Synthesis and Pharmacological Activity of Diterpenylnaphthoquinone Derivatives
Abstract
:1. Introduction
2. Results and Discussion
Compound | Lesion index (mm) Mean ± SEM | Protection (%) | Protected stomachs a |
---|---|---|---|
Tween | 27.2 ± 9.3 | ||
Δ8(9) junicedric acid (II) | 5.3 ± 2.4 * | 79 | 4/9 |
1 | 15.3 ± 5.0 | 44 | |
Tween | 25.0 ± 6.9 | 1/14 | |
2 | 8.7 ± 3.9 | 65 | 4/9 |
5 | 20.4 ± 3.6 | 18 | 0/9 |
6 | 6.5 ± 2.7 * | 74 | 3/8 |
7 | 11.5 ± 4.4 | 54 | 1/8 |
8 | 3.9 ± 1.9 * | 84 | 5/9 |
11 | 23.5 ± 3.6 | 6 | 0/10 |
12 | 27.4 ± 6.8 | - | 0/7 |
Tween | 43.3 ± 8.2 | 0/9 | |
3 | 17.9 ± 4.6 ** | 59 | 0/8 |
4 | 19.3 ± 5.0 ** | 55 | 0/9 |
9 | 15.7 ± 4.5 ** | 64 | 0/9 |
10 | 10.2 ± 3.5 ** | 76 | 3/9 |
Lansoprazole (20 mg/kg) | 9.4 ± 1.2 ** | 73 | 6/9 |
Compound | IC50 ± SEM a (µM) | ||
---|---|---|---|
Fibroblasts | AGS | Hep G2 | |
Lapachol (IV) | >1000 | 382 ± 15 | 55 ± 3 |
Junicedric acid (I) | 181 ± 9 | 304 ± 18 | >1000 |
Δ8(9) junicedric acid (II) | 214 ± 32 | 343 ± 22 | >1000 |
1 | 210 ± 13 | 170 ± 9 | 57.4 ± 4.4 |
2 | 741 ± 40 | 361 ± 19 | 208 ± 11 |
3 | 156 ± 9 | 89 ± 5 | >1000 |
4 | >1000 | 382 ± 26 | >1000 |
5 | 69 ± 3 | 40 ± 6 | 27 ± 1 |
6 | >1000 | >1000 | >1000 |
7 | 190 ± 8 | 179 ± 9 | 96 ± 9 |
8 | >1000 | 721 ± 35 | 379 ± 21 |
9 | 341 ± 17 | 294 ± 15 | >1000 |
10 | >1000 | 162 ± 10 | >1000 |
11 | 336 ± 15 | 114 ± 7 | 54.5 ± 5 |
12 | 926 ± 35 | 323 ± 16 | 290 ± 9 |
Etoposide | 0.33 ± 0.02 | 0.58 ± 0.02 | - |
Lansoprazole b | 306 ± 11 | 162 ± 6 | 221 ± 9 |
3. Experimental
3.1. General Experimental Procedures
3.2. Plant Material
3.3. General Procedure for the Synthesis of Compounds I–III and V–VI
3.4. General Procedure for the Synthesis of Compounds 1–12
H | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
13 | 2.10 m | 2.11 m | 2.10 m | 2.08 m | 2.05 m | 2.06 m |
14 α | 2.73 dd | 2.73 dd | 2.71 dd | 2.71 dd | 2.65 dd | 2.66 dd |
14 β | 2.41-2.46 m | 2.42-2.47 m | 2.52 m | 2.52 m | ||
16 | 1.13 d (6.6) | 1.13 d (6.6) | 1.10 d (6.6) | 1.10 d (6.6) | 1.07 d (6.6) | 1.08 d (6.6) |
17 | 4.86 s; 4.54 s | 4.87 s; 4.54 s | 4.85 s; 4.52 s | 4.84 s; 4.51 s | 4.84 s; 4.51 s | 4.86 s; 4.51 s |
18 | 1.26 s | 1.20 s | 1.23 s | 1.17 s | 1.24 s | 1.20 s |
20 | 0.63 s | 0.54 s | 0.61 s | 0.51 s | 0.60 s | 0.59 s |
OMe | - | 3.64 s | - | 3.61 s | - | 3.63 s |
Quinone | ||||||
5 and 8 | 8.10 m | 8.10 m | 8.08 m | 8.08 m | 2.42 m | 2.44 m |
6 and 7 | 7.74 m | 7.74 m | 7.71 m | 7.71 m | 1.69 m | 1.70 m |
1’ | 3.27 br d | 3.28 br d | 2.41 m | 2.41 m | 2.40 m | 2.38 m |
2’ | 5.07 br t | 5.09 br t | 1.34 m | 1.36 m | 1.33 m | 1.32 m |
3’ | - | - | 1.59 m | 1.58 m | 1.57 m | 1.57 m |
4’ | 1.77 s | 1.77 s | 0.93 d (6.6) | 0.93 d (6.6) | 0.91 d (6.6) | 0.92 d (6.6) |
5’ | 1.69 s | 1.69 s | 0.93 d (6.6) | 0.93 d (6.6) | 0.91 d (6.6) | 0.92 d (6.6) |
H | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|
13 | 2.12 m | 2.12 m | 2.10 m | 2.10 m | 2.12 m | 2.11 m |
14 α | 2.72 dd | 2.72 dd | 2.72 dd | 2.70 dd | 2.74 dd | 2.72 dd |
14 β | 2.50 dd | 2.50 dd | 2.53 m | 2.53 m | 2.46 dd | 2.45 dd |
16 | 1.15 d (6.6) | 1.15 d (6.5) | 1.12 d (6.6) | 1.12 d (6.6) | 1.15 d (6.6) | 1.14 d (6.6) |
17 | 1.54 s | 1.62 s | 1.59 s | 1.59 s | 0.95 d (7.5) | 0.93 d (7.5) |
18 | 1.28 s | 1.22 s | 1.25 s | 1.19 s | 1.27 s | 1.19 s |
20 | 0.91 s | 0.80 s | 0.88 s | 0.77 s | 0.83 s | 0.70 s |
OMe | - | 3.65 s | - | 3.62 s | - | 3.66 s |
Quinone | ||||||
5 and 8 | 8.11 m | 8.11 m | 8.09 m | 8.09 m | 8.10 m | 8.10 m |
6 and 7 | 7.75 m | 7.75 m | 7.72 m | 7.72 m | 7.74 m | 7.74 m |
1’ | 3.29 br d | 3.28 br d | 2.46 m | 2.46 m | 3.28 br d | 3.28 br d |
2’ | 5.09 br t | 5.09 br t | 1.35 m | 1.36 m | 5.08 br t | 5.09 br t |
3’ | - | - | 1.58 m | 1.58 m | - | - |
4’ | 1.78 s | 1.78 br s | 0.93 d (6.6) | 0.93 d (6.6) | 1.78 br s | 1.78 br s |
5’ | 1.70 s | 1.70 br s | 0.93 d (6.6) | 0.93 d (6.6) | 1.70 br s | 1.69 br s |
3.5. HCl-EtOH-Induced Ulcer Model in Mice [7,8,9,10,27]
3.6. Cytotoxicity Assay [28]
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
Conflict of Interest
References and Notes
- WHO, The World Health Report; WHO: Geneva, Switzerland, 2003; pp. 154–159.
- Bahmanyar, S.; Ye, W.; Dickman, P.W.; Nyren, O. Long-term risk of gastric cancer by subsite in operated and unoperated patients hospitalized for peptic ulcer. Am. J. Gastroenterol. 2007, 102, 1185–1191. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Nordenvall, C.; Nyren, O.; Adami, H.O.; Permert, J.; Ye, W. The risk of pancreatic cancer in patients with gastric or duodenal ulcer disease. Int. J. Cancer 2007, 120, 368–372. [Google Scholar] [CrossRef]
- Areche, C.; Rodríguez, J.A.; Razmilic, I.; Yañez, T.; Theoduloz, C.; Schmeda-Hirschmann, G. Gastroprotective and cytotoxic effect of semisynthetic ferruginol derivatives. J. Pharm. Pharmacol. 2007, 59, 289–300. [Google Scholar]
- Pertino, M.; Schmeda-Hirschmann, G.; Rodríguez, J.; Theoduloz, C. Gastroprotective effect and cytotoxicity of terpenes from the Paraguayan crude drug “yagua rova” (Jatropha isabelli). J. Ethnopharmacol. 2007, 111, 553–559. [Google Scholar] [CrossRef]
- Rodríguez, J.; Theoduloz, C.; Yáñez, T.; Becerra, J.; Schmeda-Hirschmann, G. Gastroprotective and ulcer healing effect of ferruginol in mice and rats: Assessment of its mechanism of action using in vitro models. Life Sci. 2005, 78, 2503–2509. [Google Scholar]
- Rodríguez, J.A.; Theoduloz, C.; Sánchez, M.; Razmilic, I.; Schmeda-Hirschmann, G. Gastroprotective and ulcer-healing effect of new solidagenone derivatives in human cell cultures. Life Sci. 2005, 77, 2193–2205. [Google Scholar] [CrossRef]
- Schmeda-Hirschmann, G.; Rodríguez, J.A.; Astudillo, L. Gastroprotective activity of the diterpene solidagenone and its derivatives on experimentally induced gastric lesions in mice. J. Ethnopharmacol. 2002, 81, 111–115. [Google Scholar] [CrossRef]
- Schmeda-Hirschmann, G.; Astudillo, L.; Sepúlveda, B.; Rodríguez, J.; Theoduloz, C.; Yáñez, T.; Palenzuela, J.A. Gastroprotective effect and cytotoxicity of natural and semisynthetic labdane diterpenes from Araucaria araucana resin. Z. Naturforsch. C 2005, 60, 511–522. [Google Scholar]
- Schmeda-Hirschmann, G.; Astudillo, L.; Rodríguez, J.; Theoduloz, C.; Yáñez, T. Gastroprotective effect of the Mapuche crude drug Araucaria araucana resin and its main constituents. J. Ethnopharmacol. 2005, 101, 271–276. [Google Scholar] [CrossRef]
- Sepúlveda, B.; Astudillo, L.; Rodríguez, J.; Yáñez, T.; Theoduloz, C.; Schmeda-Hirschmann, G. Gastroprotective and cytotoxic effect of dehydroabietic acid derivatives. Pharmacol. Res. 2005, 52, 429–437. [Google Scholar] [CrossRef]
- Halle, W.; Spielmann, H. Two procedures for the prediction of acute toxicity (LD50) from cytotoxicity data. ATLA 1992, 20, 40–49. [Google Scholar]
- Schmeda Hirschmann, G.; Papastergiou, F. Naphthoquinone derivatives and lignans from the Paraguayan crude drug "tayï pytá" (Tabebuia heptaphylla, Bignoniaceae). Z. Naturforsch. C 2003, 58, 495–501. [Google Scholar]
- Pérez, S.; Estevez-Braun, E.; Ravelo, A.; Ferro, A.G.; Tokuda, E.A.; Mukainaka, H.; Nishino, T. Inhibitory effects of lapachol derivatives on Epstein-Barr virus activation. Bioorg. Med. Chem. 2003, 11, 483–488. [Google Scholar] [CrossRef]
- Barbosa, T.P.; Câmara, C.A.; Silva, T.M.S.; Martins, R.M.; Pinto, A.C.; Vargas, M.D. New 1,2,3,4-tetrahydro-1-aza-anthraquinones and 2-aminoalkyl compounds from norlapachol with molluscicidal activity. Bioorg. Med. Chem. 2005, 13, 6464–6469. [Google Scholar] [CrossRef]
- Silva, T.M.S.; Camara, C.A.; Barbosa, T.P.; Soares, A.Z.; da Cunha, L.C.; Pinto, A.C.; Vargas, M.D. Molluscicidal activity of synthetic lapachol amino and hydrogenated derivatives. Bioorg. Med. Chem. 2005, 13, 193–196. [Google Scholar] [CrossRef]
- Silva, R.S.F.; Costa, E.M.; Trindade, U.L.T.; Teixeira, D.V.; Pinto, M de C. F.R.; Santos, G.L.; Malta, V.R.S.; De Simone, C.A.; Pinto, A.V.; de Castro, S.L. Synthesis of naphthofuranquinones with activity against Trypanosoma cruzi. Eur. J. Med. Chem. 2006, 41, 526–530. [Google Scholar] [CrossRef]
- da Silva, A.J.M.; Buarque, C.D.; Brito, F.V.; Aurelian, L.; Macedo, L.F.; Malkas, L.H.; Hickey, R.J.; Lopes, D.V.S.; Noel, F.; Murakami, Y.L.B.; et al. Synthesis and preliminary pharmacological evaluation of new (+/−) 1,4-naphthoquinones structurally related to lapachol. Bioorg. Med. Chem. 2002, 10, 2731–2738. [Google Scholar]
- Esteves-Souza, A.; Figueiredo, D.V.; Esteves, A.; Câmara, C.A.; Vargas, M.D.; Pinto, A.C.; Echevarría, A. Cytotoxic and DNA-topoisomerase effects of lapachol amine derivatives and interactions with DNA. Braz. J. Med. Biol. Res. 2007, 40, 1399–1402. [Google Scholar] [CrossRef]
- Muregi, F.W.; Ishih, A. Next-generation antimalarial drugs: Hybrid molecules as a new strategy in drug design. Drug Devel. Res. 2010, 71, 20–32. [Google Scholar]
- Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem. 2005, 48, 6523–6543. [Google Scholar] [CrossRef]
- Morphy, R.; Rankovic, Z. Fragments, network biology and designing multiple ligands. Drug Discov. Today 2007, 12, 156–160. [Google Scholar] [CrossRef]
- Morphy, R.; Rankovic, Z. Multi-target drugs: Strategies and challenges for medicinal chemists. In The Practice of Medicinal Chemistry, 3rd; Wermuth, C.G., Ed.; Elsevier-Academic Press: San Diego, CA, USA, 2008; pp. 549–571. [Google Scholar]
- Schmeda-Hirschmann, G.; Pertino, M.; Rodriguez, J.A.; Monsalve, F.; Droguett, D.; Theoduloz, C. Synthesis, gastroprotective effect and cytotoxicity of new amino acid diterpene monoamides and diamides. Molecules 2010, 15, 7378–7394. [Google Scholar] [CrossRef]
- del Corral, J.M.M.; Castro, M.A.; Rodríguez, M.L.; Chamorro, P.; Cuevas, C.; San Feliciano, A. New cytotoxic diterpenylnaphthohydroquinone derivatives obtained from a natural diterpenoid. Bioorg. Med. Chem. 2007, 15, 5760–5774. [Google Scholar] [CrossRef]
- Molinari, A.; Oliva, A.; Ojeda, C.; Escobar, J.; Gallardo, C.; del Corral, J.M.; Castro, M.A.; Cuevas, C.; San Feliciano, A. Synthesis, characterisation and cytotoxicity of chloro derivatives of prenylnaphthohydroquinone. Bioorg. Med. Chem. 2005, 13, 3841–3846. [Google Scholar] [CrossRef]
- Olfert, E.D.; Cross, B.M.; McWilliam, A.A. Guide to the Care and Use of Experimental Animals; Canadian Council on Animal Care: Ottawa, Ontario, Canada, 1993; Volume 1, pp. 1–213. [Google Scholar]
- Rodríguez, J.A.; Haun, M. Cytotoxicity of trans-dehydrocrotonin from Croton cajucara on V79 cells and rat hepatocytes. Planta Med. 1999, 65, 522–526. [Google Scholar] [CrossRef]
- Samples Availability: Samples of the compounds lapachol, junicedric acid and some derivatives are available from the authors.
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pertino, M.W.; Theoduloz, C.; Palenzuela, J.A.; Afonso, M.d.M.; Yesilada, E.; Monsalve, F.; González, P.; Droguett, D.; Schmeda-Hirschmann, G. Synthesis and Pharmacological Activity of Diterpenylnaphthoquinone Derivatives. Molecules 2011, 16, 8614-8628. https://doi.org/10.3390/molecules16108614
Pertino MW, Theoduloz C, Palenzuela JA, Afonso MdM, Yesilada E, Monsalve F, González P, Droguett D, Schmeda-Hirschmann G. Synthesis and Pharmacological Activity of Diterpenylnaphthoquinone Derivatives. Molecules. 2011; 16(10):8614-8628. https://doi.org/10.3390/molecules16108614
Chicago/Turabian StylePertino, Mariano Walter, Cristina Theoduloz, Jose Antonio Palenzuela, Maria del Mar Afonso, Erdem Yesilada, Francisco Monsalve, Paulo González, Daniel Droguett, and Guillermo Schmeda-Hirschmann. 2011. "Synthesis and Pharmacological Activity of Diterpenylnaphthoquinone Derivatives" Molecules 16, no. 10: 8614-8628. https://doi.org/10.3390/molecules16108614
APA StylePertino, M. W., Theoduloz, C., Palenzuela, J. A., Afonso, M. d. M., Yesilada, E., Monsalve, F., González, P., Droguett, D., & Schmeda-Hirschmann, G. (2011). Synthesis and Pharmacological Activity of Diterpenylnaphthoquinone Derivatives. Molecules, 16(10), 8614-8628. https://doi.org/10.3390/molecules16108614