More than Just Payment! Exploring the Determinants of Mobile Payment Continuance Intention: Insights from WeChat Pay
Abstract
1. Introduction
2. Theoretical Background
2.1. TAM
2.2. Perceived Trust
2.3. Network Externalities
2.4. Application-Specific Features
3. Hypothesis Development
3.1. TAM to WeChat Pay Continuance Intention
3.2. Perceived Trust and Its Antecedents
3.3. Direct and Indirect Network Externalities
3.4. Red Envelopes and Interface Design
4. Methodology
4.1. Measurements
4.2. Sampling and Data Collection Procedures
4.3. Demographic Data
5. Data Analysis and Results
5.1. Measurement Model
5.2. Structural Model
5.3. Common Method Variance
6. Discussion
7. Conclusions
7.1. Theoretical Implications
7.2. Practical Implications
7.3. Limitations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mu, H.L.; Lee, Y.C. Examining the influencing factors of third-party mobile payment adoption: A comparative study of Alipay and WeChat pay. J. Inf. Syst. 2017, 26, 257–294. [Google Scholar]
- Li, Y.Y.; Li, Y. Analysis of the development process of payment methods and mobile payment technology diffusion trend in china. Technol. Invest. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Dahlberg, T.; Mallat, N.; Ondrus, J.; Żmijewska, A. Past, present and future of mobile payments research: A literature review. Electron. Commer. Res. Appl. 2008, 7, 165–181. [Google Scholar] [CrossRef]
- Li, X.; Zhu, X.; Lu, Y.; Shi, D.; Deng, W. Understanding the continuous usage of mobile payment integrated into social media platform: The case of WeChat Pay. Electron. Commer. Res. Appl. 2023, 60, 101275. [Google Scholar] [CrossRef]
- Liu, Y.; Dewitte, S. A replication study of the credit card effect on spending behavior and an extension to mobile payments. J. Retail. Consum. Serv. 2021, 60, 102472. [Google Scholar] [CrossRef]
- Hameed, I.; Akram, U.; Khan, Y.; Khan, N.R.; Hameed, I. Exploring consumer mobile payment innovations: An investigation into the relationship between coping theory factors, individual motivations, social influence and word of mouth. J. Retail. Consum. Serv. 2024, 77, 103687. [Google Scholar] [CrossRef]
- GSM Association. The State of the Industry Report on Mobile Money. 1–84. Available online: http://www.gsma.com/solutions-and-impact/connectivity-for-good/mobile-for-development/grma_resources/state-of-the-industry-report-on-mobile-money-2023-2/ (accessed on 1 June 2024).
- Tencent. Financial Report for the Third Quarter of 2024. 2024. Available online: https://www.tencent.com/zh-hk/investors/financial-reports.html (accessed on 2 June 2024).
- Forward Industry Research Institute. Analysis of the Competitive Landscape and Market Share of China’s Mobile Payment Industry in 2024: High Market Concentration. Qianzhan. 2024. Available online: https://bg.qianzhan.com/trends/detail/506/240417-7adf968d.html (accessed on 2 June 2024).
- Qu, Y.; Rong, W.; Chen, H.; Ouyang, Y.; Xiong, Z. Influencing factors analysis for a social network web based payment service in china. J. Theor. Appl. Electron. Commer. Res. 2018, 13, 99–113. [Google Scholar] [CrossRef]
- Pham, T.T.; Pham, V.K.; Duong, N.T. Why do users adopt mobile payment? An integrated model. J. Knowl. Econ. 2025, 16, 4364–4391. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Nascimento, B.; Oliveira, T.; Tam, C. Wearable technology: What explains continuance intention in smartwatches? J. Retail. Consum. Serv. 2018, 43, 157–169. [Google Scholar] [CrossRef]
- Hyun, H.; Thavisay, T.; Lee, S.H. Enhancing the role of flow experience in social media usage and its impact on shopping. J. Retail. Consum. Serv. 2022, 65, 102492. [Google Scholar] [CrossRef]
- Armah, A.K.; Li, J. Generational cohorts’ social media acceptance as a delivery tool in sub-Sahara Africa motorcycle industry: The role of cohort technical know-how in technology acceptance. Technol. Soc. 2023, 75, 102390. [Google Scholar] [CrossRef]
- Camilleri, M.A.; Troise, C.; Kozak, M. Functionality and usability features of ubiquitous mobile technologies: The acceptance of interactive travel apps. J. Hosp. Tour. Technol. 2023, 14, 188–207. [Google Scholar] [CrossRef]
- Nan, D.; Kim, Y.; Park, M.H.; Kim, J.H. What motivates users to keep using social mobile payments? Sustainability 2020, 12, 6878. [Google Scholar] [CrossRef]
- Hu, B.; Liu, Y.L.; Yan, W. Should I scan my face? The influence of perceived value and trust on Chinese users’ intention to use facial recognition payment. Telemat. Inform. 2023, 78, 101951. [Google Scholar] [CrossRef]
- Chakraborty, D.; Siddiqui, A.; Siddiqui, M.; Rana, N.P.; Dash, G. Mobile payment apps filling value gaps: Integrating consumption values with initial trust and customer involvement. J. Retail. Consum. Serv. 2022, 66, 102946. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, L.; Li, X.; Guo, Y. Antecedents of trust and continuance intention in mobile payment platforms: The moderating effect of gender. Electron. Commer. Res. Appl. 2019, 33, 100823. [Google Scholar] [CrossRef]
- Katz, M.L.; Shapiro, C. Network externalities, competition, and compatibility. Am. Econ. Rev. 1985, 75, 424–440. [Google Scholar]
- Zhang, C.B.; Li, Y.N.; Wu, B.; Li, D.J. How WeChat can retain users: Roles of network externalities, social interaction ties, and perceived values in building continuance intention. Comput. Hum. Behav. 2017, 69, 284–293. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Yan, Y. Does network externality affect your project? Evidences from reward-based technology crowdfunding. Technol. Forecast. Soc. Change 2022, 180, 121667. [Google Scholar] [CrossRef]
- Lee, J.; Ryu, M.H.; Lee, D. A study on the reciprocal relationship between user perception and retailer perception on platform-based mobile payment service. J. Retail. Consum. Serv. 2019, 48, 7–15. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, K.Z.K.; Chen, C.; Cheung, C.M.K.; Lee, M.K.O. What drives self-disclosure in mobile payment applications? The effect of privacy assurance approaches, network externality, and technology complementarity. Inf. Technol. People 2020, 33, 1174–1213. [Google Scholar] [CrossRef]
- Shin, H.; Oh, C.; Kim, N.Y.; Choi, H.; Kim, B.; Ji, Y.G. Evaluating and eliciting design requirements for an improved user experience in live-streaming commerce interfaces. Comput. Hum. Behav. 2024, 150, 107990. [Google Scholar] [CrossRef]
- Tao, D.; Fu, P.; Wang, Y.; Zhang, T.; Qu, X. A systematic review and meta-analysis of user acceptance of consumer-oriented health information technologies. Comput. Hum. Behav. 2020, 104, 106147. [Google Scholar] [CrossRef]
- Al-Mamary, Y.H.S. Why do students adopt and use learning management systems? Insights from Saudi Arabia. Int. J. Inf. Manag. Data Insights 2022, 2, 100088. [Google Scholar] [CrossRef]
- Shao, C.; Kwon, K.H. Clicks intended: An integrated model for nuanced social feedback system uses on Facebook. Telemat. Inform. 2019, 39, 11–24. [Google Scholar] [CrossRef]
- Saif, N.; Khan, S.U.; Shaheen, I.; ALotaibi, F.A.; Alnfiai, M.M.; Arif, M. Chat-GPT; validating Technology Acceptance Model (TAM) in education sector via ubiquitous learning mechanism. Comput. Hum. Behav. 2024, 154, 108097. [Google Scholar] [CrossRef]
- Doleck, T.; Bazelais, P.; Lemay, D.J. Examining the antecedents of social networking sites use among CEGEP students. Educ. Inf. Technol. 2017, 22, 2103–2123. [Google Scholar] [CrossRef]
- Suliman, M.A.; Zhang, W.; Sleiman, K.A.A. Factors affecting students’ intention to use m-learning: Extending the technology acceptance model (TAM). Innov. Educ. Teach. Int. 2024, 61, 1184–1199. [Google Scholar] [CrossRef]
- Shao, C.; Nah, S.; Makady, H.; McNealy, J. Understanding user attitudes towards AI-enabled technologies: An integrated model of Self-Efficacy, TAM, and AI Ethics. Int. J. Hum. Comput. Interact. 2025, 41, 3053–3065. [Google Scholar] [CrossRef]
- Silva, G.M.; Dias, A.; Rodrigues, M.S. Continuity of use of food delivery apps: An integrated approach to the health belief model and the technology readiness and acceptance model. J. Open Innov. Technol. Mark. Complex. 2022, 8, 114. [Google Scholar] [CrossRef]
- Al-Okaily, M. So what about the post-COVID-19 era?: Do users still adopt FinTech products? Int. J. Hum. Comput. Interact. 2025, 41, 876–890. [Google Scholar] [CrossRef]
- Natarajan, T.; Balasubramanian, S.A.; Kasilingam, D.L. Understanding the intention to use mobile shopping applications and its influence on price sensitivity. J. Retail. Consum. Serv. 2017, 37, 8–22. [Google Scholar] [CrossRef]
- Patil, P.; Tamilmani, K.; Rana, N.P.; Raghavan, V. Understanding consumer adoption of mobile payment in India: Extending Meta-UTAUT model with personal innovativeness, anxiety, trust, and grievance redressal. Int. J. Inf. Manag. 2020, 54, 102144. [Google Scholar] [CrossRef]
- Tian, Y.; Chan, T.J.; Suki, N.M.; Kasim, M.A. Moderating role of perceived trust and perceived service quality on consumers’ use behavior of alipay e-wallet system: The perspectives of technology acceptance model and theory of planned behavior. Hum. Behav. Emerg. Technol. 2023, 2023, 5276406. [Google Scholar] [CrossRef]
- Zhou, T. The effect of initial trust on user adoption of mobile payment. Inf. Dev. 2011, 27, 290–300. [Google Scholar] [CrossRef]
- Morgan, R.M.; Hunt, S.D. The commitment-trust theory of relationship marketing. J. Mark. 1994, 58, 20–38. [Google Scholar] [CrossRef]
- Mayer, R.C.; Davis, J.H.; Schoorman, F.D. An Integrative Model of Organizational Trust. Acad. Manag. Rev. 1995, 20, 709–734. [Google Scholar] [CrossRef]
- Noreen, M.; Ghazali, Z.; Mia, M.S. The impact of perceived risk and trust on adoption of mobile money services: An empirical study in Pakistan. J. Asian Financ. Econ. Bus. 2021, 8, 347–355. [Google Scholar]
- Huang, S.; Wang, X.; Qu, H. The influence of peer-to-peer accommodation platforms’ green marketing on consumers’ pro-environmental behavioural intention. Int. J. Contemp. Hosp. Manag. 2025, 37, 976–996. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Tang, H.; Zhang, Y. Electronic word-of-mouth and consumer purchase intentions in social e-commerce. Electron. Commer. Res. Appl. 2020, 41, 100980. [Google Scholar] [CrossRef]
- Malik, A.; Hiekkanen, K.; Dhir, A.; Nieminen, M. Impact of privacy, trust and user activity on intentions to share Facebook photos. J. Inf. Commun. Ethics Soc. 2016, 14, 364–382. [Google Scholar] [CrossRef]
- Pal, A.; Herath, T.; De’, R.; Rao, H.R. Contextual facilitators and barriers influencing the continued use of mobile payment services in a developing country: Insights from adopters in India. Inf. Technol. Dev. 2020, 26, 394–420. [Google Scholar] [CrossRef]
- Shareef, M.A.; Dwivedi, Y.K.; Kumar, V.; Davies, G.; Rana, N.; Baabdullah, A. Purchase intention in an electronic commerce environment, a trade-off between controlling measures and operational performance. Inf. Technol. People 2019, 32, 1345–1375. [Google Scholar] [CrossRef]
- Kim, B.; Han, I. The role of trust belief and its antecedents in a community-driven knowledge environment. J. Assoc. Inf. Sci. Technol. 2009, 60, 1012–1026. [Google Scholar] [CrossRef]
- Ponte, E.B.; Carvajal-Trujillo, E.; Escobar-Rodriguez, T. Influence of trust and perceived value on the intention to purchase travel online: Integrating the effects of assurance on trust antecedents. Tour. Manag. 2015, 47, 286–302. [Google Scholar] [CrossRef]
- Maqableh, M.; Hmoud, H.Y.; Jaradat, M.; Masa’deh, R. Integrating an information systems success model with perceived privacy, perceived security, and trust: The moderating role of Facebook addiction. Heliyon 2021, 7, e07899. [Google Scholar] [CrossRef]
- Chin, A.G.; Harris, M.A.; Brookshire, R. An empirical investigation of intent to adopt mobile payment systems using a trust-based extended valence framework. Inf. Syst. Front. 2022, 24, 329–347. [Google Scholar] [CrossRef]
- Li, B.; Wang, X.H.; Tan, S.C. What makes MOOC users persist in completing MOOCs? A perspective from network externalities and human factors. Comput. Hum. Behav. 2018, 85, 385–395. [Google Scholar] [CrossRef]
- Sarkar, S.; Khare, A. Influence of expectation confirmation, network externalities, and flow on use of mobile shopping apps. Int. J. Hum. Comput. Interact. 2019, 35, 1449–1460. [Google Scholar] [CrossRef]
- Pang, H. Do direct and indirect network externalities matter? Unpacking the causal antecedents of perceived gratifications and user loyalty toward mobile social media. Aslib J. Inf. Manag. 2024, 76, 399–415. [Google Scholar] [CrossRef]
- He, W.; Li, M.; Zheng, J. Switching cost, network externality and platform competition. Int. Rev. Econ. Financ. 2023, 84, 428–443. [Google Scholar] [CrossRef]
- Zhou, T.; Li, H.; Liu, Y. Understanding mobile IM continuance usage from the perspectives of network externality and switching costs. Int. J. Mob. Commun. 2015, 13, 188–203. [Google Scholar] [CrossRef]
- Cheng, J.H.; Yu, C.K.; Chien, F.C. Enhancing effects of value co-creation in social commerce: Insights from network externalities, institution-based trust and resource-based perspectives. Behav. Inf. Technol. 2021, 41, 1755–1768. [Google Scholar] [CrossRef]
- Qasim, H.; Abu-Shanab, E. Drivers of mobile payment acceptance: The impact of network externalities. Inf. Syst. Front. 2016, 18, 1021–1034. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Lin, J.C.-C. An empirical examination of consumer adoption of Internet of Things services: Network externalities and concern for information privacy perspectives. Comput. Hum. Behav. 2016, 62, 516–527. [Google Scholar] [CrossRef]
- Lin, K.Y.; Lu, H.P. Why people use social networking sites: An empirical study integrating network externalities and motivation theory. Comput. Hum. Behav. 2011, 27, 1152–1161. [Google Scholar] [CrossRef]
- Zhao, L.; Lu, Y. Enhancing perceived interactivity through network externalities: An empirical study on micro-blogging service satisfaction and continuance intention. Decis. Support Syst. 2012, 53, 825–834. [Google Scholar] [CrossRef]
- Matemba, E.D.; Li, G. Consumers’ willingness to adopt and use WeChat wallet: An empirical study in South Africa. Technol. Soc. 2018, 53, 55–68. [Google Scholar] [CrossRef]
- Yang, H.; Yu, J.; Zo, H.; Choi, M. User acceptance of wearable devices: An extended perspective of perceived value. Telemat. Inform. 2016, 33, 256–269. [Google Scholar] [CrossRef]
- Xu, Y.S. The “lucky money” that started it all-the reinventionof the ancient tradition “red packet” in digital times. Soc. Media + Soc. 2021, 7, 20563051211041643. [Google Scholar] [CrossRef]
- He, Y.T.; Liu, X.Y.; Xiong, H.; Gong, H. A gateway toacquaintance community: Elderly migrants’ collective domesticationof interest-oriented group chats in China. New Media Soc. 2024, 26, 4390–4408. [Google Scholar] [CrossRef]
- Weng, Y.P.; Chen, L.; Chen, X. Identifying user relationshipon WeChat money-gifting network. IEEE Trans. Onknowl. Data Eng. 2022, 34, 3814–3825. [Google Scholar] [CrossRef]
- Mei, Y.; Deng, N. Do Monetary Gifts Influence User Engagement on Social Media? An Empirical Study About Red Packets on the WeChat Interest-Based Groups. Int. J. Hum. Comput. Interact. 2025, 1–19. [Google Scholar] [CrossRef]
- Wong, D.; Liu, H.F.; Meng-Lewis, Y.; Sun, Y.; Zhang, Y. Gamifiedmoney: Exploring the effectiveness of gamification in mobile paymentadoption among the silver generation in China. Inf. Technol. People 2022, 35, 281–315. [Google Scholar] [CrossRef]
- Chen, X.F.; Ma, J.Q.; Wei, J.N.; Yang, S.Q. The role ofperceived integration in WeChat usages for seeking information andsharing comments: A social capital perspective. Inf. Manag. 2021, 58, 103280. [Google Scholar] [CrossRef]
- Li, J. Monetized socialization on the front end: Exchanging money as social activities through Red Packet and Transfer on WeChat. J. Cult. Econ. 2025, 18, 284–303. [Google Scholar] [CrossRef]
- Johannes, K.M.; Michael, M.; Ayon, C. Service quality assessment of Internet banking: Empirical evidences from Namibia. e-Serv. J. 2016, 10, 42–65. [Google Scholar] [CrossRef]
- Kaatz, C. Retail in my pocket–replicating and extending the construct of service quality into the mobile commerce context. J. Retail. Consum. Serv. 2020, 53, 101983. [Google Scholar] [CrossRef]
- Hong, J.C.; Tai, K.H.; Hwang, M.Y.; Kuo, Y.C.; Chen, J.S. Internet cognitive failure relevant to users’ satisfaction with content and interface design to reflect continuance intention to use a government e-learning system. Comput. Hum. Behav. 2017, 66, 353–362. [Google Scholar] [CrossRef]
- Choi, H.; Kim, Y.; Kim, J. Driving factors of post adoption behavior in mobile data services. J. Bus. Res. 2011, 64, 1212–1217. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J. Do the Emotions Evoked by Interface Design Factors Affect the User’s Intention to Continue Using the Smartwatch? The Mediating Role of Quality Perceptions. Int. J. Hum. Comput. Interact. 2022, 39, 546–561. [Google Scholar] [CrossRef]
- Cheng, F.F.; Wu, C.S.; Leiner, B. The influence of user interface design on consumer perceptions: A cross-cultural comparison. Comput. Hum. Behav. 2019, 101, 394–401. [Google Scholar] [CrossRef]
- Sarrab, M.; Elbasir, M.; Alnaeli, S. Towards a quality model of technical aspects for mobile learning services: An empirical investigation. Comput. Hum. Behav. 2016, 55, 100–112. [Google Scholar] [CrossRef]
- Wistedt, U. Consumer purchase intention toward POI-retailers in cross-border E-commerce: An integration of technology acceptance model and commitment-trust theory. J. Retail. Consum. Serv. 2024, 81, 104015. [Google Scholar] [CrossRef]
- Al-Adwan, A.S.; Li, N.; Al-Adwan, A.; Abbasi, G.A.; Albelbisi, N.A.; Habibi, A. Extending the Technology Acceptance Model (TAM) to Predict University Students’ Intentions to Use Metaverse-Based Learning Platforms. Educ. Inf. Technol. 2023, 28, 15381–15413. [Google Scholar] [CrossRef]
- Alhassan, M.D.; Kolog, E.A.; Boateng, R. Effect of gratification on user attitude and continuance use of mobile payment services: A developing country context. J. Syst. Inf. Technol. 2020, 22, 351–378. [Google Scholar] [CrossRef]
- Laksamana, P.; Suharyanto, S.; Cahaya, Y.F. Determining factors of continuance intention in mobile payment: Fintech industry perspective. Asia Pac. J. Mark. Logist. 2023, 35, 1699–1718. [Google Scholar] [CrossRef]
- Bhattacherjee, A. Understanding information systems continuance: An expectation-confirmation model. MIS Q. 2001, 25, 351–370. [Google Scholar] [CrossRef]
- Oghuma, A.P.; Libaque-Saenz, C.F.; Wong, S.F.; Chang, Y.W. An expectation-confirmation model of continuance intention to use mobile instant messaging. Telemat. Inform. 2016, 33, 34–47. [Google Scholar] [CrossRef]
- Lim, S.H.; Kim, D.J.; Hur, Y.; Park, K. An Empirical Study of the Impacts of Perceived Security and Knowledge on Continuous Intention to Use Mobile Fintech Payment Services. Int. J. Hum. Comput. Interact. 2018, 35, 886–898. [Google Scholar] [CrossRef]
- Talwar, S.; Dhir, A.; Khalil, A.; Mohan, G.; Islam, A.N. Point of adoption and beyond. Initial trust and mobile-payment continuation intention. J. Retail. Consum. Serv. 2020, 55, 102086. [Google Scholar] [CrossRef]
- Dinev, T.; Xu, H.; Smith, J.H.; Hart, P. Information privacy and correlates: An empirical attempt to bridge and distinguish privacy-related concepts. Eur. J. Inf. Syst. 2013, 22, 295–316. [Google Scholar] [CrossRef]
- Keith, M.J.; Babb, J.S.; Lowry, P.B.; Furner, C.P.; Abdullat, A. The role of mobile-computing self-efficacy in consumer information disclosure. Inf. Syst. J. 2015, 25, 637–667. [Google Scholar] [CrossRef]
- Abumalloh, R.A.; Nilashi, M.; Halabi, O.; Ali, R. Does metaverse improve recommendations quality and customer trust? A user-centric evaluation framework based on the cognitive-affective-behavioural theory. J. Innov. Knowl. 2024, 9, 100569. [Google Scholar] [CrossRef]
- Fan, J.; Shao, M.; Li, Y.; Huang, X. Understanding users’ attitude toward mobile payment use: A comparative study between China and the USA. Ind. Manag. Data Syst. 2018, 118, 524–540. [Google Scholar] [CrossRef]
- Kim, C.; Tao, W.; Shin, N.; Kim, K.-S. An empirical study of customers’ perceptions of security and trust in e-payment systems. Electron. Commer. Res. Appl. 2010, 9, 84–95. [Google Scholar] [CrossRef]
- Khalilzadeh, J.; Ozturk, A.B.; Bilgihan, A. Security-related factors in extended UTAUT model for NFC based mobile payment in the restaurant industry. Comput. Hum. Behav. 2017, 70, 460–474. [Google Scholar] [CrossRef]
- Stvilia, B.; Mon, L.; Yi, Y.J. A model for online consumer health information quality. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 1781–1791. [Google Scholar] [CrossRef]
- Su, D.N.; Nguyen, N.A.N.; Nguyen, L.N.T.; Luu, T.T.; Nguyen-Phuoc, D.Q. Modeling consumers’ trust in mobile food delivery apps: Perspectives of technology acceptance model, mobile service quality and personalization-privacy theory. J. Hosp. Mark. Manag. 2022, 31, 535–569. [Google Scholar] [CrossRef]
- Lee, D.; Moon, J.; Kim, Y.J.; Yi, M.Y. Antecedents and consequences of mobile phone usability: Linking simplicity and interactivity to satisfaction, trust, and brand loyalty. Inf. Manag. 2015, 52, 295–304. [Google Scholar] [CrossRef]
- Gupta, P.; Hooda, A.; Jeyaraj, A.; Seddon, J.J.; Dwivedi, Y.K. Trust, risk, privacy and security in e-government use: Insights from a MASEM analysis. Inf. Syst. Front. 2025, 27, 1089–1105. [Google Scholar] [CrossRef]
- Burgess, B.; Yaoyuneyong, G.; Pollitte, W.A.; Sullivan, P. Adopting retail technology in crises: Integrating TAM and prospect theory perspectives. Int. J. Retail Distrib. Manag. 2023, 51, 939–954. [Google Scholar] [CrossRef]
- Tandon, U.; Ertz, M.; Bansal, H. Social vacation: Proposition of a model to understand tourists’ usage of social media for travel planning. Technol. Soc. 2020, 63, 101438. [Google Scholar] [CrossRef]
- Sullivan, Y.W.; Kim, D.J. Assessing the effects of consumers’ product evaluations and trust on repurchase intention in e-commerce environments. Int. J. Inf. Manag. 2018, 39, 199–219. [Google Scholar] [CrossRef]
- Al-Hujran, O.; Al-Debei, M.M.; Chatfield, A.; Migdadi, M. The imperative of influencing citizen attitude toward e-government adoption and use. Comput. Hum. Behav. 2015, 53, 189–203. [Google Scholar] [CrossRef]
- Wang, E.S.-T.; Chen, L.S.-L. Forming relationship commitments to online communities: The role of social motivations. Comput. Hum. Behav. 2012, 28, 570–575. [Google Scholar] [CrossRef]
- Ghosh, A.; Mishra, R.; Mishra, A. Role of network externalities and trust facilitators in shaping mobile payment application continuance intentions: Variations across stages of adoption. Mark. Intell. Plan. 2025. advance online publication. [Google Scholar] [CrossRef]
- Lu, Y.; Deng, Z.; Wang, B. Exploring factors affecting Chinese consumers’ usage of short message service for personal communication. Inf. Syst. J. 2010, 20, 183–208. [Google Scholar]
- Chiu, C.; Cheng, H.; Huang, H.; Chen, C. Exploring individuals’ subjective well-being and loyalty towards social network sites from the perspective of network externalities: The Facebook case. Int. J. Inf. Manag. 2013, 33, 539–552. [Google Scholar] [CrossRef]
- Kong, F.; Li, X.; Xia, Y.; Wang, M.; Sun, X. Technology acceptance model of mobile social media among Chinese college students. J. Technol. Behav. Sci. 2021, 6, 365–369. [Google Scholar] [CrossRef]
- Farrell, J.; Saloner, G. Standardization, compatibility, and innovation. RAND J. Econ. 1985, 16, 70–83. [Google Scholar] [CrossRef]
- Yang, H.-L.; Lin, S.-L. Determinants and consequences of social media apps usage: From the perspective of the value theory. Int. J. Mob. Commun. 2022, 20, 1–32. [Google Scholar] [CrossRef]
- Kang, W.; Shao, B.; Chen, H. What influences users’ continuance intention of internet wealth management services? A perspective from network externalities and herding. Electron. Commer. Res. 2022. advance online publication. [Google Scholar] [CrossRef]
- Chen, H.-T.; Li, X. The contribution of mobile social media to social capital and psychological well-being: Examining the role of communicative use, friending and self-disclosure. Comput. Hum. Behav. 2017, 75, 958–965. [Google Scholar] [CrossRef]
- Singh, N.; Sinha, N.; Liébana-Cabanillas, F.J. Determining factors in the adoption and recommendation of mobile wallet services in India: Analysis of the effect of innovativeness, stress to use and social influence. Int. J. Inf. Manag. 2020, 50, 191–205. [Google Scholar] [CrossRef]
- Alam, S.S.; Ahmed, S.; Kokash, H.A.; Mahmud, M.S.; Sharnali, S.Z. Utility and hedonic perception- Customers’ intention towards using of QR codes in mobile payment of Generation Y and Generation Z. Electron. Commer. Res. Appl. 2024, 65, 101389. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Wang, S.; Zhou, Y. Understanding the user’s economical and psychological intentions to snatch electronic red envelopes: An experimental study. IEEE Access. 2018, 7, 5749–5759. [Google Scholar] [CrossRef]
- Wang, J.; Hsu, Y. The relationship of symmetry, complexity, and shape in mobile interface aesthetics, from an emotional perspective—A case study of the smartwatch. Symmetry 2020, 12, 1403. [Google Scholar] [CrossRef]
- Wu, Z.M.; Ma, X.J. Money as a social currency to manage group dynamics: Red packet gifting in Chinese online communities. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, Denver, CO, USA, 11 May 2017; pp. 2240–2247. [Google Scholar]
- Gao, H.B.; Zhao, H.Z.; Tan, Y.L.; Lin, Y.; Wei, L. Socialpromotion: A creative promotional framework on consumers’ social network value. Prod. Oper. Manag. 2020, 29, 2661–2678. [Google Scholar] [CrossRef]
- Hsieh, S.H.; Lee, C.T. Traces of mobility: Examining location disclosure on social networks with mobile location tagging. Telemat. Inform. 2020, 49, 101366. [Google Scholar] [CrossRef]
- Yu, N.; Kong, J. User experience with web browsing on small screens: Experimental investigations of mobile-page interface design and homepage design for news websites. Inf. Sci. 2016, 330, 427–443. [Google Scholar] [CrossRef]
- Park, K.; Jeong, M.; Kim, K. Usability evaluation of menuinterfaces for smartwatches. J. Comput. Inf. Syst. 2020, 60, 156–165. [Google Scholar]
- Wang, J.; Wang, Z.; Qiu, S. Investigate symmetry, complexity, and screen shapes in interface design aesthetics to promote users’ quality perceptions and continuous usage intention of the smartwatch. Int. J. Hum. Comput. Interact. 2021, 37, 1966–1980. [Google Scholar] [CrossRef]
- Chang, Y.; Wong, S.F.; Libaque-Saenz, C.F.; Lee, H. The role of privacy policy on consumers’ perceived privacy. Gov. Inf. Q. 2018, 35, 445–459. [Google Scholar] [CrossRef]
- Yi, M.Y.; Yoon, J.J.; Davis, J.M.; Lee, T. Untangling the antecedents of initial trust in web-based health information: The roles of argument quality, source expertise, and user perceptions of information quality and risk. Decis. Support Syst. 2013, 55, 284–295. [Google Scholar] [CrossRef]
- Li, Y.; Shang, H. Service quality, perceived value, and citizens’ continuous-use intention regarding e-government: Empirical evidence from China. Inf. Manag. 2020, 57, 103197. [Google Scholar] [CrossRef]
- Matemba, E.D.; Li, G.; Maiseli, B.J. Consumers’ stickiness to mobile payment applications: An empirical study of WeChat wallet. J. Database Manag. 2018, 29, 43–66. [Google Scholar] [CrossRef]
- Lien, C.H.; Cao, Y. Examining WeChat users’ motivations, trust, attitudes, and positive word-of-mouth: Evidence from China. Comput. Hum. Behav. 2014, 41, 104–111. [Google Scholar] [CrossRef]
- Liebana-Cabanillas, F.; Herrera, L.J.; Guillen, A. Variable selection for payment in social networks: Introducing the Hy-index. Comput. Hum. Behav. 2016, 56, 45–55. [Google Scholar] [CrossRef]
- Gefen, D.; Karahanna, E.; Straub, D.W. Trust and TAM in online shopping: An integrated model. MIS Q. 2003, 27, 51–90. [Google Scholar] [CrossRef]
- Wang, J.; Gu, L. Why is wechat pay so popular? Inf. Syst. 2017, 18, 1–8. [Google Scholar]
- Kim, C.; Galliers, R.; Shin, N.; Ryoo, J.; Kim, J. Factors influencing internet shopping value and consumer continuance intention. Electron. Commer. Res. Appl. 2012, 11, 374–387. [Google Scholar] [CrossRef]
- Amoroso, D.; Lim, R. The mediating effects of habit on continuance intention. Int. J. Inf. Manag. 2017, 37, 693–702. [Google Scholar] [CrossRef]
- Lien, C.H.; Cao, Y.; Zhou, X. Service quality, satisfaction, stickiness, and usage intentions: An exploratory evaluation in the context of WeChat services. Comput. Hum. Behav. 2017, 68, 403–410. [Google Scholar] [CrossRef]
- Hong, Y.; Hu, J.; Chen, M.; Tang, S. Motives and antecedents affecting green purchase intention: Implications for green economic recovery. Econ. Anal. Policy 2023, 77, 523–538. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 8th ed.; Pearson: London, UK, 2018. [Google Scholar]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; Sage Publications: London, UK, 2016. [Google Scholar]
- Chin, W.W. The partial least squares approach to structural equation modeling. In Modern Methods for Business Research; Taylor & Francis Asia Pacific: New York, NY, USA, 1998; Volume 295, pp. 295–336. [Google Scholar]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; Guilford Press: New York, NY, USA, 2015. [Google Scholar]
- Gold, A.H.; Malhotra, A.; Segars, A.H. Knowledge management: An organizational capabili ties perspective. J. Manag. Inf. Syst. 2001, 18, 185–214. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Plan. 2013, 46, 1–12. [Google Scholar] [CrossRef]
- Tenenhaus, M.; Vinzi, V.E.; Chatelin, Y.M.; Lauro, C. PLS path modeling. Comput. Stat. Data Anal. 2005, 48, 159–205. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879. [Google Scholar] [CrossRef] [PubMed]
- Harman, H.H. Modern Factor Analysis, 3rd ed.; U Chicago Press: Oxford, UK, 1976; p. 487. [Google Scholar]
- Kock, N. Common Method Bias in PLS-SEM: A Full Collinearity Assessment Approach. Int. J. E-Collab. 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Gao, B.; Huang, L. Understanding interactive user behavior in smart media content service: An integration of TAM and smart service belief factors. Heliyon 2019, 5, e02983. [Google Scholar] [CrossRef]
- Al-Emran, M.; Mezhuyev, V.; Kamaludin, A. Towards a conceptual model for examining the impact of knowledge management factors on mobile learning acceptance. Technol. Soc. 2020, 61, 101247. [Google Scholar] [CrossRef]


| Characteristics | Frequency | Percent (%) |
|---|---|---|
| 1. Gender | ||
| Male | 380 | 58.5% |
| Female | 270 | 41.5% |
| 2. Age | ||
| Under 18 | 2 | 0.3% |
| 18–25 | 221 | 34% |
| 26–33 | 256 | 39.4% |
| 34–41 | 121 | 18.6% |
| Over 41 | 50 | 7.7% |
| 3. Education level | ||
| Certificate or below | 8 | 1.2% |
| High school | 44 | 6.8% |
| Undergraduate degree | 502 | 77.2% |
| Master | 80 | 12.3% |
| Doctor degree | 16 | 2.5% |
| 4. Daily time spend on WeChat | ||
| Under 3 h | 253 | 38.9% |
| 3 h–4 h | 220 | 33.8% |
| 4 h–5 h | 105 | 16.2% |
| 5 h–6 h | 40 | 6.2% |
| Over 6 h | 32 | 4.9% |
| 5. Frequency of using WeChat | ||
| Under 4 times a day | 26 | 4.0% |
| 5–8 times a day | 166 | 25.5% |
| 9–12 times a day | 175 | 26.9% |
| 13–15 times a day | 101 | 15.5% |
| Over 16 times a day | 182 | 28% |
| 6. Experience of using WeChat | ||
| Under 3 years | 47 | 7.2% |
| 3–4 years | 134 | 20.6% |
| 4–5 years | 154 | 23.7% |
| 5–6 years | 143 | 20.6% |
| Over 6 years | 181 | 27.8% |
| 7. Frequency of using WeChat Pay | ||
| Under 2 times a day | 179 | 27.5% |
| 2–4 times a day | 320 | 46.5% |
| 5–7 times a day | 91 | 14.0% |
| 8–10 times a day | 33 | 5.1% |
| Over 11 times a day | 45 | 6.9% |
| 8. Experience of using WeChat Pay | ||
| Under 2 years | 51 | 7.8% |
| 2–3 years | 176 | 27.1% |
| 3–4 years | 187 | 28.8% |
| 4–5 years | 137 | 21.1% |
| Over 5 years | 99 | 15.2% |
| Constructs | Indicator Reliability | Consistency Reliability | Convergent Validity | |
|---|---|---|---|---|
| Outer Factor Loading | Cronbach’s Alpha | Composite Reliability | Average Variance Extracted (AVE) | |
| Perceived privacy | 0.852~0.873 | 0.826 | 0.896 | 0.741 |
| Information quality | 0.775~0.822 | 0.703 | 0.834 | 0.626 |
| Perceived security | 0.757~0.816 | 0.709 | 0.836 | 0.631 |
| Perceived trust | 0.730~0.756 | 0.728 | 0.830 | 0.550 |
| Perceived network size | 0.769~0.824 | 0.724 | 0.845 | 0.645 |
| Perceived complementarity | 0.759~0.821 | 0.703 | 0.834 | 0.627 |
| Red envelopes | 0.781~0.809 | 0.714 | 0.840 | 0.636 |
| Interface design | 0.755~0.826 | 0.713 | 0.839 | 0.635 |
| Perceived ease of use | 0.722~0.792 | 0.739 | 0.836 | 0.561 |
| Perceived usefulness | 0.793~0.815 | 0.724 | 0.844 | 0.644 |
| Attitude | 0.797~0.847 | 0.831 | 0.888 | 0.664 |
| WeChat Pay continuance intention | 0.717~0.792 | 0.753 | 0.843 | 0.574 |
| PP | IQ | PS | PT | PNS | PC | RE | ID | PEOU | PU | ATT | WPCI | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PP | 0.861 | |||||||||||
| IQ | 0.438 | 0.791 | ||||||||||
| PS | 0.636 | 0.467 | 0.794 | |||||||||
| PT | 0.576 | 0.507 | 0.638 | 0.742 | ||||||||
| PNS | 0.301 | 0.326 | 0.395 | 0.452 | 0.803 | |||||||
| PC | 0.358 | 0.473 | 0.473 | 0.510 | 0.525 | 0.792 | ||||||
| RE | 0.304 | 0.364 | 0.361 | 0.389 | 0.381 | 0.479 | 0.797 | |||||
| ID | 0.307 | 0.499 | 0.412 | 0.486 | 0.458 | 0.524 | 0.374 | 0.797 | ||||
| PEOU | 0.332 | 0.402 | 0.430 | 0.492 | 0.598 | 0.623 | 0.478 | 0.570 | 0.749 | |||
| PU | 0.324 | 0.394 | 0.399 | 0.439 | 0.590 | 0.560 | 0.440 | 0.484 | 0.613 | 0.803 | ||
| ATT | 0.398 | 0.457 | 0.409 | 0.418 | 0.273 | 0.472 | 0.461 | 0.388 | 0.383 | 0.303 | 0.815 | |
| WPCI | 0.437 | 0.442 | 0.480 | 0.574 | 0.587 | 0.559 | 0.529 | 0.501 | 0.583 | 0.546 | 0.493 | 0.758 |
| PP | IQ | PS | PT | PNS | PC | RE | ID | PEOU | PU | ATT | WPCI | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PP | ||||||||||||
| IQ | 0.569 | |||||||||||
| PS | 0.828 | 0.649 | ||||||||||
| PT | 0.736 | 0.700 | 0.876 | |||||||||
| PNS | 0.388 | 0.448 | 0.535 | 0.619 | ||||||||
| PC | 0.469 | 0.670 | 0.664 | 0.712 | 0.733 | |||||||
| RE | 0.395 | 0.516 | 0.501 | 0.538 | 0.530 | 0.678 | ||||||
| ID | 0.395 | 0.699 | 0.576 | 0.673 | 0.633 | 0.740 | 0.527 | |||||
| PEOU | 0.422 | 0.546 | 0.585 | 0.670 | 0.816 | 0.860 | 0.653 | 0.785 | ||||
| PU | 0.412 | 0.535 | 0.540 | 0.597 | 0.815 | 0.784 | 0.611 | 0.671 | 0.836 | |||
| ATT | 0.476 | 0.606 | 0.537 | 0.537 | 0.356 | 0.622 | 0.596 | 0.507 | 0.488 | 0.392 | ||
| WPCI | 0.549 | 0.603 | 0.649 | 0.775 | 0.804 | 0.773 | 0.718 | 0.684 | 0.780 | 0.742 | 0.615 |
| Hypothesis | Path | Original Sample (O) | Sample Mean (M) | Standard Deviation (STDEV) | T Statistics | p Values | Result | |
|---|---|---|---|---|---|---|---|---|
| H1 | H1a | PEOU → PU | 0.266 | 0.267 | 0.045 | 5.711 | 0.000 | Supported |
| H1b | PEOU → ATT | 0.117 | 0.116 | 0.049 | 2.392 | 0.017 | Supported | |
| H1c | PU→ATT | −0.014 | −0.015 | 0.048 | 0.303 | 0.762 | Not | |
| H1d | PU → WPCI | 0.438 | 0.439 | 0.036 | 12.305 | 0.000 | Supported | |
| H1e | ATT → WPCI | 0.360 | 0.361 | 0.033 | 10.502 | 0.000 | Supported | |
| H2 | H2a | PP → PT | 0.223 | 0.223 | 0.047 | 4.603 | 0.000 | Supported |
| H2b | IQ → PT | 0.157 | 0.157 | 0.041 | 3.840 | 0.000 | Supported | |
| H2c | PS → PT | 0.301 | 0.302 | 0.047 | 6.300 | 0.000 | Supported | |
| H3 | H3a | PT → PU | 0.048 | 0.050 | 0.038 | 1.263 | 0.206 | Not |
| H3b | PT → PEOU | 0.099 | 0.099 | 0.038 | 2.565 | 0.010 | Supported | |
| H4 | H4a | PNS → PT | 0.142 | 0.144 | 0.042 | 3.342 | 0.001 | Supported |
| H4b | PNS → PEOU | 0.298 | 0.298 | 0.039 | 7.507 | 0.000 | Supported | |
| H4c | PNS → PU | 0.271 | 0.270 | 0.045 | 6.001 | 0.000 | Supported | |
| H5 | H5a | PC → PT | 0.139 | 0.139 | 0.055 | 2.527 | 0.011 | Supported |
| H5b | PC → PU | 0.177 | 0.176 | 0.057 | 3.074 | 0.002 | Supported | |
| H5c | PC → PEOU | 0.294 | 0.294 | 0.048 | 6.371 | 0.000 | Supported | |
| H6 | H6a | RE → PU | 0.106 | 0.107 | 0.038 | 2.828 | 0.005 | Supported |
| H6b | RE → ATT | 0.337 | 0.338 | 0.042 | 8.012 | 0.000 | Supported | |
| H7 | H7a | ID → PEOU | 0.231 | 0.232 | 0.044 | 5.643 | 0.000 | Supported |
| H7b | ID → ATT | 0.205 | 0.205 | 0.047 | 4.300 | 0.000 | Supported | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hong, Y.; Wan, M.; Yao, W. More than Just Payment! Exploring the Determinants of Mobile Payment Continuance Intention: Insights from WeChat Pay. J. Theor. Appl. Electron. Commer. Res. 2026, 21, 7. https://doi.org/10.3390/jtaer21010007
Hong Y, Wan M, Yao W. More than Just Payment! Exploring the Determinants of Mobile Payment Continuance Intention: Insights from WeChat Pay. Journal of Theoretical and Applied Electronic Commerce Research. 2026; 21(1):7. https://doi.org/10.3390/jtaer21010007
Chicago/Turabian StyleHong, Ying, Meng Wan, and Wenxin Yao. 2026. "More than Just Payment! Exploring the Determinants of Mobile Payment Continuance Intention: Insights from WeChat Pay" Journal of Theoretical and Applied Electronic Commerce Research 21, no. 1: 7. https://doi.org/10.3390/jtaer21010007
APA StyleHong, Y., Wan, M., & Yao, W. (2026). More than Just Payment! Exploring the Determinants of Mobile Payment Continuance Intention: Insights from WeChat Pay. Journal of Theoretical and Applied Electronic Commerce Research, 21(1), 7. https://doi.org/10.3390/jtaer21010007
