Boltzmann Configurational Entropy Revisited in the Framework of Generalized Statistical Mechanics
Abstract
1. Introduction
2. Occupational Counting in the Generalized Statistics
3. Boltzmann Entropy of Degree
4. Connection with the Shannon Entropy of Degree
5. Some Particular Cases
5.1. -Deformed Boltzmann Entropy
5.2. q-Deformed Boltzmann Entropy
6. Conclusions
Funding
Conflicts of Interest
Appendix A. Asymptotic Approximation of
- ,
- ,
- ,
References
- Ji, X.; Du, J. Diffusion and heat conductivity in the weakly ionized plasma with power-law q-distributions in nonextensive statistics. Physica A 2019, 523, 292–300. [Google Scholar] [CrossRef]
- Modanese, G. Common origin of power-law tails in income distributions and relativistic gases. Phys. Lett. A 2016, 380, 29–32. [Google Scholar] [CrossRef]
- Campagnano, C.; Zilberberg, O.; Gornyi, I.V.; Feldman, O.E.; Potter, A.C.; Gefen, Y. Hanbury brown–twiss interference of anyons. Phys. Rev. Lett. 2012, 109, 106802–106805. [Google Scholar] [CrossRef]
- Shen, Y.; Ai, Q.; Long, G.L. The relation between properties of Gentile statistics and fractional statistics of anyon. Physica A 2010, 389, 1565–1570. [Google Scholar] [CrossRef]
- Lavagno, A.; Swamy, P.N. Thermostatistics of deformed bosons and fermions. Found. Phys. 2009, 40, 814–828. [Google Scholar] [CrossRef]
- Bagarello, F. Quons, Coherent states and intertwining operators. Phys. Lett. A 2009, 373, 2637–2642. [Google Scholar] [CrossRef]
- Kibler, M.R. Miscellaneous applications of quons. Symmetry Integr. Geom. Methods Appl. 2007, 3, 92. [Google Scholar] [CrossRef]
- Greenberg, O.W. Particles with small violations of Fermi or Bose statistics. Phys. Rev. D 1991, 43, 4111–4120. [Google Scholar] [CrossRef]
- Acharya, R.; Narayana Swamy, P. Statistical mechanics of anyons. J. Phys. A Math. Theor. 1994, 27, 7247–7263. [Google Scholar] [CrossRef]
- Scarfone, A.M.; Narayana Swamy, P. An interacting particles system revisited in the framework of the q-deformed algebra. J. Phys. A Math. Theor. 2008, 41, 275211. [Google Scholar] [CrossRef]
- Scarfone, A.M.; Narayana Swamy, P. An interacting ensemble of particles in the context of quantum algebra. J. Stat. Mech. Theor. Exp. 2009, 2009, 2055. [Google Scholar] [CrossRef]
- Kaniadakis, G. Non-linear kinetics underlying generalized statistics. Physica A 2001, 296, 405–425. [Google Scholar] [CrossRef]
- Algin, A.; Senay, M. General thermostatistical properties of a q-deformed fermion gas in two dimension. J. Phys. Conf. Ser. 2016, 766, 012008. [Google Scholar] [CrossRef]
- Wilczek, F. (Ed.) Fractional Statistics and Anyon Superconductivity; World Scientific: Singapore, 1990. [Google Scholar]
- Stern, A. Anyons and the quantum Hall effect—A pedagogical review. Ann. Phys. 2008, 323, 204–249. [Google Scholar] [CrossRef]
- Ezawa, Z.F.; Iwazaki, A. Quantum Hall liquid, Josephson effect, and hierarchy in a double-layer electron system. Phys. Rev. B 1993, 1993 47, 7295–7311. [Google Scholar] [CrossRef]
- Haldane, F.D.M. “Spinon gas” description of the S = 1/2 Heisenberg chain with inverse-square exchange: Exact spectrum and thermodynamics. Phys. Rev. Lett. 1991, 66, 1529–1532. [Google Scholar] [CrossRef]
- Wu, Y.S. Statistical distribution for generalized ideal gas of fractional-statistics particles. Phys. Rev. Lett. 1994, 73, 922–925. [Google Scholar] [CrossRef] [PubMed]
- Rüegg, A.; Fiete, G.A. Topological order and semions in a strongly correlated quantum spin hall insulator. Phys. Rev. Lett. 2012, 108, 046401. [Google Scholar]
- Gentile, G., Jr. Osservazioni sopra le statistiche intermedie. Nuovo Cim. 1940, 17, 493–497. [Google Scholar] [CrossRef]
- Hoyuelos, M. Exotic statistics for particles without spin. J. Stat. Mech. Theor. Exp. 2018, 2018, 73103. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Quarati, P. Classical model of bosons and fermions. Phys. Rev. E 1994, 49, 5103–5110. [Google Scholar] [CrossRef] [PubMed]
- Kaniadakis, G.; Quarati, P.; Scarfone, A.M. Nonlinear canonical quantum system of collectively interacting particles via an exclusion-inclusion principle. Phys. Rev. E 1998, 58, 5574–5585. [Google Scholar] [CrossRef]
- Rossani, A.; Scarfone, A.M. Generalized kinetic theory of electrons and phonons: Models, equilibrium and stability. Physica B 2003, 334, 292–297. [Google Scholar] [CrossRef][Green Version]
- Scarfone, A.M. Canonical quantization of nonlinear many-body systems. Phys. Rev. E 2006, 71, 051103. [Google Scholar] [CrossRef] [PubMed]
- Suyari, H. Mathematical structures derived from the q-multinomial coefficient in Tsallis statistics. Physica A 2006, 368, 63–82. [Google Scholar] [CrossRef]
- Niven, R.K.; Suyari, H. Combinatorial basis and non-asymptotic form of the Tsallis entropy function. Eur. Phys. J. B 2008, 61, 75–82. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: New York, NY, USA, 2009. [Google Scholar]
- Kaniadakis, G. Statistical mechanics in the context of special relativity. Phys. Rev. E 2002, 66, 056125. [Google Scholar] [CrossRef]
- Kaniadakis, G. Statistical mechanics in the context of special relativity. II. Phys. Rev. E 2005, 72, 036108. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.; Suyari, H. The κ-Generalizations of Stirling approximation and multinominal coefficients. Entropy 2013, 15, 5144–5153. [Google Scholar] [CrossRef]
- Scarfone, A.M. Entropic forms and related algebras. Entropy 2013, 15, 624–649. [Google Scholar] [CrossRef]
- Wada, T. Thermodynamic stability conditions for nonadditive composable entropies. Cont. Mech. Thermodyn. 2004, 16, 263–267. [Google Scholar] [CrossRef]
- Suyari, H.; Wada, T. κ-generalization of Gauss’ law of error. Phys. Lett. A 2006, 348, 89–93. [Google Scholar]
- Scarfone, A.M.; Wada, T. Canonical partition function for anomalous systems described by the κ-entropy. Prog. Theor. Phys. Suppl. 2006, 162, 45–52. [Google Scholar] [CrossRef]
- Cravero, M.; Iabichino, G.; Kaniadakis, G.; Miraldi, E.; Scarfone, A.M. A κ-entropic approach to the analysis of the fracture problem. Physica A 2004, 340, 410–417. [Google Scholar] [CrossRef]
- Ourabah, K.; Tribeche, M. Planck radiation law and Einstein coefficients reexamined in Kaniadakis κ statistics. Phis. Rev. E 2014, 89, 062130. [Google Scholar]
- Lapenta, G.; Markidis, S.; Marocchino, A.; Kaniadakis, G. Relaxation of relativistic plasmas under the effect of wave-particle interactions. Astrophys. J. 2007, 666, 949–954. [Google Scholar] [CrossRef]
- Wada, T.; Scarfone, A.M. Asymptotic solutions of a nonlinear diffusive equation in the framework of κ-generalized statistical mechanics. Eur. Phys. J. B 2009, 70, 65–71. [Google Scholar] [CrossRef]
- Silva, R. The H-theorem in κ-statistics: Influence on the molecular chaos hypothesis. Phys. Lett. A 2006, 352, 17–20. [Google Scholar] [CrossRef]
- Pereira, F.I.M.; Silva, R.; Alcaniz, J.S. Non-Gaussian statistics and the relativistic nuclear equation of state. Nucl. Phys. A 2009, 828, 136–148. [Google Scholar] [CrossRef]
- Casas, G.A.; Nobre, F.D.; Curado, E.M.F. Entropy production and nonlinear Fokker-Planck equations. Phys. Rev. E 2012, 86, 061136. [Google Scholar] [CrossRef]
- Kaniadakis, G. Theoretical Foundations and Mathematical Formalism of the Power-Law Tailed Statistical Distributions. Entropy 2013, 15, 3983–4010. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Baldi, M.M.; Deisboeck, T.S.; Grisolia, G.; Hristopulos, D.T.; Scarfone, A.M.; Sparavigna, A.; Wada, T.; Lucia, U. The κ-statistics approach to epidemiology. Sci. Rep. 2020, 10, 19949. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.D.; Taneja, I.J. Entropy of type (α,β) and other generalized additive measures in information theory. Metrika 1975, 22, 205–215. [Google Scholar] [CrossRef]
- Mittal, D.P. On some functional equations concerning entropy, directed divergence and inaccuracy. Metrika 1975, 22, 35–46. [Google Scholar] [CrossRef]
- Evans, L.C. Entropy and Partial Differential Equations; UC Berkeley: Berkeley, CA, USA, 2001. [Google Scholar]
- Scarfone, A.M.; Wada, T. Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma–Taneja–Mittal entropy. Braz. J. Phys. 2009, 39, 475–482. [Google Scholar] [CrossRef]
- Li, S.-N.; Cao, B.-Y. Mathematical and information-geometrical entropy for phenomenological Fourier and non-Fourier heat conduction. Phys. Rev. E 2017, 96, 032131. [Google Scholar] [CrossRef]
- Essex, C.; Schulzky, C.; Franz, A.; Hoffmann, K.H. Tsallis and Rényi entropies in fractional diffusion and entropy production. Physica A 2000, 284, 299–308. [Google Scholar] [CrossRef]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2001. [Google Scholar]
- Pathria, R.K. Statistical Mechanics; Elsevier: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Kaniadakis, G.; Lissia, M.; Scarfone, A.M. Two-parameter deformations of logarithm, exponential, and entropy: A consistent framework for generalized statistical mechanics. Phys. Rev. E 2005, 71, 046128. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Scarfone, A.M.; Sparavigna, A.; Wada, T. Composition law of κ-entropy for statistically independent systems. Phys. Rev. E 2017, 95, 052112. [Google Scholar] [CrossRef]
- Scarfone, A.M. Legendre structure of the thermostatistics theory based on the Sharma–Taneja–Mittal entropy. Physica A 2006, 365, 63–70. [Google Scholar] [CrossRef]
- Nivanen, L.; Le Mehaute, A.; Wang, Q.A. Generalized algebra within a nonextensive statistics. Rep. Math. Phys. 2003, 52, 437–444. [Google Scholar] [CrossRef]
- Borges, E.P. A possible deformed algebra and calculus inspired in nonextensive thermostatistics. Physica A 2004, 340, 95–101. [Google Scholar] [CrossRef]
- Deppman, A.; Oliveira Andrade, E., II. Emergency of Tsallis statistics in fractal networks. PLoS ONE 2021, 16, e0257855. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scarfone, A.M. Boltzmann Configurational Entropy Revisited in the Framework of Generalized Statistical Mechanics. Entropy 2022, 24, 140. https://doi.org/10.3390/e24020140
Scarfone AM. Boltzmann Configurational Entropy Revisited in the Framework of Generalized Statistical Mechanics. Entropy. 2022; 24(2):140. https://doi.org/10.3390/e24020140
Chicago/Turabian StyleScarfone, Antonio Maria. 2022. "Boltzmann Configurational Entropy Revisited in the Framework of Generalized Statistical Mechanics" Entropy 24, no. 2: 140. https://doi.org/10.3390/e24020140
APA StyleScarfone, A. M. (2022). Boltzmann Configurational Entropy Revisited in the Framework of Generalized Statistical Mechanics. Entropy, 24(2), 140. https://doi.org/10.3390/e24020140