Analysis of Odorants in Marking Fluid of Siberian Tiger (Panthera tigris altaica) Using Simultaneous Sensory and Chemical Analysis with Headspace Solid-Phase Microextraction and Multidimensional Gas Chromatography-Mass Spectrometry-Olfactometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of Marking Fluid Extraction Parameters
2.2. Identification of Volatile Organic Compounds in P. tigris altaica Marking Fluid
2.3. Odorous Volatile Organic Compound Detection
2.4. Determination of Characteristic Compounds from P. tigris altaica Marking Fluid
3. Materials and Methods
3.1. Standards and Solutions
3.2. Animal Subjects
3.3. Marking Fluid Collection Processes
3.4. Sampling and Sample Preparation of Panthera tigris altaica Marking Fluid and Urine
3.5. Sample Analysis
3.6. Determination of Chemical Composition and Odor of Siberian Tiger Marking Fluid
3.7. Isolation of Characteristic Odorants with GC-MS-O System
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tilson, R.; Nyphus, P. Tigers of the World: The Science, Politics, and Conservation of Panthera tigris, 2nd ed.; Elsevier: London, UK, 2010; p. 524. [Google Scholar]
- Seal, U.; Tilson, R. Tigers of the World, 1st ed.; Noyes Publications: Park Ridge, NJ, USA, 1987. [Google Scholar]
- Gosling, L.M.; Roberts, S.C.; Slater, P.J.B.; Rosenblatt, J.S.; Snowdon, C.T.; Roper, T.J. Scent-marking by male mammals: Cheat-proof signals to competitors and mates. In Advances in the Study of Behavior; Academic Press: Newcastle, UK, 2001; Volume 30, pp. 169–217. [Google Scholar]
- Brahmachary, R.; Poddar-Sarkar, M.; Dutta, J. The aroma of rice ... and tiger. Nature 1990, 334. [Google Scholar] [CrossRef]
- Brahmachary, R.; Poddar-Sarkar, M. Fifty years of tiger pheromone research. Curr. Sci. 2015, 108, 2178–2185. [Google Scholar]
- Brahmachary, R.L.; Dutta, J. On the pheromones of tigers: Experiments and theory. Am. Nat. 1981, 118, 561–567. [Google Scholar] [CrossRef]
- Poddar-Sarkar, M.; Chakroborty, A.; Bhar, R.; Brahmachary, R.L. Putative pheromones of lion mane and its ultrastructure. Chem. Sig. Vert. 2008, 11, 61–67. [Google Scholar]
- Poddar-Sarkar, M.; Brahmachary, R.L. Putative semiochemicals in the African cheetah (Acinonyx jubatus). J. Lipid Med. Cell. Signal. 1997, 15, 285–287. [Google Scholar] [CrossRef]
- Poddar-Sarkar, M.; Brahmachary, R.L.; Dutta, J. Short chain free fatty acid as a putative pheromone in the marking fluid of tiger. J. Indian Chem. Soc. 1991, 68, 255–256. [Google Scholar]
- Soso, S.B.; Koziel, J.A.; Johnson, A.; Lee, Y.G.; Fairbanks, W.S. Analytical methods for chemical and sensory characterization of scent-markings in large wild mammals: A review. Sensors 2014, 14, 4428–4465. [Google Scholar] [CrossRef] [PubMed]
- Burger, B.V.; Viviers, M.Z.; Bekker, J.P.I.; le Roux, M.; Fish, N.; Fourie, W.B.; Weibchen, G. Chemical characterization of territorial marking fluid of male bengal tiger, Panthera tigris. J. Chem. Ecol. 2008, 34, 659–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soini, H.; Linville, S.U.; Wiesler, D.; Posto, A.L.; Williams, D.R.; Novotny, M.V. Investigation of Scents on Cheeks and Foreheads of Large Felines in Connection to the Facial Marking Behavior. J. Chem. Ecol. 2012, 38, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Bothma, J.D.P.; le Richet, E.A.N. Evidence of the use of rubbing, scent-marking and scratching-posts by Kalahari leopards. J. Arid Environ. 1995, 29, 511–517. [Google Scholar]
- Kerley, L.L.; Salkina, G.P. Using scent-matching dogs to identify individual amur tigers from scats. J. Wildl. Manag. 2007, 71, 1349–1356. [Google Scholar] [CrossRef]
- Smith, D.J.; McDougal, C.; Miquelle, D. Scent marking in free-ranging tigers, Panthera tigris. Anim. Behav. 1989, 37. [Google Scholar] [CrossRef]
- Smith, T.; Tomlinson, A.; Mlotkiewicz, J. Female marmoset monkeys (Callithrix jacchus) can be identified from the chemical composition of their scent marks. Chem. Senses 2001, 26, 449–458. [Google Scholar] [CrossRef]
- Vaglio, S.; Minicozzi, P.; Bonometti, E.; Mello, G.; Chiarelli, B. Volatile Signals During Pregnancy: A Possible Chemical Basis for Mother-Infant Recognition. J. Chem. Ecol. 2009, 35, 131–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimoto, T.; Nagata, J.; Aramilev, V.; Belozor, A.; Higashi, S.; McCullough, D. Species and sex identification from faecal samples of sympatric carnivores, amur leopard and Siberian tiger, in the Russian far east. Conserv. Genet. 2006, 7, 799–802. [Google Scholar] [CrossRef]
- Banks, G.; Buglass, A.; Waterhouse, J. Amines in the marking fluid and anal sac secretion of the tiger, Panthera tigris. Z. Naturforsch 1992, 47, 618–620. [Google Scholar]
- Poddar-Sarkar, M. The fixative lipid of tiger pheromone. J. Lipid Mediat. Cell. Signal. 1996, 15, 89–101. [Google Scholar] [CrossRef]
- Andersen, K.F.; Vulpius, T. Urinary volatile constituents of the lion, Panthera leo. Chem. Senses 1999, 24, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Albone, E.S. Mammalian Semiochemistry: The Investigation of Chemical Signals between Mammals; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Albone, E.S.; Grönnerberg, T.O. Lipids of the anal sac secretions of the red fox, vulpes vulpes and of the lion, Panthera leo. J. Lipid Res. 1977, 18, 474–479. [Google Scholar] [PubMed]
- Brahmachary, M.; Poddar-Sarkar, M. Putatuve chemical signals of leopard. An. Bio. 2004, 54, 255–259. [Google Scholar]
- Asa, C.S. Relative contributions of urine and anal-sac secretions in scent marks of large felids. Am. Zool. 1993, 33, 167–172. [Google Scholar] [CrossRef]
- Soso, S.B.; Koziel, J.A. Characterizing the scent and chemical composition of Panthera leo marking fluid using solid-phase microextraction and multidimensional gas chromatography–mass spectrometry-olfactometry. PLOS ONE 2016. under review. [Google Scholar]
- McLean, L.; Hurst, J.; Gaskell, C.; Lewis, J.M.; Beynon, R. Characterization of cauxin in the urine of domestic and big cats. J. Chem. Ecol. 2007, 33, 1997–2009. [Google Scholar] [CrossRef] [PubMed]
- Brahmachary, R.L.; Dutta, J. Phenylethylamine as a biological marker of tiger. Z. Naturforsch 1979, 34c, 632–633. [Google Scholar]
- Brahmachary, R.L. Ecology and chemistry of mammalian pheromones. Endeavour 1986, 10, 65–68. [Google Scholar] [CrossRef]
- Brahmachary, R.L.; Singh, M. Behavioural and chemical aspects of scent marking in the asiatic lion. Curr. Sci. 2000, 78, 680–682. [Google Scholar]
- Bligh, E.; Dyer, W. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Sunquist, M.; Sunquist, F. Wild Cats of the World; The University of Chicago Press: Chicago, IL, USA, 2002. [Google Scholar]
- Burger, B.V. Mammalian semiochemicals. In The Chemistry of Pheromones and Other Semiochemicals II; Springer: Berlin/Heidelberg, Germany, 2005; Volume 240, pp. 231–278. [Google Scholar]
- Grégoire, L.; Marie-Annick, P.; Denise, G.; Jean-Jacques, R.; Roland, S.; Edith, P.A. Ligand-specific dose–response of heterologously expressed olfactory receptors. Eur. J. Biochem. 2003, 270, 2905–2912. [Google Scholar]
- Malnic, B.; Hirono, J.; Sato, T.; Buck, L. Combinatorial receptor codes for odors. Cell 1999, 96, 713–723. [Google Scholar] [CrossRef]
- Brahmachary, R.L. The expanding world of 2-acetyl-1-pyrroline. Curr. Sci. 1996, 71, 257–258. [Google Scholar]
- Cai, L.; Koziel, J.A.; O’Neal, M.E. Determination of characteristic odorants from harmonia axyridis beetles using in vivo solid-phase microextraction and multidimensional gas chromatography–mass spectrometry–olfactometry. J. Chrom. A 2007, 1147, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.C.; Koziel, J.A.; Cai, L.; Hoff, S.J.; Jenks, W.S.; Xin, H. Simultaneous chemical and sensory characterization of vocs and semi-vocs emitted from swine manure using spme and multidimensional gas chromatography-mass spectrometry-olfactometry system. J. Environ. Qual. 2008, 37, 521–534. [Google Scholar] [CrossRef] [PubMed]
- Bertsch, W. Two-dimensional gas chromatography. Concepts, instrumentation, and applications—Part 2: Comprehensive two-dimensional gas chromatography. J. High. Resolut. Chromatogr. 2000, 23, 167–181. [Google Scholar]
- Cai, L.; Koziel, J.A.; O’Neal, M. In Why do ladybugs smell bad? In-vivo quantification of odorous insect kairomones with spme and multidimensional gc-ms-olfactometry. In Proceedings of the 13th International Symposium on Olfaction and Electronic Nose, Brescia, Italy, 2009; American Institute of Physics: Brescia, Italy, 2009; pp. 245–248. [Google Scholar]
- Bulliner, E.A.; Koziel, J.A.; Cai, L.; Wright, D. Characterization of livestock odors using steel plates, solid-phase microextraction, and multidimensional gas chromatography-mass spectrometry-olfactometry. J. Air Waste Manag. Assoc. 2006, 56, 1391–1403. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Koziel, J.A.; Liang, Y.; Nguyen, A.T.; Xin, H. Evaluation of zeolite for control of odorants emissions from simulated poultry manure storage. J. Environ. Qual. 2007, 36, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Koziel, J.A.; Lo, Y.M.; Cai, L.; Wright, D. Simultaneous characterization of VOCs and livestock odors using solid-phase microextraction-gas chromatography-mass spectrometry-olfactometry. Chem. Eng. Trans. 2010, 23, 73–78. [Google Scholar]
- Zhang, S.; Cai, L.; Koziel, J.A.; Hoff, S.J.; Schmidt, D.R.; Clanton, C.J.; Jacobson, L.D.; Parker, D.B.; Heber, A.J. Field air sampling and simultaneous chemical and sensory analysis of livestock odorants with sorbent tubes and gc–ms/olfactometry. Sens. Actuators B Chem. 2010, 146, 427–432. [Google Scholar] [CrossRef]
- Wright, D.W.; Eaton, D.K.; Nielsen, L.T.; Kuhrt, F.W.; Koziel, J.A.; Spinhirne, J.P.; Parker, D.B. Multidimensional gas chromatography-olfactometry for the identification and prioritization of malodors from confined animal feeding operations. J. Agric. Food Chem. 2005, 53, 8663–8672. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Koziel, J.A.; Dharmadhikari, M.; van Leeuwen, J. Rapid determination of trans-resveratrol in red wine by solid-phase microextraction with on-fiber derivatization and multidimensional gas chromatography–mass spectrometry. J. Chrom. A. 2009, 1216, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Koziel, J.A.; Lo, Y.-C.; Wright, D.; Trabue, S.; Kerr, B. The use of SPME and multidimensional GC-MS-Olfactometry system for identification of key odorants from swine manure. In 2005 AWMA Annual Conference and Exhibition; The Air & Waste Management Association: Minneapolis, MN, USA, 2005; Volume 11. [Google Scholar]
- Cai, L.; Koziel, J.A.; Davis, J.; Lo, Y.C.; Xin, H. Characterization of volatile organic compounds and odors by in vivo sampling of beef cattle rumen gas, by using solid phase microextraction and gas chromatography-mass spectrometry-olfactometry. Anal. Bioanal. Chem. 2006, 386, 1791–1802. [Google Scholar] [CrossRef] [PubMed]
- Spinhirne, J.P.; Koziel, J.A.; Chirase, N. Sampling and analysis of vocs in bovine breath using solid-phase microextraction and gas chromatography-mass spectrometry. J. Chrom. A 2004, 1025, 63–69. [Google Scholar] [CrossRef]
- Kusano, M.; Mendez, E.; Furton, K.G. Development of headspace spme method for analysis of volatile organic compounds present in human biological specimens. Anal. Bioanal. Chem. 2011, 400, 1817–1826. [Google Scholar] [CrossRef] [PubMed]
- Hayes, R.A.; Morelli, T.L.; Wright, P.C. Volatile components of lemur scent secretions vary throughout the year. Am. J. Primatol. 2006, 68, 1202–1207. [Google Scholar] [CrossRef] [PubMed]
- Dehnhard, M.; Hatt, J.M.; Eulenberger, K.; Ochs, A.; Strauss, G. Headspace solid-phase microextraction (SPME) and gas chromatography–mass spectrometry (GC-MS) for the determination of 5α-androst-2-en-17-one and -17β-ol in the female asian elephant: Application for reproductive monitoring and prediction of parturition. J. Steroid Biochem. Mol. Biol. 2003, 84, 383–391. [Google Scholar] [CrossRef]
- Goodwin, T.; Schulte, B. Prospecting for mammalian chemical signals via solventless extraction techniques: An elephantine task. ChemoSense 2009, 11, 9–15. [Google Scholar]
- Rasmussen, L.E.L. Evolution of chemical signals in the Asian elephant, Elephas maximus: Behavioural and ecological influences. J. Biosci. 1999, 24, 241–251. [Google Scholar] [CrossRef]
- Good scents company. Available online: http://www.thegoodscentscompany.com/search.html (accessed on 25 June 2015).
- Leffingwell & Associates. Available online: http://www.leffingwell.com/odorthre.htm (accessed on 12 September 2015).
- Flavornet. Available online: http://flavornet.org/flavornet.html (accessed on 10 May 2015).
- Buttery, R.G. Flavor chemistry and odor thresholds. In Flavor Chemistry: Thirty Years of Progress, 1 ed.; Springer Science and Business Media New York: New York, NY, USA, 1998; pp. 358–359. [Google Scholar]
- Encyclopedia Britannica. Available online: www.britannica.com (accessed on 12 April 2015).
- Urea (Ultra Pure Grade) Safety Data Sheet. Available online: http://nj.gov/health/eoh/rtkweb/documents/fs/0048.pdf (accessed on 13 April 2015).
- Nagata, Y. Measurement of odor threshold by triangle odor bag method. In Asian network on odor Measurement and Control; Japan Association on the Environment: Tokyo, Japan, 2003; pp. 118–127. [Google Scholar]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients, 5 ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 759–760. [Google Scholar]
- Flinn scientific, Inc. Safety data sheet (SDS). Available online: http://www.flinnsci.com/Documents/SDS/M/MalonicAcid.pdf (accessed on 10 September 2015).
- Haz-map. Available online: http://hazmap.nlm.nih.gov/category-details?id=207&table=copytblagents (accessed on 12 September 2015).
- Poddar-Sarkar, M.; Brahmachary, R.L. Pheromones of tiger and other big cats. In Neurobiology of Chemcial Communication; Mucignat-Caretta, C., Ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2014; pp. 407–453. [Google Scholar]
- Ferrero, D.M.; Lemon, J.K.; Fluegge, D.; Pashkovski, S.L.; Korzan, W.J.; Datta, S.R.; Spehr, M.; Fendt, M.; Liberles, S.D. Detection and avoidance of a carnivore odor by prey. Proc. Natl. Acad. Sci. USA 2011, 108, 11235–11240. [Google Scholar] [CrossRef] [PubMed]
- Nosengo, N. The smell of a meat-eater: Chemical in urine alerts prey species to a nearby predator. Nature 2011. [Google Scholar] [CrossRef]
- Parker, D.B.; Cai, L.; Kim, K.-H.; Hales, K.E.; Spiehs, M.J.; Woodbury, B.L.; Atkin, A.L.; Nickerson, K.W.; Patefield, K.D. Reducing odorous VOC emissions from swine manure using soybean peroxidase and peroxides. Bioresour. Technol. 2012, 124, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Grimm, C.C.; Bergman, C.; Delgado, J.T.; Bryant, R. Screening for 2-acetyl-1-pyrroline in the headspace of rice using SPME/GC-MS. J. Agric. Food. Chem. 2001, 49, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Ying, X.; Xu, X.; Chen, M.; Ouyang, Y.; Zhu, Z.; Min, J. Determination of 2-acetyl-1-pyrroline in aroma rice using gas chromatography-mass spectrometry. Chin. J. Chrom. 2010, 28, 782–785. [Google Scholar] [CrossRef]
- LRI and Odour Database. Available online: http://www.odour.org.uk/ (accessed on 5 April 2015).
- Sample Availability: Not available.
Species | Reference | Type of Marking | Sample Preparation | Chemical Analyses | Sensory Analyses | Identified Compounds | Commonality in Composition of MF and Urine |
---|---|---|---|---|---|---|---|
Panthera tigris tigris | Poddar-Sarkar, M. and Brahmachary, R.L. [9] | Marking fluid | Solvent-based extraction | GC-FID, GC, TLC, GLC, PC | Not conducted | Free fatty acids | Not conducted |
Poddar-Sarkar, M. [20] | Marking fluid | Solvent-based extraction | GC-MS, GC-FID, GC, TLC, GLC, PC | Not conducted | Total lipid of MF consists of sterol ester, wax ester, triglyceride, free fatty acids, free sterol, diglyceride, and monoglyceride | Not conducted | |
Brahmachary, R.L. and Dutta, J. [28] | Urine | Solvent-based extraction | PC | Orqanoleptic testing with human nose detection | 2-Phenylethylamine defined as the characteristic odor compound and biochemical marker of urine | Not conducted | |
Brahmachary, R.L. et al. [4] | Marking fluid | Solvent-based extraction | PC, GC | Orqanoleptic testing with human nose detection | 2-Acetyl-1-pyrroline identified as characteristic compound of marking fluid | Not conducted | |
Burger, B.V. et al. [11] | Marking fluid and urine | SEP | GC-MS | Not conducted | 98 volatile compounds confirmed including ketones, fatty acids, lactones in MF | Major constituents of urine fraction and of the whole MF were ketones and nitrogen compounds; 2-Acetylpyrroline was not detected in urine or marking fluid; 48 common compounds between urine and MF; Variability in polarity and volatility of compounds identified in urine; MF contains seven times as many VOCs as urine | |
Brahmachary [29] | Urine | Solvent-based extraction | TLC | Not conducted | Putrescine and cadaverine components of urine were identified, but later studies (Burger et al. [11] did not report them | Not conducted | |
Panthera tigris sumatrae; Panthera tigris tigris | Banks, G.L. et al. [19] | MF and anal sac secretion | Solvent-based extraction | GC | Not conducted | Trimethylamine, ammonia, methylamine, dimethylamine, 2-phenylethylamine, propylamine, triethylamine, and butane-1,4-diamine were found in Sumatran and Bengal tiger MF | Not conducted |
Panthera leo | Andersen, K.F. and Vulpius, T. [21] | Urine | Solvent-based extraction | GC-MS | Not conducted | 55 compounds found; several amines, aldehydes, ketones, alkenes, and dienes; acetone, 2-butanone, 1-pentene, 2-pentylfuran, heptanal, 1,2-cyclooctadiene and diethylbenzene potentially responsible for species identity | Not conducted |
Albone, E.S. and Gronnerberg, T.O. [23] | Anal sac secretions | Solvent-based extraction | GLC-MS, TLC | Not conducted | 1-alkylglycerols and 2-hydroxy fatty acids, phenylacetic, 3-phenyl-propionic, and related hydroxylated acids were identified | Not conducted | |
Soso, S.B. and Koziel, J.A., Manuscript in Review [26] | Marking fluid | SPME | mdGC-MS-O | mdGC-MS-O | 81 volatile organic compounds comprise marking fluid; 19 volatile organic compounds were detected using olfactometry; 2,5-dimethyl-pyrazine, 3-methylcyclopentanone and 4-methylphenol responsible for characteristic odor of marking fluid | MF was analyzed in totality with urinous component and compared with previous literature analyzing the same content; 26 additional compounds were identified along with characteristic odorants | |
Panthera leo persica | Brahmachary, R.L. and Singh, M. [30] | Marking fluid | Solvent-based extraction | PC, TLC | Not conducted | Amines and free fatty acids are putative pheromones of MF; Minor differences between lipid composition of lion and tiger MF; Anal gland fluid is not found in MF | Not conducted |
Acinonyx jubatus | Poddar-Sarkar, M., and Brahmachary, R.L. [8] | Marking fluid | Solvent-based extraction | GC-FID, TLC | Not conducted | C2-C8 free fatty acids | Not conducted |
Panthera pardus fusca | Poddar-Sarkar, M. and Brahmachary, R.L. [24] | Marking Fluid | Solvent-based extraction | GC-FID | Not conducted | C2-C9 free fatty acids in the acidic fraction of steam distillate of marking fluid; Several amines were detected in the basic fraction of marking fluid; The amount of lipid extracted from MF is 1.15 mg/mL | Not conducted |
No. | Compound Classification | RT (min) | CAS | Top 5 Ions and Relative Intensities (%) | R. Match Factor (%) | Aroma Descriptor by Panelist | Published Odor Descriptors | MOI (%) | PA | ODT (ppb) | SOAV |
---|---|---|---|---|---|---|---|---|---|---|---|
Nitrogen containing compounds | |||||||||||
1 | 2,5-Dimethyl-pyrazine a | 10.47 | 108-50-9 | 42(99),108(92),39(31),40(25),81(18) | 80 | Cocoa, Roasted Nuts, Roast Beef, Coffee b | 1.85 × 104 | 8.00 × 102–1.80 × 104c | 1.02 × 100–2.31 × 101 | ||
2 | 2-Acetyl-1-pyrroline ᶲ | 10.76 | 99583-29-6 | 43(99),41(54),42(24),83(13),39(11) | 84 | Basmati rice, Taco Shell, Nutty, Corn | Nutty, Popcorn, Toasted, Grain, Roasted, Basmati Rice, Malty b,d | 80 | 1.05 × 104 | 0.10 × 100e | 1.05 × 105 |
3 | Indole a | 26.9 | 120-72-9 | 117(99),90(43),89(20),63(9),118(9) | 96 | Animal, Floral, Moth Ball, Fecal, Naphthelene b,f | 4.79 × 103 | 1.40 × 102c | 3.42 × 101 | ||
4 | Urea a | 28.98 | 57-13-6 | 17(99),60(92),44(75),16(17),43(16) | 96 | Urinous, Ferret, Foul | Ammonia g | 30 | 8.35 × 103 | ||
Ketones | |||||||||||
5 | Acetone a | 2.04 | 67-64-1 | 43(99),58(30),42(10),15(17),27(8) | 96 | Solvent, Ethereal, Apple, Pear b | 1.51 × 106 | 5.00 × 105c | 3.02 × 100 | ||
6 | 2-Butanone a | 2.56 | 78-93-3 | 43(99),73(32),29(18),57(10),27(8) | 99 | Acetone-like, Ethereal, Fruity, Camphor b | 6.98 × 105 | 5.00 × 104c | 1.40 × 101 | ||
7 | 3-Pentanone a | 3.62 | 96-22-0 | 43(99),57(54),44(35),86(32),41(27) | 90 | Body Odor, Plastic, Citrus, Bleach, Medicinal | Ethereal, Acetone b | 30 | 1.00 × 106 | 7.00 × 104c | 1.43 × 101 |
8 | 2,3-Butanedione a | 3.77 | 431-03-8 | 43(99),86(20),42(8),44(8),41(4) | 93 | Butter, Sweet, Cake Batter | Sweet, Buttery, Caramellic nuance b | 30 | 8.99 × 105 | ||
9 | 2-Methyl-3-pentanone a | 3.91 | 565-69-5 | 57(99),43(77),29(38),100(27),71(45) | 90 | Chemical | Mint b | 30 | 1.59 × 105 | 5.00 × 103h | 3.18 × 101 |
10 | 4-Heptanone a | 6.36 | 123-19-3 | 43(99),71(85),41(18),27(17),11(17) | 92 | Fruity, Cheese, Sweet, Cognac, Pineapple b | 5.54 × 105 | 0.82 × 101–4.10 × 101i | 1.35 × 104 | ||
11 | 2-Heptanone a | 7.62 | 110-43-0 | 43(99),58(40),27(35),71(12),29(12) | 95 | Soapy, Fruity, Spicy, Sweet, Herbal, Coconut, Woody b | 1.26 × 106 | 0.14 × 103–3.00 × 103 c | 4.20 × 102–9.02 × 103 | ||
12 | 2-Nonanone a | 11.63 | 821-55-6 | 58(99),57(28),43(27),41(26),55(16) | 81 | Earthy, Grassy, Skunky, Foul, Onion, Rancid, Green pepper | Earthy, Herbaceous, Weedy, Green, Dirty b | 80 | 3.78 × 104 | 0.05 × 102–2.00 × 102c | 1.89 × 102 |
13 | 2-Undecanone a | 15.22 | 112-12-9 | 58(99),43(58),59(32),71(29),41(18) | 93 | Waxy, Fruity, Creamy, Fatty, Orris Floral b | 2.90 × 104 | 7 × 100c | 4.15 × 103 | ||
Amines | |||||||||||
14 | Trimethylamine a | 1.37 | 75-50-3 | 58(99),59(70),30(35),42(25),28(12) | 95 | Fish, Onion, Foul, Rancid, Skunky | Fishy, Oily, Rancid, Sweaty, Fruity b | 100 | 7.12 × 107 | 3.70 × 10−1–10.60 × 10−1c | 6.71 × 107–1.92 × 108 |
Aldehydes | |||||||||||
15 | Hexanal a | 5.56 | 66-25-1 | 44(99),56(82),41(71),43(77),57(39) | 83 | Green b | 3.42 × 105 | 4.50 × 10−2–5.00 × 10−2c | 7.61 × 103–6.84 × 104 | ||
16 | 3-Methylbutanal a | 5.77 | 590-86-3 | 44(99),43 (86),41(49),57 (41),39(26) | 95 | Ethereal, Aldehydic, Chocolate, Peach, Fatty, Nutty b,d | 8.49 × 105 | 0.20 × 100–2.0 × 100c | 4.25 × 105–4.25 × 106 | ||
17 | Nonanal a | 11.82 | 124-19-6 | 57(99),41(92),43(91),56(80),44(76) | 88 | Fatty, Floral-Rose, Waxy b,c | 1.52 x 104 | 1.00 × 100c | 1.52 × 104 | ||
18 | Furfural a | 13.23 | 98-01-1 | 97(99),96(98),39(65),38(22),29(20) | 97 | Potato, Body odor, Earthy, Nutty | Sweet, Woody, Almond, Fragrant, Baked Bread b,f | 80 | 3.25 × 104 | 3.00 × 103–2.30 × 104c | 0.14 × 101–1.10 × 101 |
19 | Benzaldehyde a | 14.04 | 100-52-7 | 106(99),77(97),105(97),107(80),39(63) | Fruit loops, Fruity, Sweet | Almond-like, Fruity, Cherry, Sweet, Bitter, Sharp b | 100 | 1.75 x 105 | 3.50 × 102–3.50 × 103c | 5.00 × 101–5.00 × 102 | |
Alcohols | |||||||||||
20 | Ethanol a | 3.02 | 64-17-5 | 31(99),45(55),29(32),27(24),46(21) | 97 | Strong, Alcoholic, Ethereal, Medical b | 1.58 × 106 | 1.00 × 105c | 1.58 × 101 | ||
21 | 1-Butanol a | 7.16 | 71-36-3 | 56(99),31(98),41(90),43(70),27(58) | 95 | Medicine, Fruit, Wine f | 4.43 × 105 | 5.00 × 102c | 8.86 × 102 | ||
22 | 3-Methyl-1-butanol a | 8.77 | 123-51-3 | 55(99),42(90),41(82),43(84),70(73) | 96 | Fusel, Alcoholic, Pungent, Etherial, Cognac, Fruity, Banana and Molasses b | 9.37 × 104 | 2.50 × 102-3.00 × 102c | 3.12 × 102–3.74 × 102 | ||
23 | 1-Hexanol a | 11.13 | 111-27-3 | 56(99),43(83),41(59),55(58),42(57) | 86 | Pungent, Etherial, Fusel Oil, Fruity and Alcoholic, Sweet with a Green Top Note b | 7.36 × 103 | 2.50 × 103 c | 2.94 × 100 | ||
24 | 1-Octanol a | 14.76 | 111-87-5 | 56(99),55(88),41(81),73(75),70(61) | 80 | Roasted, Earthy, Grassy, Green Pepper | Waxy, Green, Orange, Aldehydic, Rose, Mushroom b | 30 | 2.78 × 104 | 1.10 × 102 c | 2.53 × 102 |
25 | Benzyl Alcohol a | 19.68 | 100-51-6 | 79(99),77(57),108(90),107(70),51(22) | 92 | Floral, Rose, Phenolic, Balsamic b | 1.94 × 104 | 1.00 × 104c | 1.94 × 100 | ||
26 | Phenylethyl alcohol a | 20.16 | 60-12-8 | 91(99),51(64),39(75),92(60),77(48) | 91 | Citrus, Sweet | Rose, Floral b | 30 | 9.04 × 104 | 7.50 × 102–1.10 × 103 c | 8.22 × 101 |
Sulfur containing compounds | |||||||||||
27 | Dimethyl disulfide a | 5.39 | 75-18-3 | 94(99),79(58),45(50),46(25),47(20) | 97 | Sulfury, Onion, Sweet, Corn, Vegetable, Cabbage, Tomato, Green, Radish j | 4.71 × 105 | 2.00 × 100–1.20 × 100c | 3.93 × 104–2.94 × 106 | ||
28 | Dimethyl trisulfide a | 11.47 | 3658-80-8 | 126(99),79(56),45(33),47(23),111(18) | 92 | Onion, Skunky | Foul, Sulfur, Fish, Cabbage f | 60 | 1.08 × 104 | 0.50 × 10−2–1.00 × 10−2c | 1.08 × 106 |
Acids | |||||||||||
29 | Valeric acid a | 17.6 | 109-52-4 | 60(99),73(37),41(15),29(14),27(12) | 98 | Rancid, Foul, Unknown | Rancid, Sickening, Putrid, Acidic, Sweaty, Sour, Cheese-like b | 30 | 8.90 × 103 | 3.00 × 103c | 2.97 × 100 |
30 | Octanoic acid a | 22.53 | 124-07-2 | 60(99),73(62),43(42),41(39),55(37) | 93 | Fatty, Waxy, Rancid Oily, Vegetable, Cheesy b | 1.55 × 104 | 3.00 × 102 c | 5.18 x 100 | ||
Amides | |||||||||||
31 | Acetamide a | 17.94 | 60-35-5 | 59(99),44(89),43(60,42(29),18(27) | 98 | Mousy b | 1.87 × 105 | ||||
Phenols | |||||||||||
32 | 4-Methylphenol a | 22.6 | 106-44-5 | 107(99),108(85),77(32),79(21),51(16) | 97 | Barnyard, Chemical, Animal, Earthy | Phenolic, Narcissus, Animal, Mimosa b | 80 | 2.97 × 103 | 5.50 × 101c | 5.40 × 101 |
33 | Phenol a | 21.54 | 108-95-2 | 93(99),66(39),65(28),39(25),40(15) | 97 | Phenolic, Plastic, Rubber b | 2.12 × 104 | 5.9 × 103c | 3.60 × 100 |
Treatments | ||||
---|---|---|---|---|
Fiber Type | Sample Size | Temperature | Time | Sample Agitation |
85 µm CPDMS | 0.25 mL | 25 °C | 1 h | None |
0.50 mL | 24 h | 0.20 cm × 0.50 cm Stir bar @ 1000 rpm | ||
0.25 mL | 37 °C | 1 h | None | |
0.50 mL | 24 h | 0.20 cm × 0.50 cm Stir bar @ 1000 rpm | ||
75 µm CPDMS | 0.25 mL | 25 °C | 1 h | None |
0.50 mL | 24 h | 0.20 cm × 0.50 cm Stir bar @ 1000 rpm | ||
0.25 mL | 37 °C | 1 h | None | |
0.50 mL | 24 h | 0.20 cm × 0.50 cm Stir bar @ 1000 rpm | ||
50/30 µm DVB/CPDMS | 0.25 mL | 25 °C | 1 h | None |
0.50 mL | 24 h | 0.20 cm × 0.50 cm Stir bar @ 1000 rpm | ||
0.25 mL | 37 °C | 1 hour | None | |
0.50 mL | 24 h | 0.20 cm × 0.50 cm Stir bar @ 1000 rpm | ||
100 µm PDMS | 0.25 mL | 25 °C | 1 h | None |
0.50 mL | 24 h | 0.20 cm × 0.50 cm Stir bar @ 1000 rpm | ||
0.25 mL | 37 °C | 1 h | None | |
0.50 mL | 24 h | 0.20 cm × 0.50 cm Stir bar @ 1000 rpm | ||
65 µm PDMS/DVB | 0.25 mL | 25 °C | 1 h | None |
0.50 mL | 24 h | 0.20 cm × 0.50 cm Stir bar @ 1000 rpm | ||
0.25 mL | 37 °C | 1 h | None | |
0.50 mL | 24 h | 0.20 cm × 0.50 cm Stir bar @ 1000 rpm |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soso, S.B.; Koziel, J.A. Analysis of Odorants in Marking Fluid of Siberian Tiger (Panthera tigris altaica) Using Simultaneous Sensory and Chemical Analysis with Headspace Solid-Phase Microextraction and Multidimensional Gas Chromatography-Mass Spectrometry-Olfactometry. Molecules 2016, 21, 834. https://doi.org/10.3390/molecules21070834
Soso SB, Koziel JA. Analysis of Odorants in Marking Fluid of Siberian Tiger (Panthera tigris altaica) Using Simultaneous Sensory and Chemical Analysis with Headspace Solid-Phase Microextraction and Multidimensional Gas Chromatography-Mass Spectrometry-Olfactometry. Molecules. 2016; 21(7):834. https://doi.org/10.3390/molecules21070834
Chicago/Turabian StyleSoso, Simone B., and Jacek A. Koziel. 2016. "Analysis of Odorants in Marking Fluid of Siberian Tiger (Panthera tigris altaica) Using Simultaneous Sensory and Chemical Analysis with Headspace Solid-Phase Microextraction and Multidimensional Gas Chromatography-Mass Spectrometry-Olfactometry" Molecules 21, no. 7: 834. https://doi.org/10.3390/molecules21070834