Chemical Constituents from the Stems of Tinospora sinensis and Their Bioactivity
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Materials
3.3. Extraction and Isolation
3.4. Anti-inflammatory Bioactivity Examination
3.4.1. Preparation of Human Neutrophils
3.4.2. Measurement of Superoxide Anion Generation and Elastase Release
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Witko-Sarsat, V.; Rieu, P.; Descamps-Latscha, B.; Lesavre, P.; Halbwachs-Mecarelli, L. Neutrophils: Molecules, functions and pathophysiological aspects. Lab. InvestIG. 2000, 80, 617–653. [Google Scholar] [CrossRef] [PubMed]
- Okajima, K.; Harada, N.; Uchiba, M. Ranitidine Reduces Ischemia/Reperfusion-Induced Liver Injury in Rats by Inhibiting Neutrophil Activation. J. Pharmacol. Exp. Ther. 2002, 301, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Ennis, M. Neutrophils in asthma pathophysiology. Curr. Allergy Asthma Rep. 2003, 3, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Hwang, T.L.; Li, G.L.; Lan, Y.H.; Chia, Y.C.; Hsieh, P.W.; Wu, Y.H.; Wu, Y.C. Potent inhibitors of superoxide anion production in activated human neutrophils by isopedicin, a bioactive component of the Chinese medicinal herb Fissistigma oldhamii. Free Radic. Biol. Med. 2009, 46, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Malech, H.L.; Gallin, J.I. Current concepts: Immunology: Neutrophils in human diseases. N. Engl. J. Med. 1987, 317, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Van Eeden, S.F.; Klut, M.E.; Walker, B.A.M.; Hogg, J.C. The use of flow cytometry to measure neutrophil function. J. Immunol. Methods 1999, 232, 23–43. [Google Scholar] [CrossRef]
- Editorial Committee of the Flora of Taiwan. Flora of Taiwan, 2nd ed.; Department of Botany, National Taiwan University: Taipei, Taiwan, 1996; Volume 2, p. 605. [Google Scholar]
- Krishna, K.L.; Jigar, B.; Jagruti, P. Guduchi (Tinospora cordifolia): Biological and Medicinal properties: A review. Int. J. Altern. Med. 2009, 6, 1–12. [Google Scholar]
- Mishra, A.; Kumar, S.; Bhargava, A.; Sharma, B.; Pandey, A.K. Studies on in vitro antioxidant and antistaphylococcal activities of some important medicinal plants. Cell Mol. Biol. 2011, 57, 16–25. [Google Scholar] [PubMed]
- Upadhyay, A.K.; Kumar, K.; Kumar, A.; Mishra, H.S. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi)–validation of the Ayurvedic pharmacology through experimental and clinical studies. Int. J. Ayurveda Res. 2010, 1, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Velazquez, E.A.; Kimura, D.; Torbati, D.; Ramachandran, C.; Totapally, B.R. Immunological response to (1,4)-α-D-glucan in the lung and spleen of endotoxin-stimulated juvenile rats. Basic Clin. Pharmacol. Toxicol. 2009, 105, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.H.; Ruan, C.T.; Hsieh, P.H.; Su, M.J.; Lee, S.S. Hypoglycemic Diterpenoids from Tinospora crispa. J. Nat. Prod. 2012, 75, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Ruan, C.T.; Lam, S.H.; Lee, S.S.; Su, M.J. Hypoglycemic action of borapetoside A from the plant Tinospora crispa in mice. Phytomedicine 2013, 20, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.H.; Akao, T.; Hamasaki, K.; Deyama, T.; Hattori, M. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol. Chem. Pharm. Bull. 2003, 51, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Wu, T.Y.; Chang, F.R.; Wu, Y.C. Lignans and kauranes from the stems of Annona cherimola. J. Chin. Chem. Soc. 1998, 45, 629–634. [Google Scholar] [CrossRef]
- Deyama, T. The constituents of Eucommia ulmoides Oliv. I. Isolation of (+)-medioresinol di-O-β-D- glucopyranoside. Chem. Pharm. Bull. 1983, 31, 2993–2997. [Google Scholar] [CrossRef]
- Kitagawa, S.; Nishibe, S.; Benecke, R.; Thieme, H. Phenolic compounds from Forsythia leaves. II. Chem. Pharm. Bull. 1988, 36, 3667–3670. [Google Scholar] [CrossRef]
- Kinjo, J.; Higuchi, H.; Fukui, K.; Nohara, T. Lignoids from Albizziae cortex. II. A biodegradation pathway of syringaresinol. Chem. Pharm. Bull. 1991, 39, 2952–2955. [Google Scholar] [CrossRef]
- Jong, T.T.; Jean, M.Y. Constituents of Houttuynia cordata and the crystal structure of vomifoliol. J. Chin. Chem. Soc. 1993, 40, 399–402. [Google Scholar] [CrossRef]
- Haslam, E. The stereochemistry of sesamolin. J. Chem. Soc. C 1970, 17, 2332–2334. [Google Scholar] [CrossRef]
- Sudhakar, G.; Kadam, V.D.; Bayya, S.; Pranitha, G.; Jagadeesh, B. Total synthesis and stereochemical revision of acortatarins A and B. Org. Lett. 2011, 13, 5452–5455. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.B.; Chang, B.Y.; Hwang, B.Y.; Kim, S.Y.; Lee, M.K. Pyrrole alkaloids from the fruits of Morus alba. Bioorg. Med. Chem. Lett. 2014, 24, 5656–5659. [Google Scholar] [CrossRef] [PubMed]
- Chin, Y.W.; Lim, S.W.; Kim, S.H.; Shin, D.Y.; Suh, Y.G.; Kim, Y.B.; Kim, Y.C.; Kim, J. Hepatoprotective Pyrrole Derivatives of Lycium chinense Fruits. Bioorg. Med. Chem. Lett. 2003, 13, 79–81. [Google Scholar] [CrossRef]
- Zhou, J.T.; Li, C.Y.; Wang, C.H.; Wang, Y.F.; Wang, X.D.; Wang, H.T.; Zhu, Y.; Jiang, M.M.; Gao, X.M. Phenolic Compounds from the Roots of Rhodiola crenulata and Their Antioxidant and Inducing IFN-γ Production Activities. Molecules 2015, 20, 13725–13739. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, S.; Subbarao, G.V.; Nakahara, K.; Yoshihashi, T.; Ito, O.; Maeda, I.; Ono, H.; Yoshida, M. Nitrification inhibitors from the root tissues of Brachiaria humidicola, a tropical grass. J. Agric. Food Chem. 2007, 55, 1385–1388. [Google Scholar] [CrossRef] [PubMed]
- Okuyama, E.; Suzumura, K.; Yamazaki, M. Pharmacologically active components of Todopon Puok (Fagraea racemosa), a medicinal plant from Borneo. Chem. Pharm. Bull. 1995, 43, 2200–2204. [Google Scholar] [CrossRef] [PubMed]
- Olesch, B.; Böhm, H. Abbau des 2-benzyl-isochinolin-alkaloids sendaverin. Arch. Pharm. 1972, 305, 222–229. [Google Scholar] [CrossRef]
- Lee, S.Y.; Choi, S.U.; Lee, J.H.; Lee, D.U.; Lee, K.R. A new phenylpropane glycoside from the rhizome of Sparganium stoloniferum. Arch. Pharm. Res. 2010, 33, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.M.; Liu, Y.L.; Li, X.R.; Feng, Y.L.; Yang, S.L. Two new phenylglycol derivatives isolated from Syringa reticulata var. mandshurica and their antifungal activities. Chem. Pharm. Bull. 2009, 57, 863–866. [Google Scholar] [PubMed]
- Zhong, X.N.; Otsuka, H.; Ide, T.; Hirata, E.; Takeda, Y. Hydroquinone diglycoside acyl esters from the leaves of Myrsine seguinii. Phytochemistry 1999, 52, 923–927. [Google Scholar] [CrossRef]
- Miyase, T.; Ueno, A.; Takizawa, N.; Kobayashi, H.; Oguchi, H. Ionone and lignan glycosides from Epimedium diphyllum. Phytochemistry 1989, 28, 3483–3485. [Google Scholar] [CrossRef]
- Kuwajima, H.; Takai, Y.; Takaishi, K.; Inoue, K. Synthesis of 13C-labeled possible intermediates in the biosynthesis of phenylethanoid derivatives, cornoside and rengyosides. Chem. Pharm. Bull. 1998, 46, 581–586. [Google Scholar] [CrossRef]
- Greca, M.D.; Ferrara, M.; Fiorentino, A.; Monaco, P.; Previtera, L. Antialgal compounds from Zantedeschia aethiopica. Phytochemistry 1998, 49, 1299–1304. [Google Scholar] [CrossRef]
- Maurya, R.; Wazir, V.; Tyagi, A.; Kapil, R.S. Cordifoliosides A and B, two new phenylpropene disaccharides from Tinospora cordifolia possessing immunostimulant activity. Nat. Prod. Lett. 1996, 8, 7–10. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chang, F.R.; Teng, C.M.; Wu, Y.C. Cheritamine, a new N-fatty acyl tryptamine and other constituents from the stems of Annona cherimola. J. Chin. Chem. Soc. 1999, 46, 77–86. [Google Scholar] [CrossRef]
- Li, A.; Mishra, Y.; Malik, M.; Wang, Q.; Li, S.; Taylor, M.; Reichert, D.E.; Luedtke, R.R.; Mach, R.H. Evaluation of N-phenyl homopiperazine analogs as potential dopamine D3 receptor selective ligands. Bioorg. Med. Chem. 2013, 21, 2988–2998. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Li, Y.J.; Wang, A.M.; He, X.; Liao, S.G.; Lan, Y.Y. Two new phenolic glycosides from Inula cappa. J. Asian Nat. Prod. Res. 2010, 12, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.K.; Lee, P.H.; Kuo, Y.H. The chemical constituents from the aril of Cassia fistula L. J. Chin. Chem. Soc. 2001, 48, 1053–1058. [Google Scholar] [CrossRef]
- Chang, Y.C.; Chang, F.R.; Wu, Y.C. The constituents of Lindera glauca. J. Chin. Chem. Soc. 2000, 47, 373–380. [Google Scholar] [CrossRef]
- Wada, T. Structure of digiprolactone. Chem. Pharm. Bull. 1965, 13, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.; Tripathi, J.; Chatterjee, S.; Gautam, S. Natural predominance of abscisic acid in Pongammia pinnata ("Karanj") honey contributed to its strong antimutagenicity. J. Agric. Food Chem. 2017, 65, 4624–4633. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.D.; Acosta, A.L. New cembranoid diterpenes and a geranylgeraniol derivative from the common Caribbean sea whip Eunicea succinea. J. Nat. Prod. 1997, 60, 1134–1138. [Google Scholar] [CrossRef] [PubMed]
- Atta-ur-Rahman; Ahmad, S.; Rycroft, D.S.; Prknyi, L.; Choudhary, M.I.; Clardy, J. Malabarolide, a novel furanoid bisnorditerpenoid from Tinospora malabarica. Tetrahedron Lett. 1988, 29, 4241–4244. [Google Scholar] [CrossRef]
- Fotie, J.; Bohle, D.S.; Leimanis, M.L.; Georges, E.; Rukunga, G.; Nkengfack, A.E. Lupeol long-chain fatty acid esters with antimalarial activity from Holarrhena floribunda. J. Nat. Prod. 2006, 69, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.C.; Desjardins, A.E.; Wu, C.D.; Kinghorn, A.D. Activity of triterpenoid glycosides from the root bark of Mussaenda macrophylla against two oral pathogens. J. Nat. Prod. 1999, 62, 1379–1384. [Google Scholar] [CrossRef] [PubMed]
- Kocór, M.; St. Pyrek, J. Cyclotrichosantol, a new C31 31-nortriterpene. J. Org. Chem. 1973, 38, 3688–3690. [Google Scholar]
- Baldé, A.M.; Apers, S.; Claeys, M.; Pieters, L.; Vlietinck, A.J. Cycloabyssinone, a new cycloterpene from Harrisonia abyssinica. Fitoterapia 2001, 72, 438–440. [Google Scholar] [CrossRef]
- Kikuchi, T.; Toyoda, T.; Arimoto, M.; Takayama, M.; Yamano, M. Studies on the neutral constituents of Pachysandra terminalis Sieb. et Zucc. I. Isolation and characterization of sterols and triterpenes. Yakugaku Zasshi 1969, 89, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Öksüz, S.; Shieh, H.L.; Pezzuto, J.M.; Özhatay, N.; Cordell, G.A. Biologically active compounds from the Euphorbiaceae; part 1. Triterpenoids of Euphorbia nicaeensis subsp. glareosa. Planta Med. 1993, 59, 472–473. [Google Scholar]
- Kuo, Y.H.; Li, Y.C. Constituents of the bark of Ficus microcarpa L. f. J. Chin. Chem. Soc. 1997, 44, 321–325. [Google Scholar] [CrossRef]
- Kimura, Y.; Yasukawa, K.; Takido, M.; Akihisa, T.; Tamura, T. Inhibitory effect of some oxygenated stigmastane-type sterols on 12-O-tetradecanoylphorbol-13-acetate-induced inflammation in mice. Biol. Pharm. Bull. 1995, 18, 1617–1619. [Google Scholar] [CrossRef] [PubMed]
- Katsui, N.; Matsue, H.; Hirata, T.; Masamune, T. Phytosterols and triterpenes in roots of the “kidney bean” (Phaseolus vulgaris L.). Bull. Chem. Soc. Jpn. 1972, 45, 223–226. [Google Scholar] [CrossRef]
- Zhang, X.; Geoffroy, P.; Miesch, M.; Julien-David, D.; Raul, F.; Aoudé-Werner, D.; Marchioni, E. Gram-scale chromatographic purification of beta-sitosterol. Synthesis and characterization of beta-sitosterol oxides. Steroids 2005, 70, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Tsai, I.L.; Ishikawa, T.; Wang, C.J.; Chen, I.S. Alkaloids from trunk bark of Hernandia nymphaeifolia. Phytochemistry 1996, 42, 1479–1484. [Google Scholar] [CrossRef]
- Tseng, C.F.; Iwakama, S.; Mikajiri, A.; Shibuya, M.; Hanaoka, F.; Ebizuka, Y.; Padmawinata, K.; Sankawa, U. Inhibition of in vitro prostaglandin and leukotriene biosyntheses by cinnamoyl-β-phenethylamine and N-acyldopamine derivatives. Chem. Pharm. Bull. 1992, 40, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, T.J.; Chang, F.R.; Wu, Y.C. The constituents of Cananga odorata. J. Chin. Chem. Soc. 1999, 46, 607–611. [Google Scholar] [CrossRef]
- Yoshihara, T.; Yamaguchi, K.; Takamatsu, S.; Sakamura, S. A new lignan amide, grossamide, from bell pepper (Capsicum annuum var. grossum). Agric. Biol. Chem. 1981, 45, 2593–2598. [Google Scholar]
- Bayoumi, S.A.L.; Rowan, M.G.; Beeching, J.R.; Blagbrough, I.S. Constituents and secondary metabolite natural products in fresh and deteriorated cassava roots. Phytochemistry 2010, 71, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Harris, T.M.; Hay, J.V. Biogenetically modeled syntheses of heptaacetate metabolites. Alternariol and lichexanthone. J. Am. Chem. Soc. 1977, 99, 1631–1636. [Google Scholar] [CrossRef]
- Nishina, A.; Hasegawa, K.; Uchibori, T.; Seino, H.; Osawa, T. 2,6-Dimethoxy-p-benzoquinone as an antibacterial substance in the bark of Phyllostachys heterocycla var. pubescens, a species of thick-stemmed bamboo. J. Agric. Food Chem. 1991, 39, 266–269. [Google Scholar] [CrossRef]
- Kanchanapoom, T.; Kamel, M.S.; Kasai, R.; Yamasaki, K.; Picheansoonthon, C.; Hiraga, Y. Lignan glucosides from Acanthus ilicifolius. Phytochemistry 2001, 56, 369–372. [Google Scholar] [CrossRef]
- Kim, S.B.; Chang, B.Y.; Jo, Y.H.; Lee, S.H.; Han, S.B.; Hwang, B.Y.; Kim, S.Y.; Lee, M.K. Macrophage activating activity of pyrrole alkaloids from Morus alba fruits. J. Ethnopharmacol. 2013, 145, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.C.; Chung, P.J.; Ho, C.M.; Kuo, C.Y.; Hung, M.F.; Huang, Y.T.; Chang, W.Y.; Chang, Y.W.; Chan, K.H.; Hwang, T.L. Propofol Inhibits Superoxide Production, Elastase Release, and Chemotaxis in Formyl Peptide–Activated Human Neutrophils by Blocking Formyl Peptide Receptor 1. J. Immunol. 2013, 190, 6511–6519. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.P.; Hsieh, P.W.; Chang, Y.J.; Chung, P.J.; Kuo, L.M.; Hwang, T.L. 2-(2-Fluoro-benzamido)benzoate ethyl ester (EFB-1) inhibits superoxide production by human neutrophils and attenuates hemorrhagic shock-induced organ dysfunction in rats. Free Radic. Biol. Med. 2011, 50, 1737–1748. [Google Scholar] [CrossRef] [PubMed]
- Moody, J.O.; Robert, V.A.; Connolly, J.D.; Houghton, P.J. Anti-inflammatory activities of the methanol extracts and an isolated furanoditerpene constituent of Sphenocentrum jollyanum Pierre (Menispermaceae). J. Ethnopharmacol. 2006, 104, 87–91. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of all the isolated compounds are available from the authors. |
Position | 1 a | 17 b | 16 b | |||
---|---|---|---|---|---|---|
δH | δC | HMBC (H→C) | δH | δH | δC | |
1 | 133.7 s | 127.0 s | ||||
2 | 6.66 s | 104.2 d | 85.0, 104.2, 137.1, 152.6 | 7.76 d (1.9) | 7.04 d (1.8) | 109.3 d |
3 | 152.6 s | 146.6 s | ||||
4 | 137.1 s | 147.9 s | ||||
5 | 152.6 s | 6.88 d (8.3) | 6.92 d (8.2) | 112.7 d | ||
6 | 6.66 s | 104.2 d | 85.0, 104.2, 137.1, 152.6 | 7.10 dd (8.3, 1.9) | 7.07 dd (8.2, 1.8) | 123.1 d |
7 | 4.66 br d (3.8) | 85.0 d | 53.6, 71.3, 104.2, 137.1 | 6.80 d (12.9) | 7.59 d (16.0) | 144.8 d |
8 | 3.09 m | 53.6 d | 5.81 d (12.9) | 6.28 d (16.0) | 115.5 d | |
9 | 3.84 dd (9.0, 3.2) | 71.3 t | 53.6, 85.0 | 167.5 s | ||
4.18 dd (9.0, 6.7) | 53.6, 85.0, 104.2 | |||||
1′ | 133.7 s | 173.9 s | ||||
2′ | 6.66 s | 104.2 d | 85.0, 104.2, 137.1, 152.6 | 2.31 t (7.6) | 2.34 t (7.4) | 33.8 t |
3′ | 152.6 s | 1.66 m | 1.67 m | 24.5 t | ||
4′ | 137.1 s | 1.37 m | 1.47 m | 25.3 t | ||
5′ | 152.6 s | 1.66 m | 1.67 m | 28.1 t | ||
6′ | 6.66 s | 104.2 d | 85.0, 104.2, 137.1, 152.6 | 4.12 t (6.6) | 4.19 t (6.6) | 64.0 t |
7′ | 4.66 br d (3.8) | 85.0 d | 53.6, 71.3, 104.2, 137.1 | |||
8′ | 3.09 m | 53.6 d | ||||
9′ | 3.84 dd (9.0, 3.2) | 71.3 t | 53.6, 85.0 | |||
4.18 dd (9.0, 6.7) | 53.6, 85.0, 104.2 | |||||
Bz-OMe | 3.76 s | 56.4 q | 3.93 s | 3.95 s | 55.9 q | |
OMe | 3.67 s | 3.67 s | 51.5 q | |||
Glc H1, 1′ | 4.90 d (5.2) | 102.6 d | 76.5, 74.1 | |||
Glc H2, 2′ | 3.17 m | 76.5 d | 74.1 | |||
Glc H3, 3′ | 3.17 m | 74.1 d | 76.5 | |||
Glc H4, 4′ | 3.11 m | 69.9 d | 76.5 | |||
Glc H5, 5′ | 3.02 m | 77.2 d | 69.9 | |||
Glc H6, 6′ | 3.40 m | 60.9 t | 77.2 | |||
3.59 m |
Position | 11 a | 12 b | 13 a | 14 c | 15 c | ||
---|---|---|---|---|---|---|---|
δH | δC | δH | δC | δH | δH | δH | |
2 | 121.6 s | 133.5 s | |||||
3 | 7.01 d (3.9) | 119.0 d | 6.98 d (4.0) | 126.5 d | 6.87 d (4.0) | 6.96 d (4.0) | 6.97 d (4.0) |
4 | 6.16 d (3.9) | 110.8 d | 6.26 d (4.0) | 111.5 d | 6.23 d (4.0) | 6.27 d (4.0) | 6.25 d (4.0) |
5 | 136.9 s | 144.6 s | |||||
6 | 162.2 s | 9.42 s | 180.9 d | 9.50 s | 9.45 s | 9.40 s | |
7 | 4.43 s | 65.8 t | 4.63 s | 56.4 t | 4.45 s | 4.52 s | 4.65 s |
1′ | 4.37 br t (7.6) | 44.7 t | 4.38 dd (7.4, 6.0) | 45.7 t | 4.36 br t (7.6) | 4.35 br t (7.6) | 4.37 dd (7.5, 6.0) |
2′ | 2.04 m | 26.5 t | 2.01 m | 27.5 t | 2.01 m | 1.96 m | 1.98 m |
3′ | 2.36 t (7.3) | 31.0 t | 2.35 t (7.3) | 31.6 t | 2.36 t (7.2) | 2.23 t (7.5) | 2.27 t (7.5) |
4′ | 173.4 s | 175.1 s | |||||
OCH3 | 3.67 s | 57.7 q | 3.66 s | 52.2 q | 3.68 s | ||
CH2OCH3 | 3.34 s | 51.6 q | 3.36 s | 3.36 s |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lam, S.-H.; Chen, P.-H.; Hung, H.-Y.; Hwang, T.-L.; Chiang, C.-C.; Thang, T.D.; Kuo, P.-C.; Wu, T.-S. Chemical Constituents from the Stems of Tinospora sinensis and Their Bioactivity. Molecules 2018, 23, 2541. https://doi.org/10.3390/molecules23102541
Lam S-H, Chen P-H, Hung H-Y, Hwang T-L, Chiang C-C, Thang TD, Kuo P-C, Wu T-S. Chemical Constituents from the Stems of Tinospora sinensis and Their Bioactivity. Molecules. 2018; 23(10):2541. https://doi.org/10.3390/molecules23102541
Chicago/Turabian StyleLam, Sio-Hong, Po-Hsun Chen, Hsin-Yi Hung, Tsong-Long Hwang, Chih-Chao Chiang, Tran Dinh Thang, Ping-Chung Kuo, and Tian-Shung Wu. 2018. "Chemical Constituents from the Stems of Tinospora sinensis and Their Bioactivity" Molecules 23, no. 10: 2541. https://doi.org/10.3390/molecules23102541
APA StyleLam, S.-H., Chen, P.-H., Hung, H.-Y., Hwang, T.-L., Chiang, C.-C., Thang, T. D., Kuo, P.-C., & Wu, T.-S. (2018). Chemical Constituents from the Stems of Tinospora sinensis and Their Bioactivity. Molecules, 23(10), 2541. https://doi.org/10.3390/molecules23102541