. PLoS ONE 2018, 13, e0199295. [Google Scholar] [CrossRef] [PubMed]
- Woodhams, D.C.; Brandt, H.; Baumgartner, S.; Kielgast, J.; Kupfer, E.; Tobler, U.; Davis, L.R.; Schmidt, B.R.; Bel, C.; Hodel, S.; et al. Interacting symbionts and immunity in the amphibian skin mucosome predict disease risk and probiotic effectiveness. PLoS ONE 2014, 9, e96375. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lai, R. The chemistry and biological activities of peptides from amphibian skin secretions. Chem. Rev. 2015, 115, 1760–1846. [Google Scholar] [CrossRef]
- Bevins, C.L.; Zasloff, M. Peptides from frog skin. Annu. Rev. Biochem. 1990, 59, 395–414. [Google Scholar] [CrossRef] [PubMed]
- Laux-Biehlmann, A.; Mouheiche, J.; Veriepe, J.; Goumon, Y. Endogenous morphine and its metabolites in mammals: History, synthesis, localization and perspectives. Neuroscience 2013, 233, 95–117. [Google Scholar] [CrossRef] [PubMed]
- You, D.; Hong, J.; Rong, M.; Yu, H.; Liang, S.; Ma, Y.; Yang, H.; Wu, J.; Lin, D.; Lai, R. The first gene-encoded amphibian neurotoxin. J. Biol. Chem. 2009, 284, 22079–22086. [Google Scholar] [CrossRef] [PubMed]
- Martin, P. Wound healing--aiming for perfect skin regeneration. Science 1997, 276, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Barrientos, S.; Stojadinovic, O.; Golinko, M.S.; Brem, H.; Tomic-Canic, M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008, 16, 585–601. [Google Scholar] [CrossRef] [PubMed]
- Werner, S.; Grose, R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 2003, 83, 835–870. [Google Scholar] [CrossRef] [PubMed]
- Kawasumi, A.; Sagawa, N.; Hayashi, S.; Yokoyama, H.; Tamura, K. Wound healing in mammals and amphibians: Toward limb regeneration in mammals. Curr. Top. Microbiol. Immunol. 2013, 367, 33–49. [Google Scholar] [PubMed]
- Murawala, P.; Tanaka, E.M.; Currie, J.D. Regeneration: The ultimate example of wound healing. Semin. Cell Dev. Biol. 2012, 23, 954–962. [Google Scholar] [CrossRef]
- Yoshizato, K. Molecular mechanism and evolutional significance of epithelial-mesenchymal interactions in the body- and tail-dependent metamorphic transformation of anuran larval skin. Int. Rev. Cytol. 2007, 260, 213–260. [Google Scholar]
- Campbell, L.J.; Crews, C.M. Wound epidermis formation and function in urodele amphibian limb regeneration. Cell. Mol. Life Sci. 2008, 65, 73–79. [Google Scholar] [CrossRef]
- Matsuda, H.; Yokoyama, H.; Endo, T.; Tamura, K.; Ide, H. An epidermal signal regulates Lmx-1 expression and dorsal-ventral pattern during Xenopus limb regeneration. Dev. Biol. 2001, 229, 351–362. [Google Scholar] [CrossRef]
- Satoh, A.; Graham, G.M.; Bryant, S.V.; Gardiner, D.M. Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl (Ambystoma mexicanum). Dev. Biol. 2008, 319, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Levesque, M.; Villiard, E.; Roy, S. Skin wound healing in axolotls: A scarless process. J. Exp. Zool. B Mol. Dev. Evol. 2010, 314, 684–697. [Google Scholar] [CrossRef] [PubMed]
- Seifert, A.W.; Monaghan, J.R.; Voss, S.R.; Maden, M. Skin regeneration in adult axolotls: A blueprint for scar-free healing in vertebrates. PLoS ONE 2012, 7, e32875. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, H.; Maruoka, T.; Aruga, A.; Amano, T.; Ohgo, S.; Shiroishi, T.; Tamura, K. Prx-1 expression in Xenopus laevis scarless skin-wound healing and its resemblance to epimorphic regeneration. J. Investig. Dermatol. 2011, 131, 2477–2485. [Google Scholar] [CrossRef] [PubMed]
- Spindel, E.R. Bombesin peptides. In Handbook of Biologically Active Peptides, 2nd ed.; Kastin, A.J., Ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 326–330. [Google Scholar]
- Anastasi, A.; Erspamer, V.; Bucci, M. Isolation and amino acid sequences of alytesin and bombesin, two analogous active tetradecapeptides from the skin of European discoglossid frogs. Arch. Biochem. Biophys. 1972, 148, 443–446. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Wan, S.G.; Wei, S.S.; Lee, W.H.; Zhang, Y. Bm-TFF2, a trefoil factor protein with platelet activation activity from frog Bombina maxima skin secretions. Biochem. Biophys. Res. Commun. 2005, 330, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, G.; Xiang, Y.; Wu, J.; Jiang, P.; Lee, W.; Zhang, Y. Bm-TFF2, a toad trefoil factor, promotes cell migration, survival and wound healing. Biochem. Biophys. Res. Commun. 2010, 398, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Ladram, A.; Besne, I.; Breton, L.; de Lacharriere, O.; Nicolas, P.; Amiche, M. Pharmacologic study of C-terminal fragments of frog skin calcitonin gene-related peptide. Peptides 2008, 29, 1150–1156. [Google Scholar] [CrossRef]
- Liu, H.; Mu, L.; Tang, J.; Shen, C.; Gao, C.; Rong, M.; Zhang, Z.; Liu, J.; Wu, X.; Yu, H.; et al. A potential wound healing-promoting peptide from frog skin. Int. J. Biochem. Cell Biol. 2014, 49, 32–41. [Google Scholar] [CrossRef]
- Di Grazia, A.; Luca, V.; Segev-Zarko, L.A.; Shai, Y.; Mangoni, M.L. Temporins A and B stimulate migration of HaCaT keratinocytes and kill intracellular Staphylococcus aureus. Antimicrob. Agents Chemother. 2014, 58, 2520–2527. [Google Scholar] [CrossRef]
- Bian, W.; Meng, B.; Li, X.; Wang, S.; Cao, X.; Liu, N.; Yang, M.; Tang, J.; Wang, Y.; Yang, X. OA-GL21, a novel bioactive peptide from Odorrana andersonii, accelerated the healing of skin wounds. Biosci. Rep. 2018, 38, BSR20180215. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Zou, Z.; Yang, M.; Wu, C.; Su, Y.; Tang, J.; Yang, X. OM-LV20, a novel peptide from odorous frog skin, accelerates wound healing in vitro and in vivo. Chem. Biol. Drug Des. 2018, 91, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Duan, Z.; Tang, J.; Lv, Q.; Rong, M.; Lai, R. A short peptide from frog skin accelerates diabetic wound healing. FEBS J. 2014, 281, 4633–4643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cheng, Y.; Yang, Y.; Liu, S.; Shi, H.; Lu, C.; Li, S.; Nie, L.; Su, D.; Deng, X.; et al. Polypeptides from the skin of Rana chensinensis exert the antioxidant and antiapoptotic activities on HaCaT cells. Anim. Biotechnol. 2017, 28, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Longcore, J.E.; Pessier, A.P.; Nichols, D.K. Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to Amphibians. Mycologia 1999, 91, 219–227. [Google Scholar] [CrossRef]
- Berger, L.; Hyatt, A.D.; Speare, R.; Longcore, J.E. Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis. Dis. Aquat. Organ. 2005, 68, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, A.M.; Briggs, C.J.; Daszak, P. The ecology and impact of chytridiomycosis: An emerging disease of amphibians. Trends Ecol. Evol. 2010, 25, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Berger, L.; Marantelli, G.; Skerratt, L.F.; Speare, R. Virulence of the amphibian chytrid fungus Batrachochytium dendrobatidis varies with the strain. Dis. Aquat. Organ. 2005, 68, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Voyles, J.; Young, S.; Berger, L.; Campbell, C.; Voyles, W.F.; Dinudom, A.; Cook, D.; Webb, R.; Alford, R.A.; Skerratt, L.F.; et al. Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 2009, 326, 582–585. [Google Scholar] [CrossRef]
- Burkart, D.; Flechas, S.V.; Vredenburg, V.T.; Catenazzi, A. Cutaneous bacteria, but not peptides, are associated with chytridiomycosis resistance in Peruvian marsupial frogs. Anim. Cons. 2017, 20, 483–491. [Google Scholar] [CrossRef]
- Conlon, J.M.; Woodhams, D.C.; Raza, H.; Coquet, L.; Leprince, J.; Jouenne, T.; Vaudry, H.; Rollins-Smith, L.A. Peptides with differential cytolytic activity from skin secretions of the lemur leaf frog Hylomantis lemur (Hylidae: Phyllomedusinae). Toxicon 2007, 50, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Holden, W.M.; Reinert, L.K.; Hanlon, S.M.; Parris, M.J.; Rollins-Smith, L.A. Development of antimicrobial peptide defenses of southern leopard frogs, Rana sphenocephala, against the pathogenic chytrid fungus, Batrachochytrium dendrobatidis. Dev. Comp. Immunol. 2015, 48, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Rollins-Smith, L.A.; Carey, C.; Longcore, J.; Doersam, J.K.; Boutte, A.; Bruzgal, J.E.; Conlon, J.M. Activity of antimicrobial skin peptides from ranid frogs against Batrachochytrium dendrobatidis, the chytrid fungus associated with global amphibian declines. Dev. Comp. Immunol. 2002, 26, 471–479. [Google Scholar] [CrossRef]
- Rollins-Smith, L.A.; Reinert, L.K.; Miera, V.; Conlon, J.M. Antimicrobial peptide defenses of the Tarahumara frog, Rana tarahumarae. Biochem. Biophys. Res Commun. 2002, 297, 361–367. [Google Scholar] [CrossRef]
- Rollins-Smith, L.A.; Woodhams, D.C.; Reinert, L.K.; Vredenburg, V.T.; Briggs, C.J.; Nielsen, P.F.; Conlon, J.M. Antimicrobial peptide defenses of the mountain yellow-legged frog (Rana muscosa). Dev. Comp. Immunol. 2006, 30, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Wang, Y.; Wu, C.; Li, X.; Fu, Z.; Yang, M.; Bian, W.; Wang, S.; Song, Y.; Tang, J.; et al. Cathelicidin-OA1, a novel antioxidant peptide identified from an amphibian, accelerates skin wound healing. Sci. Rep. 2018, 8, 943. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Hu, J.Y.; Wang, S.Q. The role of antioxidants in photoprotection: A critical review. J. Am. Acad. Dermatol. 2012, 67, 1013–1024. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.; Lee, M.G. Oxidative stress and antioxidant strategies in dermatology. Redox Rep. 2016, 21, 164–169. [Google Scholar] [CrossRef]
- Xu, N.; Chen, G.; Liu, H. Antioxidative Categorization of Twenty Amino Acids Based on Experimental Evaluation. Molecules 2017, 22, 2066. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Liu, X.; Wu, J.; Liu, C.; Gong, W.; Zhao, Z.; Hong, J.; Lin, D.; Wang, Y.; et al. Antioxidant peptidomics reveals novel skin antioxidant system. Mol. Cell. Proteom. 2009, 8, 571–583. [Google Scholar] [CrossRef]
- Wang, X.; Ren, S.; Guo, C.; Zhang, W.; Zhang, X.; Zhang, B.; Li, S.; Ren, J.; Hu, Y.; Wang, H. Identification and functional analyses of novel antioxidant peptides and antimicrobial peptides from skin secretions of four East Asian frog species. Acta Biochim. Biophys. Sin. 2017, 49, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Tevini, M. UV-B Radiation and Ozone Depletion-Effects on Humans, Animals, Plants, Microorganisms, and Materials, 1st ed.; Lewis Publishers: Boca Raton, FL, USA, 1993. [Google Scholar]
- Darr, D.; Fridovich, I. Free radicals in cutaneous biology. J. Investig. Dermatol. 1994, 102, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Blaustein, A.R.; Belden, L.K. Amphibian defenses against ultraviolet-B radiation. Evol. Dev. 2003, 5, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, Y.; Zhang, Y.; Lee, W.H.; Zhang, Y. Rich diversity and potency of skin antioxidant peptides revealed a novel molecular basis for high-altitude adaptation of amphibians. Sci. Rep. 2016, 6, 19866. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Hong, J.; Yang, H.; Wu, J.; Ma, D.; Li, D.; Lin, D.; Lai, R. Frog skins keep redox homeostasis by antioxidant peptides with rapid radical scavenging ability. Free Radic. Biol. Med. 2010, 48, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.; Lee, W.H.; Gao, Z.; Zhang, W.; Peng, M.; Sun, T.; Gao, Y. Protective effects of antioxidin-RL from Odorrana livida against ultraviolet B-irradiated skin photoaging. Peptides 2018, 101, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Lanoo, M. Amphibian Declines, 1st ed.; University of California Press: Berkeley, CA, USA, 2005. [Google Scholar]
- Kolbert, E. The Sixth Exctinction: An Unnatural History, 1st ed.; Henry Holt and Company: New York, NY, USA, 2014. [Google Scholar]
- Crump, M.L. Why are some species in decline but others not. In Amphibian Declines, 1st ed.; Lanoo, M., Ed.; University of California Press: Berkeley, CA, USA, 2005; pp. 7–9. [Google Scholar]
- Bovo, R.; Navas, C.; Tejedo, M.; Valença, S.; Gouveia, S. Ecophysiology of Amphibians: Information for Best Mechanistic Models. Diversity 2018, 10, 118. [Google Scholar] [CrossRef]
- Rollins-Smith, L.A. The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochim. Biophys. Acta 2009, 1788, 1593–1599. [Google Scholar] [CrossRef] [PubMed]
- Conlon, J.M.; Mechkarska, M.; Lukic, M.L.; Flatt, P.R. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides 2014, 57, 67–77. [Google Scholar] [CrossRef]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef]
- Catenazzi, A. State of the World’s Amphibians. Ann. Rev. Environ. Resour. 2015, 40, 91–119. [Google Scholar] [CrossRef]
- Bletz, M.C.; Kelly, M.; Sabino-Pinto, J.; Bales, E.; Van Praet, S.; Bert, W.; Boyen, F.; Vences, M.; Steinfartz, S.; Pasmans, F.; et al. Disruption of skin microbiota contributes to salamander disease. Proc. Biol. Sci. 2018, 285, 20180758. [Google Scholar] [CrossRef] [PubMed]
- Withers, P.C.; Guppy, M. Do Australian desert frogs co-accumulate counteracting solutes with urea during aestivation? J. Exp. Biol. 1996, 199, 1809–1816. [Google Scholar] [PubMed]
- Ufnal, M.; Zadlo, A.; Ostaszewski, R. TMAO: A small molecule of great expectations. Nutrition 2015, 31, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Pouokam, E.; Althaus, M. Epithelial Electrolyte Transport Physiology and the Gasotransmitter Hydrogen Sulfide. Oxid. Med. Cell. Longev. 2016, 2016, 4723416. [Google Scholar] [CrossRef] [PubMed]
- Tomasova, L.; Konopelski, P.; Ufnal, M. Gut Bacteria and Hydrogen Sulfide: The New Old Players in Circulatory System Homeostasis. Molecules 2016, 21, 1558. [Google Scholar] [CrossRef] [PubMed]
- Vergani, L.; Vecchione, G.; Baldini, F.; Grasselli, E.; Voci, A.; Portincasa, P.; Ferrari, P.F.; Aliakbarian, B.; Casazza, A.A.; Perego, P. Polyphenolic extract attenuates fatty acid-induced steatosis and oxidative stress in hepatic and endothelial cells. Eur. J. Nutr. 2018, 57, 1793–1805. [Google Scholar] [CrossRef] [PubMed]
- Garnier, J.; Gibrat, J.F.; Robson, B. GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol. 1996, 266, 540–553. [Google Scholar]
Peptide Name | AA Sequences | Species | Length (AA) | Secondary Structure Prediction | Ref. |
---|---|---|---|---|---|
AH-90 | ATAWDFGPHGLLPIRPIRIRPLCG | Odorrana grahami | 24 | Ee: 29.17% Cc 70.83% | [32] |
Alytesin | Pyr-GRLGTQWAVGHLM | Alytes obstetricans | 14 | Ee: 46.15% Cc: 53.85% | [28] |
ARPs/ERPs | - | Rana chensinensis | 2–20 | - | [37] |
Bombesin | Pyr-QRLGNQWAVGHLM | Bombina bombina Bombina variegata Bombina orientalis | 14 | Ee: 38.46% Cc: 61.54% | [27] |
Bm-TFF2 | GFPIYEIDNRPGCYVDPAERVAC AGAGVTKAECKAKGCCFISARR NTIWCFKLKESADAWKCAVPM NTRVACAGAGVTPAECKGKGC CFNSSYYGTVWCFKPQE | Bombina maxima | 104 | Ee: 39.42% Cc: 60.58% | [29,30] |
Cathelicidin-OA1 | IGRDPTWSHLAASCLKCIFDDLPKTHN | Odorrana andersonii | 27 | Hh: 29.63% Ee: 7.41% Cc: 62.96% | [49] |
CW49 | APFRMGICTTN | Odorrana grahami | 11 | Ee: 45.45% Cc: 54.55% | [36] |
OA-GL21 | GLLSGHYGRVVSTQSGHYGRG | Odorrana andersonii | 21 | Ee: 52.38% Cc: 47.62% | [34] |
OM-LV20 | LVGKLLKGAVGDVCGLLPIC | Odorrana margaretae | 20 | Ee: 45.00% Cc: 55.00% | [35] |
pbCGRP | SCDTSTCATQRLADFLSRSGGIGSPDFVPTDVSANSF | Pyllomedusa bicolor | 37 | Hh: 18.92% Ee: 13.51% Cc: 67.57% | [9,31] |
Temporins-A | FLPLIGRVLSGIL | Rana temporaria | 13 | Ee: 69.23% Cc: 30.77% | [33] |
Temporins-B | LLPIVGNLLKSLL | Rana temporaria | 13 | Ee: 30.77% Cc: 69.23% | [33] |
Peptide | AA Sequences | Species | Length (AA) | Secondary Structure Prediction | Ref. |
---|---|---|---|---|---|
Andersonin-C1 | TSRCIFYRRKKCS | Odorrana margaratae | 13 | Ee: 53.85% Cc: 46.15% | [9] |
Andersonin-G1 | KEKLKLKAKAPKCYNDKLACT | Odorrana andersonii | 21 | Ee: 23.81% Cc: 76.19% | [9] |
Andersonin-H3 | VAIYGRDDRSDVCRQVQHNWLVCDTY | Odorrana margaratae | 26 | Ee: 42.31% Cc: 57.69% | [9] |
Andersonin-N1 | ENMFNIKSSVESDSFWG | Odorrana margaratae | 17 | Ee: 52.94% Cc: 47.06% | [9] |
Andersonin-R1 | ENAEEDEVLMENLFCSYIVGSADSFWT | Odorrana margaratae | 27 | Hh: 18.52% Ee: 33.33% Cc: 48.15% | [9] |
Antioxidin-RP1 | AMRLTYNKPCLYGT | Rana pleuraden | 14 | Ee: 28.57% Cc: 71.43% | [9,53] |
Antioxidin-RP2 | SMRLTYNKPCLYGT | Rana pleuraden | 14 | Ee: 28.57% Cc: 71.43% | [9,53] |
APBMH | LEQQVDDLEGSLEQEKK | Rana catesbeiana | 17 | Hh: 35.29% Ee: 11.76% Cc: 52.94% | [9] |
APBSP | LEELEEELEGCE | Rana catesbeiana | 12 | Ee: 16.67% Cc: 83.33% | [9] |
Hejiangin-A1 | RFIYMKGFGKPRFGKR | Odorrana hejiangensis | 16 | Ee: 31.25% Cc: 68.75% | [9] |
Hejiangin-E1 | SADQTGMNKAALSPIRFISKSV | Odorrana hejiangensis | 22 | Ee: 28.57% Cc: 71.43% | [9] |
Hejiangin-F1 | IPWKLPATFRPVERPFSKPFCRKD | Odorrana hejiangensis | 24 | Ee: 16.67% Cc: 83.33% | [9] |
Japonicin-1Npa | FLLFPLMCKIQGKC | Nanorana parkeri | 14 | Ee: 35.71% Cc: 64.29% | [9] |
Japonicin-1Npb | FVLPLVMCKILRKC | Nanorana parkeri | 14 | Ee: 50.00% Cc: 50.00% | [9] |
Lividin-D1 | KNNFCQVLYVWLLRLGKQCFVKFSKDVET | Odorrana livida | 29 | Ee: 51.72% Cc: 48.28% | [9] |
Macrotympanain A1 | FLPGLECVW | Odorrana macrotympana | 9 | Ee: 33.33% Cc: 66.67% | [9] |
Margaratain-A1 | VTPPWARIYYGCAKA | Odorrana margaratae | 15 | Ee: 33.33% Cc: 66.67% | [9] |
Margaratain-B1 | FFSTSCRSGC | Odorrana margaratae | 10 | Ee: 60.00% Cc: 40.00% | [9] |
Margaratain-C1 | GMLKWKNDFFHFLQWLLISCQNYFVK | Odorrana margaratae | 26 | Ee: 50.00% Cc: 50.00% | [9] |
Nigroain-B-MS1 | CVVSSGWKWNYKIRCKLTGNC | Hylarana maosuoensis | 21 | Ee: 47.62% Cc: 52.38% | [54] |
Odorranian-A-OA11 | VVKCSYRQGSPDSR | Odorrana margaratae | 14 | Ee: 42.86% Cc: 57.14% | [9] |
Odorranian-A-OA12 | VVKFSYRKGSPAPQKN | Odorrana margaratae | 16 | Ee: 37.50% Cc:62.50% | [9] |
Parkerin | GWANTLKNVAGGLCKITGAA | Nanorana parkeri | 20 | Ee: 45.00% Cc: 55.00% | [9] |
Pleurain-A1 | SIITMTKEAKLPQLWKQIACRLYNTC | Rana pleuraden | 26 | Hh: 19.23% Ee: 30.77% Cc: 50.00% | [53] |
Pleurain-D1 | FLSGILKLAFKIPSVLCAVLKNC | Rana pleuraden | 23 | Ee: 47.83% Cc: 52.17% | [53] |
Pleurain-E1 | AKAWGIPPHVIPQIVPVRIRPLCGNV | Rana pleuraden | 26 | Ee: 30.77% Cc:69.23% | [53] |
Pleurain-G1 | GFWDSVKEGLKNAAVTILNKIKCKISECPPA | Rana pleuraden | 31 | Hh: 45.16% Cc: 54.84% | [53] |
Pleurain-J1 | FIPGLRRLFATVVPTVVCAINKLPPG | Rana pleuraden | 26 | Ee: 34.62% Cc: 65.38% | [53] |
Pleurain-K1 | DDPDKGMLKWKNDFFQEF | Rana pleuraden | 18 | E: 22.22% Cc: 77.78% | [53] |
Pleurain-M1 | GLLDSVKEGLKKVAGQLLDTLKCKISGCTPA | Rana pleuraden | 31 | Hh: 38.71% Ee: 19.35% Cc: 41.94% | [53] |
Pleurain-N1 | GFFDRIKALTKNVTLELLNTITCKLPVTPP | Rana pleuraden | 30 | Hh: 40.00% Ee: 6.67% Cc: 53.33% | [53] |
Pleurain-P1 | SFGAKNAVKNGLQKLRNQCQANNYQGPFCDIFKKNP | Rana pleuraden | 36 | Hh: 33.33% Ee: 19.44% Cc: 47.22% | [53] |
Pleurain-R1 | CVHWMTNTARTACIAP | Rana pleuraden | 16 | Ee: 37.50% Cc: 62.50% | [53] |
Schmackerin-C1 | AAPRGGKGFFCKLFKDC | Odorrana schmackeri | 17 | Ee: 35.29% Cc: 64.71% | [9] |
Tiannanin-A1 | LLPPWLRPRNG | Odorrana tiannanensis | 11 | Ee: 36.36% Cc: 63.64% | [9] |
Wuchuanin-A1 | APDRPRKFCGILG | Odorrana wuchuanensis | 13 | Ee: 38.46% Cc: 61.54% | [9] |
Wuchuanin-C1 | VFLGNIVSMGKKI | Odorrana wuchuanensis | 13 | Ee: 53.85% Cc: 46.15% | [9] |
Wuchuanin-D1 | DAAVEPELYHWGKVWLPN | Odorrana wuchuanensis | 18 | Ee: 27.78% Cc: 72.22% | [9] |
Wuchuanin-E1 | CVDIGFSPTGKRPPFCPYPG | Odorrana wuchuanensis | 20 | Ee: 10.00% Cc: 90.00% | [9] |
Peptide | AA Sequences | Species | Length (AA) | Secondary Structure Prediction | Ref. |
---|---|---|---|---|---|
Andersonin-AOP 1 | FLPGLECVM | Odorrana andersonii | 9 | Ee: 44.44% Cc: 55.56% | [58] |
Antioxidin-RL | AMRLTYNRPCIYAT | Odorrana livida | 14 | Ee: 28.57% Cc: 71.43% | [59,60] |
Daiyunin-1 | CGYKYGCMVKVDR | Amolops daiyunensis | 13 | Ee: 30.77% Cc: 69.23% | [59] |
Maosonensis-1MS1 | QYRPGSFGPLNQK | Hylarana maosuoensis | 13 | Ee: 23.08% Cc: 76.92% | [54] |
Odorranaopin-MS2 | DYSIRTRLHQESSRNVF | Hylarana maosuoensis | 17 | Ee: 52.94% Cc: 47.06% | [54] |
Pleskein-2 | FFLLPIPNDVKCKVLGICKS | Nanorana pleskei | 20 | Ee: 35.00% Cc: 65.00% | [54] |
Ranacyclin-HB1 | GAPKGCWTKSYPPQPCFGKK | Pelophylax hubeiensis | 20 | Ee: 15.00% Cc: 85.00% | [9] |
Wuchuanin-AOP 5 | TVWGFRPSKPPSGYR | Odorrana wuchuanensi | 15 | Ee: 20.00% Cc: 80.00% | [58] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demori, I.; El Rashed, Z.; Corradino, V.; Catalano, A.; Rovegno, L.; Queirolo, L.; Salvidio, S.; Biggi, E.; Zanotti-Russo, M.; Canesi, L.; et al. Peptides for Skin Protection and Healing in Amphibians. Molecules 2019, 24, 347. https://doi.org/10.3390/molecules24020347
Demori I, El Rashed Z, Corradino V, Catalano A, Rovegno L, Queirolo L, Salvidio S, Biggi E, Zanotti-Russo M, Canesi L, et al. Peptides for Skin Protection and Healing in Amphibians. Molecules. 2019; 24(2):347. https://doi.org/10.3390/molecules24020347
Chicago/Turabian StyleDemori, Ilaria, Zeinab El Rashed, Viola Corradino, Annamaria Catalano, Leila Rovegno, Linda Queirolo, Sebastiano Salvidio, Emanuele Biggi, Matteo Zanotti-Russo, Laura Canesi, and et al. 2019. "Peptides for Skin Protection and Healing in Amphibians" Molecules 24, no. 2: 347. https://doi.org/10.3390/molecules24020347
APA StyleDemori, I., El Rashed, Z., Corradino, V., Catalano, A., Rovegno, L., Queirolo, L., Salvidio, S., Biggi, E., Zanotti-Russo, M., Canesi, L., Catenazzi, A., & Grasselli, E. (2019). Peptides for Skin Protection and Healing in Amphibians. Molecules, 24(2), 347. https://doi.org/10.3390/molecules24020347