Deep Task-Based Quantization †
Abstract
1. Introduction
2. Preliminaries and Problem Statement
2.1. Preliminaries in Quantization Theory
2.2. Problem Statement
3. Deep Task-Based Quantization
3.1. DNN Architecture
- Estimation: Here, the deep task-based quantizer should learn to recover a set of k unknown parameters taking values on a continuous set, i.e., . By letting denote the mapping implemented by the overall system, the output is given by the vector , which is used as a representation of the desired vector . The loss function is the empirical MSE, given by
- Classification: In such tasks, the deep task-based quantization should decide between a finite number of options based on its analog input. Here, is a finite set, and we use to denote its cardinality. The last layer of the digital DNN is a softmax layer, and thus the network mapping is a vector, whose entries represent the conditional probability for each different value of given the input . By letting be the output value corresponding to , the decision is selected as the most probable one, i.e., . The loss function is the empirical cross-entropy, given by
3.2. Quantization Activation
3.2.1. Passing Gradient
3.2.2. Soft-to-Hard Quantization
3.3. Discussion
4. Application to MIMO Receivers
4.1. Channel Estimation Task
4.2. Symbol Detection Task
- The MAP rule for recovering from without quantization constraints, i.e.,The performance of the MAP detector with perfect CSI constitutes a lower bound on the achievable BER of any recovery scheme.
- The MAP rule for recovering from a uniformly quantized with rate R, namelywhere represents the element-wise uniform quantization rule over the interval using decision regions. The performance of the quantized MAP detector represents the achievable BER when processing is carried out solely in the digital domain, i.e., without using analog processing and/or tunning the quantization mapping in light of the task.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gray, R.M.; Neuhoff, D.L. Quantization. IEEE Trans. Inform. Theory 1998, 44, 2325–2383. [Google Scholar] [CrossRef]
- Berger, T.; Gibson, J.D. Lossy source coding. IEEE Trans. Inform. Theory 1998, 44, 2693–2723. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley Press: Hoboken, NJ, USA, 2006. [Google Scholar]
- Rodrigues, M.R.D.; Deligiannis, N.; Lai, L.; Eldar, Y.C. Rate-distortion trade-offs in acquisition of signal parameters. In Proceedings of the IEEE ICASSP, New-Orleans, LA, USA, 5–9 March 2017; pp. 6105–6109. [Google Scholar]
- Shlezinger, N.; Eldar, Y.C.; Rodrigues, M.R.D. Hardware-limited task-based quantization. IEEE Trans. Signal Process. 2019, 67, 5223–5238. [Google Scholar] [CrossRef]
- Salamatian, S.; Shlezinger, N.; Eldar, Y.C.; Medard, M. Task-based quantization for recovering quadratic functions using principal inertia components. In Proceedings of the IEEE ISIT, Paris, France, 7–12 July 2019. [Google Scholar]
- Neuhaus, P.; Shlezinger, N.; Dorpinghaus, M.; Eldar, Y.C.; Fettweis, G. Task-based analog-to-digital converters. arXiv 2020, arXiv:2009.14088. [Google Scholar]
- Shlezinger, N.; Eldar, Y.C. Task-based quantization with application to MIMO receivers. arXiv 2019, arXiv:1908.06845. [Google Scholar]
- Shlezinger, N.; Eldar, Y.C.; Rodrigues, M.R.D. Asymptotic task-based quantization with application to massive MIMO. IEEE Trans. Signal Process. 2019, 67, 3995–4012. [Google Scholar] [CrossRef]
- Xi, F.; Shlezinger, N.; Eldar, Y.C. BiLiMO: Bit-limited MIMO radar via task-based quantization. arXiv 2020, arXiv:2010.00195. [Google Scholar]
- Polyanskiy, Y.; Wu, Y. Lecture Notes on Information Theory; MIT: Cambridge, MA, USA, 2015. [Google Scholar]
- Walden, R.H. Analog-to-digital converter survey and analysis. IEEE J. Sel. Areas Commun. 2017, 35, 1909–1935. [Google Scholar] [CrossRef]
- Xiao, M.; Mumtaz, S.; Huang, Y.; Dai, L.; Li, Y.; Matthaiou, M.; Karagiannidis, G.K.; Bjornson, E.; Yang, K.; Chih-Lin, I. Millimeter wave communications for future mobile networks. IEEE J. Sel. Areas Commun. 2017, 35, 1909–1935. [Google Scholar] [CrossRef]
- Mo, J.; Schniter, P.; Heath, R.W. Channel estimation in broadband millimeter wave MIMO systems with few-bit ADCs. IEEE Trans. Signal Process. 2018, 66, 1141–1154. [Google Scholar] [CrossRef]
- Li, Y.; Tao, C.; Seco-Granados, G.; Mezghani, A.; Swindlehurst, A.L.; Liu, L. Channel estimation and performance analysis of one-bit massive MIMO systems. IEEE Trans. Signal Process. 2017, 65, 4075–4089. [Google Scholar] [CrossRef]
- Choi, J.; Mo, J.; Heath, R.W. Near maximum-likelihood detector and channel estimator for uplink multiuser massive MIMO systems with one-bit ADCs. IEEE Trans. Commun. 2016, 64, 2005–2018. [Google Scholar] [CrossRef]
- Jacobsson, S.; Durisi, G.; Coldrey, M.; Gustavsson, U.; Studer, C. Throughput analysis of massive MIMO uplink with low-resolution ADCs. IEEE Trans. Wirel. Commun. 2017, 16, 4038–4051. [Google Scholar] [CrossRef]
- Pirzadeh, H.; Swindlehurst, A.L. Spectral efficiency of mixed-ADC massive MIMO. IEEE Trans. Signal Process. 2018, 66, 3599–3613. [Google Scholar] [CrossRef]
- Mollen, C.; Choi, J.; Larsson, E.G.; Heath, R.W. Uplink performance of wideband massive MIMO with one-bit ADCs. IEEE Trans. Wirel. Commun. 2017, 16, 87–100. [Google Scholar] [CrossRef]
- Studer, C.; Durisi, G. Quantized massive MU-MIMO-OFDM uplink. IEEE Trans. Commun. 2016, 64, 2387–2399. [Google Scholar] [CrossRef]
- Stein, S.; Eldar, Y.C. A family of hybrid analog digital beamforming methods for massive MIMO systems. IEEE Trans. Signal Process. 2019, 67, 3243–3257. [Google Scholar]
- Mo, J.; Alkhateeb, A.; Abu-Surra, S.; Heath, R.W. Hybrid architectures with few-bit ADC receivers: Achievable rates and energy-rate tradeoffs. IEEE Trans. Wirel. Commun. 2017, 16, 2274–2287. [Google Scholar] [CrossRef]
- Agustsson, E.; Mentzer, F.; Tschannen, M.; Cavigelli, L.; Timofte, R.; Benini, L.; van Gool, L. Soft-to-hard vector quantization for end-to-end learning compressible representations. In Proceedings of the NIPS, Long Beach, CA, USA, 4–9 December 2017; pp. 1141–1151. [Google Scholar]
- Toderici, G.; Vincent, D.; Johnston, N.; Hwang, S.J.; Minnen, D.; Shor, J.; Covell, M. Full resolution image compression with recurrent neural networks. In Proceedings of the IEEE CVPR, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Balle, J.; Laparra, V.; Simoncelli, E.P. End-to-end optimized image compression. arXiv 2016, arXiv:1611.01704. [Google Scholar]
- Balle, J.; Minnen, D.; Singh, S.; Hwang, S.J.; Johnston, N. Variational image compression with a scale hyperprior. arXiv 2018, arXiv:1802.01436. [Google Scholar]
- Johnston, N.; Vincent, D.; Minnen, D.; Covell, M.; Singh, S.; Chinen, T.; Hwang, S.J.; Shor, J.; Toderici, G. Improved lossy image compression with priming and spatially adaptive bit rates for recurrent networks. arXiv 2017, arXiv:1703.10114. [Google Scholar]
- Torfason, R.; Mentzer, F.; Agustsson, E.; Tschannen, M.; Timofte, R.; van Gool, L. Towards image understanding from deep compression without decoding. arXiv 2018, arXiv:1803.06131. [Google Scholar]
- Han, S.; Mao, H.; Dally, W.J. Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv 2015, arXiv:1510.00149. [Google Scholar]
- Ullrich, K.; Meeds, E.; Welling, M. Soft weight-sharing for neural network compression. arXiv 2017, arXiv:1702.04008. [Google Scholar]
- Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Quantized neural networks: Training neural networks with low precision weights and activationss. J. Mach. Learn. Res. 2018, 187, 1–30. [Google Scholar]
- Yang, Q.; Mashhadi, M.B.; Gunduz, D. Deep convolutional compression for massive MIMO CSI feedback. arXiv 2019, arXiv:1907.02942. [Google Scholar]
- Khobahi, S.; Naimipour, N.; Soltanalian, M.; Eldar, Y.C. Deep signal recovery with one-bit quantization. arXiv 2018, arXiv:1812.00797. [Google Scholar]
- Balevi, E.; Andrews, J.G. One-bit OFDM receivers via deep learning. IEEE Trans. Commun. 2019, 67, 4326–4336. [Google Scholar] [CrossRef]
- Choi, J.; Cho, Y.; Evans, B.L.; Gatherer, A. Robust learning-based ML detection for massive MIMO systems with one-bit quantized signals. arXiv 2018, arXiv:1811.12645. [Google Scholar]
- Widrow, B.; Kollar, I.; Liu, M.C. Statistical theory of quantization. IEEE Trans. Instrum. Meas. 1996, 45, 353–361. [Google Scholar] [CrossRef]
- Mead, C. Neuromorphic electronic systems. Proc. IEEE 1990, 78, 1629–1636. [Google Scholar] [CrossRef]
- Li, J.; Chaddha, N.; Gray, R.M. Asymptotic performance of vector quantizers with a perceptual distortion measure. IEEE Trans. Inform. Theory 1999, 45, 1082–1091. [Google Scholar]
- Wolf, J.K.; Ziv, J. Transmission of noisy information to a noisy receiver with minimum distortion. IEEE Trans. Inform. Theory 1970, 16, 406–411. [Google Scholar] [CrossRef]
- Liao, Y.; Shlezinger, N.F.N.; Eldar, Y.C.; Goldsmith, A. Deep symbol detection for millimeter wave communications. In Proceedings of the GLOBECOM, Waikola, HI, USA, 9–13 December 2019. [Google Scholar]
- Wannamaker, R.A.; Lipshitz, S.P.; Vanderkooy, J.; Wright, J.N. A theory of nonsubtractive dither. IEEE Trans. Signal Process. 2000, 48, 499–516. [Google Scholar] [CrossRef]
- Rose, K.; Gurewitz, E.; Fox, G.C. Vector quantization by deterministic annealing. IEEE Trans. Inform. Theory 1992, 38, 1249–1257. [Google Scholar] [CrossRef]
- Danial, L.; Wainstein, N.; Kraus, S.; Kvatinsky, S. Breaking through the speed-power-accuracy tradeoff in ADCs using a memristive neuromorphic architecture. IEEE Trans. Emerg. Top. Comput. Intell. 2018, 2, 396–409. [Google Scholar]
- Gong, T.; Shlezinger, N.; Ioushua, S.S.; Namer, M.; Yang, Z.; Eldar, Y.C. RF chain reduction for MIMO systems: A hardware prototype. IEEE Syst. J. 2020, 14, 5296–5307. [Google Scholar] [CrossRef]
- Shlezinger, N.; Eldar, O.D.Y.C.; Yoo, I.; Imani, M.F.; Smith, D.R. Dynamic metasurface antennas for uplink massive MIMO systems. IEEE Trans. Commun. 2019, 67, 6829–6843. [Google Scholar] [CrossRef]
- Wang, H.; Shlezinger, N.; Eldar, Y.C.; Jin, S.; Imani, M.F.; Yoo, I.; Smith, D.R. Dynamic metasurface antennas for MIMO-OFDM receivers with bit-limited ADCs. arXiv 2019, arXiv:1912.06917. [Google Scholar]
- Shlezinger, N.; Alexandropoulos, G.C.; Imani, M.F.; Eldar, Y.C.; Smith, D.R. Dynamic metasurface antennas for 6G extreme massive MIMO communications. arXiv 2020, arXiv:2006.07838. [Google Scholar]
- Shlezinger, N.; Farsad, N.; Eldar, Y.C.; Goldsmith, A.J. ViterbiNet: A deep learning based Viterbi algorithm for symbol detection. IEEE Trans. Wirel. Commun. 2020, 19, 3319–3331. [Google Scholar] [CrossRef]
- Shlezinger, N.; Fu, R.; Eldar, Y.C. DeepSIC: Deep soft interference cancellation for multiuser MIMO detection. arXiv 2020, arXiv:2002.03214. [Google Scholar]
- Shlezinger, N.; Farsad, N.; Eldar, Y.C.; Goldsmith, A.J. Learned factor graphs for inference from stationary time sequences. arXiv 2020, arXiv:2006.03258. [Google Scholar]
- Widrow, B.; Lehr, M.A. 30 years of adaptive neural networks: Perceptron, madaline, and backpropagation. Proc. IEEE 1990, 78, 1415–1442. [Google Scholar] [CrossRef]
- Sutton, R.G.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]











| Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. | 
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shlezinger, N.; Eldar, Y.C. Deep Task-Based Quantization. Entropy 2021, 23, 104. https://doi.org/10.3390/e23010104
Shlezinger N, Eldar YC. Deep Task-Based Quantization. Entropy. 2021; 23(1):104. https://doi.org/10.3390/e23010104
Chicago/Turabian StyleShlezinger, Nir, and Yonina C. Eldar. 2021. "Deep Task-Based Quantization" Entropy 23, no. 1: 104. https://doi.org/10.3390/e23010104
APA StyleShlezinger, N., & Eldar, Y. C. (2021). Deep Task-Based Quantization. Entropy, 23(1), 104. https://doi.org/10.3390/e23010104
 
        

