Characterization and Phytotoxicity Assessment of Essential Oils from Plant Byproducts
Abstract
:1. Introduction
2. Results
2.1. Micromorphological Analysis
2.2. Essential Oil Yields and Chemical Composition
2.3. Phytotoxic Activity
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Plant Material and Isolation of Essential Oil
4.3. Micromorphological Analysis
4.4. Gas Chromatographic Flame Ionization Detection (GC-FID) and GC-MS Analysis
4.5. Identification of the Essential Oil Components
4.6. Phytotoxic Activity
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dayan, F.E.; Cantrell, C.L.; Duke, S.O. Natural products in crop protection. Bioorg. Med. Chem. 2009, 17, 4022–4034. [Google Scholar] [CrossRef] [PubMed]
- Koul, O.; Walia, S.; Dhaliwal, G.S. Essential oils as green pesticides: Potential and constraints. Biopestic. Int. 2008, 4, 63–84. [Google Scholar]
- De Almeida, L.F.R.; Frei, F.; Mancini, E.; De Martino, L.; De Feo, V. Phytotoxic activities of Mediterranean essential oils. Molecules 2010, 15, 4309–4323. [Google Scholar] [CrossRef] [PubMed]
- Heap, I. The International Survey of Herbicide Resistant Weeds 2014. Available online: www/weedscience.org (accessed on 27 February 2014).
- Said-Al Ahl, H.A.; Hikal, W.M.; Tkachenko, K.G. Essential oils with potential as insecticidal agents: A review. Int. J. Environ. Plan. Manag. 2017, 3, 23–33. [Google Scholar]
- Macías, F.A.; Molinillo, J.M.G.; Galindo, J.C.G.; Varela, R.M.; Simonet, A.M.; Castellano, D. The Use of Allelopathic Studies in the Search for Natural Herbicides. J. Crop Prod. 2001, 4, 237–255. [Google Scholar] [CrossRef]
- Della Pepa, T.; Elshafie, H.S.; Capasso, R.; De Feo, V.; Camele, I.; Nazzaro, F.; Scognamiglio, M.R.; Caputo, L. Antimicrobial and Phytotoxic Activity of Origanum heracleoticum and O. majorana Essential Oils Growing in Cilento (Southern Italy). Molecules 2019, 24, 2576. [Google Scholar] [CrossRef] [PubMed]
- Azirak, S.; Karaman, S. Allelopathic effect of some essential oils and components on germination of weed species. Acta Agric. Scand. Sect. B-Soil Plant Sic. 2008, 58, 88–92. [Google Scholar] [CrossRef]
- Mancini, E.; De Martino, L.; Marandino, A.; Scognamiglio, M.R.; De Feo, V. Chemical composition and possible in vitro phytotoxic activity of Helichrsyum italicum (Roth) Don ssp. italicum. Molecules 2011, 16, 7725–7735. [Google Scholar] [CrossRef]
- Barkatullah, I.M.; Muhammad, N.; De Feo, V. Chemical composition and biological activities of the essential oil of Skimmia laureola leaves. Molecules 2015, 20, 4735–4745. [Google Scholar] [CrossRef]
- Apostolico, I.; Aliberti, L.; Caputo, L.; De Feo, V.; Fratianni, F.; Nazzaro, F.; Souza, L.F.; Khadhr, M. Chemical Composition, Antibacterial and Phytotoxic Activities of Peganum harmala Seed Essential Oils from Five Different Localities in Northern Africa. Molecules 2016, 21, 1235. [Google Scholar] [CrossRef]
- Lamiri, A.; Lhaloui, S.; Benjilali, B.; Berrada, M. Insecticidal effects of essential oils against Hessian fly, Mayetiola destructor (Say). Field Crop. Res. 2001, 7, 9–15. [Google Scholar] [CrossRef]
- Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition 2017, 34, 29–46. [Google Scholar] [CrossRef]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Lupidi, G.; Nabissi, M.; Petrelli, R.; Kamte, S.L.N.; Maggi, F. The crop-residue of fiber hemp cv. Futura 75: From a waste product to a source of botanical insecticides. Environ. Sci. Pollut. Res. 2018, 25, 10515–10525. [Google Scholar] [CrossRef]
- Nissen, L.; Zatta, A.; Stefanini, I.; Grandi, S.; Sgorbati, B.; Biavati, B.; Monti, A. Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.). Fitoterapia 2010, 81, 413–419. [Google Scholar] [CrossRef]
- Smeriglio, A.; Denaro, M.; Barreca, D.; Calderaro, A.; Bisignano, C.; Ginestra, G.; Bellocco, E.; Trombetta, D. In Vitro Evaluation of the Antioxidant, Cytoprotective, and Antimicrobial Properties of Essential Oil from Pistacia vera L. Variety Bronte Hull. Int. J. Mol. Sci. 2017, 18, 1212. [Google Scholar] [CrossRef]
- Chahed, T.; Dhifi, W.; Hosni, K.; Msaada, K.; Kchouk, M.E.; Marzouk, B. Composition of Tunisian pistachio hull essential oil during fruit formation and ripening. J. Essent. Oil Res. 2008, 20, 122–125. [Google Scholar] [CrossRef]
- Hashemi-Moghaddam, H.; Mohammdhosseini, M.; Salar, M. Chemical composition of the essential oils from the hulls of Pistacia vera L. by using magnetic nanoparticle-assisted microwave (MW) distillation: Comparison with routine MW and conventional hydrodistillation. Anal. Methods 2014, 6, 2572–2579. [Google Scholar] [CrossRef]
- Snuossi, M.; Trabelsi, N.; Ben Taleb, S.; Dehmeni, A.; Flamini, G.; De Feo, V. Laurus nobilis, Zingiber officinale and Anethum graveolens Essential Oils: Composition, Antioxidant and Antibacterial Activities against Bacteria Isolated from Fish and Shellfish. Molecules 2016, 21, 1414. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Varoni, E.M.; Salehi, B.; Sharifi-Rad, J.; Matthews, K.R.; Ayatollahi, S.A.; Kobarfard, F.; Ibrahim, S.A.; Mnayer, D.; Zakaria, Z.A.; et al. Plants of the Genus Zingiber as a Source of Bioactive Phytochemicals: From Tradition to Pharmacy. Molecules 2017, 22, 2145. [Google Scholar] [CrossRef]
- Lagha, R.; Ben Abdallah, F.; Al-Sarhan, B.O.; Al-Sodany, Y. Antibacterial and Biofilm Inhibitory Activity of Medicinal Plant Essential Oils Against Escherichia coli Isolated from UTI Patients. Molecules 2019, 24, 1161. [Google Scholar] [CrossRef]
- Miloš, M.; Mastelić, J.; Radonić, A. Free and glycosidically bound volatile compounds from cypress cones (Cupressus sempervirens L.). Croat. Chem. Acta 1998, 71, 139–145. [Google Scholar]
- Tumen, I.; Hafizoglu, H.; Pranovich, A.; Reunanen, M. Chemical constituents of cones and leaves of cypress (Cupressus sempervirens L.) grown in Turkey. Fresenius Environ. Bull. 2010, 19, 2268–2276. [Google Scholar]
- Selim, S.A.; Adam, M.E.; Hassan, S.M.; Albalawi, A.R. Chemical composition, antimicrobial and antibiofilm activity of the essential oil and methanol extract of the Mediterranean cypress (Cupressus sempervirens L.). BMC Complement. Altern. Med. 2014, 14, 179. [Google Scholar] [CrossRef]
- Rolli, E.; Marieschi, M.; Maietti, S.; Sacchetti, G.; Bruni, R. Comparative phytotoxicity of 25 essential oils on pre-and post-emergence development of Solanum lycopersicum L.: A multivariate approach. Ind. Crop. Prod. 2014, 60, 280–290. [Google Scholar] [CrossRef]
- Ismail, A.; Mancini, E.; De Martino, L.; Marandino, A.; Lamia, H.; Mohsen, H.; Bassem, J.; Scognamiglio, M.; Reverchon, E.; De Feo, V. Chemical composition and biological activities of the essential oils from three Melaleuca species grown in Tunisia. Int. J. Mol. Sci. 2012, 13, 16580–16591. [Google Scholar]
- Agnieszka, S.; Magdalena, R.; Jan, B.; Katarzyna, W.; Malgorzata, B.; Krzysztof, H.; Danuta, K. Phytotoxic Effect of Fiber Hemp Essential Oil on Germination of Some Weeds and Crops. J. Essent. Oil Bear. Plants 2016, 19, 262–276. [Google Scholar] [CrossRef]
- M’barek, K. Chemical composition and phytotoxicity of Cupressus sempervirens leaves against crops. J. Essent. Oil Bear. Plants 2016, 19, 1582–1599. [Google Scholar] [CrossRef]
- M’barek, K.; Zribi, I.; Ullah, M.J.; Haouala, R. The mode of action of allelochemicals aqueous leaf extracts of some Cupressaceae species on lettuce. Sci. Hortic. 2019, 252, 29–37. [Google Scholar]
- Ismail, A.; Lamia, H.; Mohsen, H.; Bassem, J. Herbicidal potential of essential oils from three mediterranean trees on different weeds. Curr. Bioact. Compd. 2012, 8, 3–12. [Google Scholar] [CrossRef]
- Pudełko, K.; Majchrzak, L.; Narożna, D. Allelopathic effect of fibre hemp (Cannabis sativa L.) on monocot and dicot plant species. Ind. Crop. Prod. 2014, 56, 191–199. [Google Scholar] [CrossRef]
- Dhima, K.V.; Vasilakoglou, I.B.; Gatsis, T.D.; Panou-Pholotheou, E.; Eleftherohorinos, I.G. Effects of aromatic plants incorporated as green manure on weed and maize development. Filed Crop. Res. 2009, 110, 235–241. [Google Scholar] [CrossRef]
- Vokou, D.; Douvli, P.; Blionis, G.J.; Halley, J.M. Effects of monoterpenoids, acting alone or in pairs, on seed germination and subsequent seedling growth. J. Chem. Ecol. 2003, 29, 2281–2301. [Google Scholar] [CrossRef]
- De Martino, L.; Mancini, E.; Rolim de Almeida, L.F.; De Feo, V. The antigerminative activity of twenty-seven monoterpenes. Molecules 2010, 15, 6630–6637. [Google Scholar] [CrossRef]
- Vasilakoglou, I.; Dhima, K.; Paschalidis, K.; Ritzoulis, C. Herbicidal potential on Lolium rigidum of nineteen major essential oil components and their synergy. J. Essent. Oil Res. 2013, 25, 1–10. [Google Scholar] [CrossRef]
- Pavela, R.; Sedlák, P. Post-application temperature as a factor influencing the insecticidal activity of essential oil from Thymus vulgaris. Ind. Crop. Prod. 2018, 113, 46–49. [Google Scholar] [CrossRef]
- De Falco, E.; De Feo, V.; Zaccardelli, M.; De Nicola, M.; Tarangelo, M. Effects of different vegetal mulching on Rosmarinus officinalis L.—First resutls. Acta Hortic. 2006, 723, 447–452. [Google Scholar] [CrossRef]
- Kamariari, I.; Papastylianou, P.; Bilalis, D.; Travlos, I.S.; Kakabouki, I. The role of mulching with residues of two medicinal plants on weed diversity in maize. In Proceedings of the 4th ISOFAR Scientific Conference at the Organic World Congress on ‘Building Organic Bridges’, Istanbul, Turkey, 13–15 October 2014. [Google Scholar]
- Chieco, C.; Rotondi, A.; Morrone, L.; Rapparini, F.; Baraldi, R. An ethanol-based fixation method for anatomical and micro-morphological characterization of leaves of various tree species. Biotech. Histochem. 2013, 88, 109–119. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- McLafferty, F.W. The Wiley Registry of Mass Spectral Data, with NIST Spectral Data CD Rom, 7th ed.; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Bewley, D.; Black, M. Seeds: Physiology of Development and Germination; Plenum Press: New York, NY, USA, 1985. [Google Scholar]
Sample Availability: Samples of the essential oils are available from the authors. |
Compound Name | Area (%) | KI a | Identification b | |
---|---|---|---|---|
1 | Heptanal | 0.02 | 217 | 1,2 |
2 | α-Thujene | 0.11 | 348 | 1,2 |
3 | α-(+)-Pinene | 7.82 | 401 | 1,2,3 |
4 | Camphene | 0.21 | 443 | 1,2,3 |
5 | (1S)-(−)-β-Pinene | 3.73 | 565 | 1,2,3 |
6 | β-Myrcene | 9.32 | 639 | 1,2,3 |
7 | α-Phellandrene | 0.44 | 662 | 1,2 |
8 | δ-3-Carene | 0.68 | 680 | 1,2,3 |
9 | (+)-4-Carene | 0.38 | 699 | 1,2 |
10 | p-Cymene | 0.09 | 722 | 1,2 |
11 | D-Limonene | 2.92 | 743 | 1,2,3 |
12 | cis-β-Ocimene | 0.54 | 769 | 1,2 |
13 | trans-β-Ocimene | 4.62 | 810 | 1,2 |
14 | γ-Terpinene | 0.30 | 827 | 1,2 |
15 | α-Terpinolen | 9.35 | 919 | 1,2 |
16 | β-Linalool | 0.10 | 934 | 1,2 |
17 | Fenchol | 0.05 | 961 | 1,2 |
18 | L-trans-Pinocarveol | 0.01 | 1015 | 1,2 |
19 | Borneol | 0.03 | 1070 | 1,2 |
20 | 4-Terpineol | 0.09 | 1093 | 1,2 |
21 | p-Cymen-8-ol | 0.09 | 1109 | 1,2 |
22 | α-Terpineol | 0.05 | 1118 | 1,2,3 |
23 | n-Hexyl butyrate | 0.04 | 1123 | 1,2 |
24 | (R)-(+)-β-Citronellol | 0.02 | 1184 | 1,2 |
25 | Bornyl acetate | 0.08 | 1270 | 1,2,3 |
26 | (+/−)-Lavandulol acetate | t | 1278 | 1,2 |
27 | Ylangene | 0.06 | 1379 | 1,2 |
28 | Copaene | 0.05 | 1384 | 1,2 |
29 | (+)-Sativene | 0.37 | 1403 | 1,2 |
30 | Isocaryophillene | 0.46 | 1419 | 1,2 |
31 | α-Caryophillene | 21.68 | 1447 | 1,2 |
32 | β-Gurjunene | 0.03 | 1451 | 1,2 |
33 | α-bergamotene | 3.22 | 1456 | 1,2 |
34 | γ-Gurjunene | 0.05 | 1459 | 1,2 |
35 | β-Caryophillene | 9.86 | 1478 | 1,2 |
36 | β-Farnesene | 0.80 | 1480 | 1,2 |
37 | allo-Aromadendrene | 1.07 | 1483 | 1,2 |
38 | α-Selinene | 0.02 | 1485 | 1,2 |
39 | γ-Cadinene | 0.42 | 1494 | 1,2 |
40 | β-Himachalene | 0.19 | 1497 | 1,2 |
41 | γ-Selinene | 0.49 | 1500 | 1,2 |
42 | α-Guaiene | 1.67 | 1506 | 1,2 |
43 | δ-Guaiene | 2.16 | 1514 | 1,2 |
44 | α-Muurolene | 0.08 | 1516 | 1,2 |
45 | β -Bisabolene | 1.23 | 1526 | 1,2 |
46 | γ-Muurolene | 0.31 | 1530 | 1,2 |
47 | (+)-Valencene | 0.12 | 1538 | 1,2 |
48 | β-Sesquiphellandrene | 0.80 | 1542 | 1,2 |
49 | β-Panasinsene | 1.72 | 1554 | 1,2 |
50 | δ-Selinene | 1.20 | 1558 | 1,2 |
51 | Selina-3,7(11)diene | 2.54 | 1561 | 1,2 |
52 | Elixene | 0.76 | 1575 | 1,2 |
53 | β-Maaliene | 0.41 | 1579 | 1,2 |
54 | trans-Nerolidol | 0.45 | 1582 | 1,2 |
55 | Caryophillene oxide | 3.83 | 1602 | 1,2 |
56 | Eremophilene | 0.09 | 1618 | 1,2 |
57 | Caryophylladienol II | 0.26 | 1653 | 1,2 |
58 | (+)-epi-Bicyclosesquiphellandrene | 0.30 | 1657 | 1,2 |
59 | α-Cadinol | 0.13 | 1670 | 1,2 |
60 | (+)-Ledene | 0.09 | 1673 | 1,2 |
61 | α-Bisabolol | 0.13 | 1697 | 1,2 |
62 | Guaia-3,9-diene | 0.01 | 1702 | 1,2 |
63 | Juniper camphor | 0.07 | 1710 | 1,2 |
64 | Z-9-Pentadecenol | 0.02 | 1742 | 1,2 |
65 | Hexahydrofarnesyl acetone | 0.04 | 1859 | 1,2 |
66 | Methyl palmitate | 0.02 | 1940 | 1,2 |
67 | Biformen | 0.08 | 2005 | 1,2 |
68 | Dehydroabietan | 0.04 | 2069 | 1,2 |
69 | Heneicosane | 0.02 | 2114 | 1,2 |
70 | Phytol | 0.06 | 2128 | 1,2 |
71 | Cryptopinone | 0.03 | 2178 | 1,2 |
72 | Dehydroabietal | 0.08 | 2282 | 1,2 |
73 | Methyl isopimarate | 0.02 | 2310 | 1,2 |
74 | Tricosane | 0.01 | 2315 | 1,2 |
75 | Methyl dehydroabietate | 0.03 | 2355 | 1,2 |
76 | Cannabidiol | 1.17 | 2445 | 1,2 |
77 | Cannabichromene | 0.07 | 2450 | 1,2 |
78 | Tetracosane | 0.03 | 2716 | 1,2 |
79 | Nonacosane | 0.06 | 2916 | 1,2 |
Total | 100.00 | |||
Monoterpene hydrocarbons | 40.51 | |||
Oxygenated monoterpenes | 0.52 | |||
Sesquiterpene hydrocarbons | 52.26 | |||
Oxygenated sesquiterpenes | 4.87 | |||
Cannabinoids | 1.24 | |||
Others | 0.60 | |||
Essential oil yield % (v/w) | 0.2 |
Compound Name | Area (%) | KI a | Identification b | |
---|---|---|---|---|
1 | Bornylene | 0.03 | 916 | 1,2 |
2 | Tricyclene | 0.72 | 923 | 1,2 |
3 | α-Pinene | 22.65 | 935 | 1,2,3 |
4 | Camphene | 3.88 | 950 | 1,2,3 |
5 | β-Pinene | 1.02 | 978 | 1,2,3 |
6 | β-Myrcene | 2.43 | 993 | 1,2,3 |
7 | 2-Carene | 1.05 | 995 | 1,2,3 |
8 | α-Phellandrene | 0.47 | 1006 | 1,2 |
9 | δ-3-Carene | 7.98 | 1011 | 1,2,3 |
10 | α-Terpinene | 2.33 | 1018 | 1,2,3 |
11 | p-Cymene | 1.42 | 1027 | 1,2 |
12 | D-Limonene | 8.50 | 1031 | 1,2,3 |
13 | trans-β-Ocimene | 0.48 | 1050 | 1,2 |
14 | cis-β-Ocimene | 0.35 | 1056 | 1,2 |
15 | γ-Terpinene | 0.58 | 1061 | 1,2 |
16 | 4-Carene | 32.03 | 1082 | 1,2 |
17 | α-Pinene oxide | 0.69 | 1096 | 1,2 |
18 | Linalool | 0.38 | 1101 | 1,2,3 |
19 | 2-Fenchanol | 0.44 | 1107 | 1,2 |
20 | 1,3,8-p-Menthatriene | 0.17 | 1130 | 1,2 |
21 | Camphor | 0.22 | 1148 | 1,2 |
22 | Menthone | 0.35 | 1150 | 1,2 |
23 | Borneol | 1.03 | 1169 | 1,2 |
24 | p-Cymen-8-ol | 0.74 | 1188 | 1,2 |
25 | α-Terpineol | 3.99 | 1194 | 1,2,3 |
26 | Myrtenal | 0.03 | 1197 | 1,2 |
27 | Myrtenol | 0.06 | 1202 | 1,2 |
28 | α-Methylcynnamaldehyde | 0.05 | 1210 | 1,2 |
29 | Piperitone | 0.53 | 1250 | 1,2 |
30 | Nerol | 0.34 | 1232 | 1,2 |
31 | Bornyl acetate | 2.37 | 1285 | 1,2,3 |
32 | Nerol acetate | 0.18 | 1365 | 1,2 |
33 | β-Bisabolene | 0.05 | 1513 | 1,2 |
34 | γ-Selinene | 0.09 | 1525 | 1,2 |
35 | δ-Cadinene | 0.07 | 1530 | 1,2 |
36 | cis-5-Dodecenoic acid | 0.13 | 1568 | 1,2 |
37 | 1,13-Tetradecadiene | 1.43 | 1810 | 1,2 |
38 | 1-Hexadecanol | 0.13 | 1880 | 1,2 |
39 | Palmitic acid | 0.05 | 1957 | 1,2 |
40 | 1,15-Hexadecadiene | 0.43 | 2549 | 1,2 |
Total | 99.87 | |||
Monoterpene hydrocarbons | 86.20 | |||
Oxygenated monoterpenes | 11.37 | |||
Sesquiterpene hydrocarbons | 0.21 | |||
Oxygenated sesquiterpenes | 0.00 | |||
Others | 2.22 | |||
Essential oil yield % (v/w) | 0.3 |
Compound Name | Area (%) | KI a | Identification b | |
---|---|---|---|---|
1 | α-Pinene | 2.47 | 861 | 1,2 |
2 | Santolina triene | 6.29 | 873 | 1,2 |
3 | β-Pinene | 0.45 | 896 | 1,2 |
4 | m-Mentha-1(7),8-diene | 0.32 | 912 | 1,2 |
5 | Camphene | 1.28 | 914 | 1,2 |
6 | α-Phellandrene | 0.46 | 923 | 1,2 |
7 | iso-Sylvestrene | 0.06 | 927 | 1,2 |
8 | α-Terpinene | 0.08 | 934 | 1,2 |
9 | Eucalyptol | 10.32 | 949 | 1,2 |
10 | δ-3-Carene | t | 974 | 1,2 |
11 | (2E,4E)-Heptadienol | t | 975 | 1,2 |
12 | Sylvestrene | t | 983 | 1,2 |
13 | (Z)-β-Ocimene | 0.36 | 997 | 1,2 |
14 | m-Cymenene | t | 999 | 1,2 |
15 | 2-Nonanone | 0.22 | 1004 | 1,2 |
16 | 6-Camphenone | 0.24 | 1009 | 1,2 |
17 | Linalool | 0.55 | 1014 | 1,2 |
18 | 2-Nonanol | 0.22 | 1016 | 1,2 |
19 | 1,3,8-p-Menthatriene | t | 1019 | 1,2 |
20 | endo-Fenchol | t | 1024 | 1,2 |
21 | trans-p-Menth-2-en-1-ol | 0.07 | 1029 | 1,2 |
22 | allo-Ocimene | 0.12 | 1039 | 1,2 |
23 | 2-(1Z)-Propenyl-phenol | t | 1041 | 1,2 |
24 | (3E,6Z)-Nonadienol | t | 1044 | 1,2 |
25 | iso-Pulegol | 0.14 | 1054 | 1,2 |
26 | neo-iso-Pulegol | 0.71 | 1062 | 1,2 |
27 | Borneol | 1.52 | 1074 | 1,2 |
28 | Terpinen-4-ol | 0.13 | 1083 | 1,2 |
29 | (E)-Isocitral | 0.67 | 1091 | 1,2 |
30 | γ-Terpineol | 0.54 | 1098 | 1,2 |
31 | trans-Piperitol | 0.06 | 1100 | 1,2 |
32 | Citronellol | 0.94 | 1135 | 1,2 |
33 | Isobornyl formate | 4.89 | 1142 | 1,2 |
34 | Neral | 0.74 | 1161 | 1,2 |
35 | 2-Pentyl-ciclopent-2-en-1-one | 2.07 | 1172 | 1,2 |
36 | p-Menth-1-en-9-ol | 0.15 | 1182 | 1,2 |
37 | 2-Undecanone | 0.60 | 1193 | 1,2 |
38 | Undecen-10-en-1-al | 0.09 | 1196 | 1,2 |
39 | Cyclosativene | 0.21 | 1222 | 1,2 |
40 | α-Copaene | t | 1236 | 1,2 |
41 | 4aα,7α,7aβ-Nepetalactone | 0.12 | 1245 | 1,2 |
42 | iso-Longifolene | 0.39 | 1248 | 1,2 |
43 | α-Cubebene | 0.69 | 1260 | 1,2 |
44 | γ-Elemene | 0.27 | 1275 | 1,2 |
45 | α-Guaiene | 1.17 | 1278 | 1,2 |
46 | 6,9-Guaiadiene | 0.28 | 1293 | 1,2 |
47 | cis-Muurola-3,5-diene | 1.04 | 1295 | 1,2 |
48 | trans-Muurola-3,5-diene | 0.83 | 1305 | 1,2 |
49 | α-Humulene | 1.92 | 1312 | 1,2 |
50 | allo-Aromadendrene | 2.27 | 1336 | 1,2 |
51 | α-Acoradiene | 5.27 | 1360 | 1,2 |
52 | 9-epi-(E)-Caryophyllene | 1.56 | 1369 | 1,2 |
53 | β-Acoradiene | 5.72 | 1376 | 1,2 |
54 | α-Zingiberene | 15.92 | 1383 | 1,2 |
55 | γ-Amorphene | 11.55 | 1384 | 1,2 |
56 | Viridiflorene | 0.06 | 1395 | 1,2 |
57 | γ-Patchoulene | 8.77 | 1402 | 1,2 |
58 | (Z)-γ-Bisabolene | 0.37 | 1407 | 1,2 |
59 | cis-Cadinene-ether | 0.22 | 1411 | 1,2 |
60 | trans-Dauca-4(11),7-diene | 0.32 | 1424 | 1,2 |
61 | Germacrene B | 0.60 | 1428 | 1,2 |
62 | epi-Cedrol | 0.18 | 1463 | 1,2 |
63 | 1-epi-Cubenol | 0.47 | 1486 | 1,2 |
64 | allo-Aromadendrene epoxide | 0.38 | 1495 | 1,2 |
65 | β-Eudesmol | 0.30 | 1511 | 1,2 |
66 | α-Cadinol | 0.12 | 1517 | 1,2 |
Total | 97.76 | |||
Monoterpene hydrocarbons | 22.72 | |||
Oxygenated monoterpenes | 11.73 | |||
Sesquiterpene hydrocarbons | 60.57 | |||
Oxygenated sesquiterpenes | 1.71 | |||
Others | 3.27 | |||
Essential oil yield % (v/w) | 0.7 |
Compound Name | Area (%) | KI a | Identification b | |
---|---|---|---|---|
1 | α-Pinene | 43.25 | 820 | 1,2 |
2 | α-Fenchene | 0.96 | 873 | 1,2 |
3 | Verbenene | 0.06 | 893 | 1,2 |
4 | Sabinene | 3.24 | 897 | 1,2 |
5 | β-Pinene | 1.95 | 915 | 1,2 |
6 | α-Phellandrene | t | 924 | 1,2 |
7 | p-Mentha-1(7),8-diene | 16.47 | 932 | 1,2 |
8 | iso-Sylvestrene | 0.23 | 935 | 1,2 |
9 | p-Cimene | t | 938 | 1,2 |
10 | o-Cimene | 0.44 | 943 | 1,2 |
11 | (E)-β-Ocimene | 4.49 | 948 | 1,2 |
12 | γ-Terpinene | 1.37 | 958 | 1,2 |
13 | Terpinolene | t | 983 | 1,2 |
14 | p-Mentha-2-4(8)-diene | 3.76 | 999 | 1,2 |
15 | α-Pinene oxide | t | 1005 | 1,2 |
16 | cis-Limonene oxide | t | 1015 | 1,2 |
17 | 1,3,8-p-Menthatriene | t | 1020 | 1,2 |
18 | trans-p-Mentha-2,8-dien-1-ol | t | 1024 | 1,2 |
19 | allo-Ocimene | 2.61 | 1040 | 1,2 |
20 | cis-p-Mentha-2,8-dien-1-ol | t | 1046 | 1,2 |
21 | cis-Verbenol | 0.17 | 1048 | 1,2 |
22 | trans-Sabinol | t | 1059 | 1,2 |
23 | (E)-Tagetone | 0.06 | 1073 | 1,2 |
24 | neo-Isopulegol | 0.65 | 1083 | 1,2 |
25 | neo-iso-3-Thujanol | 0.10 | 1098 | 1,2 |
26 | Pentyl cyclohexa-1,3-diene | 0.06 | 1105 | 1,2 |
27 | (Z)-Isocitral | t | 1137 | 1,2 |
28 | Anisole | 0.39 | 1143 | 1,2 |
29 | Neo-iso-Isopulegol | 0.64 | 1180 | 1,2 |
30 | cis-Sabinene hydrate acetate | 0.66 | 1230 | 1,2 |
31 | α-Cubebene | 0.49 | 1236 | 1,2 |
32 | α-Terpinyl acetate | 2.25 | 1240 | 1,2 |
33 | α-Ylangene | 0.10 | 1260 | 1,2 |
34 | α-Copaene | 0.10 | 1278 | 1,2 |
35 | Longifolene | 0.58 | 1286 | 1,2 |
36 | α-Cedrene | 3.97 | 1294 | 1,2 |
37 | α-Gurjunene | 2.01 | 1305 | 1,2 |
38 | α-Santalene | 1.30 | 1329 | 1,2 |
39 | β-Cedrene | 0.62 | 1339 | 1,2 |
40 | β-Copaene | 1.67 | 1354 | 1,2 |
41 | Aromadendrene | 1.06 | 1372 | 1,2 |
42 | γ-Elemene | 0.48 | 1388 | 1,2 |
43 | Valencene | 0.62 | 1399 | 1,2 |
44 | Caryophyllene oxide | 0.17 | 1499 | 1,2 |
45 | Cedrol | 0.24 | 1470 | 1,2 |
46 | α-Acoradiene | 0.12 | 1477 | 1,2 |
47 | Himachalol | 0.15 | 1507 | 1,2 |
48 | α-Cadinol | 0.24 | 1517 | 1,2 |
Total | 97.73 | |||
Monoterpene hydrocarbons | 81.34 | |||
Oxygenated monoterpenes | 3.96 | |||
Sesquiterpene hydrocarbons | 13.30 | |||
Oxygenated sesquiterpenes | 0.94 | |||
Others | 0.46 | |||
Essential oil yield % (v/w) | 0.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smeriglio, A.; Trombetta, D.; Cornara, L.; Valussi, M.; De Feo, V.; Caputo, L. Characterization and Phytotoxicity Assessment of Essential Oils from Plant Byproducts. Molecules 2019, 24, 2941. https://doi.org/10.3390/molecules24162941
Smeriglio A, Trombetta D, Cornara L, Valussi M, De Feo V, Caputo L. Characterization and Phytotoxicity Assessment of Essential Oils from Plant Byproducts. Molecules. 2019; 24(16):2941. https://doi.org/10.3390/molecules24162941
Chicago/Turabian StyleSmeriglio, Antonella, Domenico Trombetta, Laura Cornara, Marco Valussi, Vincenzo De Feo, and Lucia Caputo. 2019. "Characterization and Phytotoxicity Assessment of Essential Oils from Plant Byproducts" Molecules 24, no. 16: 2941. https://doi.org/10.3390/molecules24162941
APA StyleSmeriglio, A., Trombetta, D., Cornara, L., Valussi, M., De Feo, V., & Caputo, L. (2019). Characterization and Phytotoxicity Assessment of Essential Oils from Plant Byproducts. Molecules, 24(16), 2941. https://doi.org/10.3390/molecules24162941