Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = zooplankton transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 762 KiB  
Review
Drivers of Mercury Accumulation in Juvenile Antarctic Krill, Epipelagic Fish and Adélie Penguins in Different Regions of the Southern Ocean
by Roberto Bargagli and Emilia Rota
Environments 2025, 12(6), 180; https://doi.org/10.3390/environments12060180 - 29 May 2025
Viewed by 1502
Abstract
Antarctica and the Southern Ocean are important sinks in the global mercury (Hg) cycle, and in the marine environment, inorganic Hg can be converted by bacteria to monomethylmercury (MeHg), a highly bioavailable and toxic compound that biomagnifies along food webs. In the Southern [...] Read more.
Antarctica and the Southern Ocean are important sinks in the global mercury (Hg) cycle, and in the marine environment, inorganic Hg can be converted by bacteria to monomethylmercury (MeHg), a highly bioavailable and toxic compound that biomagnifies along food webs. In the Southern Ocean, higher concentrations of Hg and MeHg have typically been reported in the coastal waters of the Ross and Amundsen Seas, where katabatic winds can transport Hg from the Antarctic Plateau and create coastal polynyas, which results in spring depletion events of atmospheric Hg. However, some studies on MeHg biomagnification in Antarctic marine food webs have reported higher Hg concentrations in penguins from sub-Antarctic waters and, unexpectedly, higher levels in juvenile krill than those in adult Antarctic krill. In light of recent estimates of the phytoplankton and zooplankton biomass and distribution in the Southern Ocean, this review suggests that although most studies on MeHg biomagnification refer to the short diatom–krill–vertebrate food chain, alternative and more complex pelagic food webs exist in the Southern Ocean. Thus, juvenile krill and micro- and mesozooplankton grazing on very small autotrophs and heterotrophs, which have high surface-to-volume ratios for MeHg ad-/absorption, may accumulate more Hg than consumers of large diatoms, such as adult krill. In addition, the increased availability of Hg and the different diet contribute to a greater metal accumulation in the feathers of Adélie penguins from the Ross Sea than that of those from the sub-Antarctic. Full article
Show Figures

Figure 1

14 pages, 5326 KiB  
Article
A Circulation Study Based on the 2022 Sino–Vietnamese Joint Survey Data from the Beibu Gulf
by Zhi Zeng, Jinwen Liu, Xin Zhao, Zhijie Chen, Yanyu Chen, Bo Chen, Maochong Shi and Wei He
Water 2024, 16(20), 2943; https://doi.org/10.3390/w16202943 - 16 Oct 2024
Cited by 1 | Viewed by 1091
Abstract
This study analyzed the horizontal and vertical distribution characteristics of temperature and salinity in the central and eastern regions of the Beibu Gulf, based on conductivity measurements in summer 2022, temperature, and depth (CTD) measurement data from the Sino–Vietnamese cooperative project “Demonstration Study [...] Read more.
This study analyzed the horizontal and vertical distribution characteristics of temperature and salinity in the central and eastern regions of the Beibu Gulf, based on conductivity measurements in summer 2022, temperature, and depth (CTD) measurement data from the Sino–Vietnamese cooperative project “Demonstration Study on Ecological Protection and Management in Typical Bays: Seasonal Survey of the Beibu Gulf”. Furthermore, the study utilized the computational results from the numerical Finite-Volume Coastal Ocean Model (FVCOM) to elucidate the intrinsic patterns that formed the temperature and salinity distribution characteristics in August 2022 from both thermodynamic and dynamic perspectives. The circulation in the Beibu Gulf drives external seawater to move northward from the bay mouth. During this movement, numerous upwelling areas are created by lateral Ekman transport. The formation of different scales of cyclonic and anticyclonic vortices and current convergence zones is influenced by topography, runoff, and the water flux from the Qiongzhou Strait, which are key factors in the formation of upwelling and downwelling. The surface circulation in August 2022 significantly differed from the 20-year average surface circulation, with an influx of 1.15 × 104 m3/s more water entering the Beibu Gulf compared to the multi-year average. The water flux from the Qiongzhou Strait is a critical factor affecting the circulation patterns in the Beibu Gulf. The northeastern waters of the Beibu Gulf are characterized by current convergence zones, where extensive upwelling occurs. The rich nutrient salts in these areas promote the reproduction and growth of phytoplankton and zooplankton, making this the most favorable ecological environment in the Beibu Gulf and serving as a natural reserve for fisheries, coral reefs, dugongs, and Bryde’s whales. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

12 pages, 1759 KiB  
Article
Zooplankton Assemblages of an Argentinean Saline Lake during Three Contrasting Hydroperiods and a Comparison with Hatching Experiments
by Santiago Andrés Echaniz, Alicia María Vignatti and Gabriela Cecilia Cabrera
Limnol. Rev. 2024, 24(3), 301-312; https://doi.org/10.3390/limnolrev24030018 - 8 Aug 2024
Viewed by 992
Abstract
Many saline lakes are temporary, with large variations in salinity, and their biota is adapted to withstand unfavorable periods. Utracan Lake, in a protected area in central Argentina, was studied on three occasions under different environmental conditions. In 2007, depth and salinity were [...] Read more.
Many saline lakes are temporary, with large variations in salinity, and their biota is adapted to withstand unfavorable periods. Utracan Lake, in a protected area in central Argentina, was studied on three occasions under different environmental conditions. In 2007, depth and salinity were 2 m and 33 g/L, and six species were recorded in the zooplankton. In 2009–2010, its maximum depth was 0.3 m, its salinity exceeded 230 g/L, and only Artemia persimilis was recorded. Field studies to compare the active zooplankton of a third period were combined with laboratory tests to ascertain the composition of the egg bank (flotation with sucrose) and zooplankton succession (hatching from sediments). In 2017–2018 (third period), the depth and salinity were 1.75 ± 0.17 m and 47.19 ± 11.40 g/L, respectively. Five species were recorded, and A. persimilis was found coexisting with cladocerans, copepods, and rotifers. Brachionus plicatilis, Hexarthra fennica, Boeckella poopoensis, A. persimilis, and a single specimen of Moina eugeniae were recorded in hatching experiments; however, the latter species was not recorded again. No cladoceran ephippia were recorded in the flotation tests. Salt accumulation on the sediments during the Utracan drought (2010–2016) would have deteriorated the ephippia. The register of M. eugeniae in 2017–2018 could be largely because of recolonization by waterfowl. The conservation of Utracan Lake is therefore advisable, and the same goes for other nearby saline lakes, which can act as sources of propagules that cross terrestrial areas through transport by wind or zoochory. Full article
Show Figures

Figure 1

23 pages, 4731 KiB  
Article
Characteristics of Two Lagoons in the Coastal Area of the Baltic Sea
by Oskars Purmalis, Laura Grinberga, Linda Dobkevica, Agnija Skuja, Davis Ozolins, Ivars Druvietis, Viesturs Ozols and Jana Paidere
Limnol. Rev. 2024, 24(1), 53-75; https://doi.org/10.3390/limnolrev24010004 - 24 Jan 2024
Cited by 1 | Viewed by 1724
Abstract
The proposed study is focused on an ecological analysis of Latvian coastal lagoons, emphasizing their unique but vulnerable nature. Coastal lagoons are recognized as fragile ecosystems of significant ecological, social, and economic value, as recognized by the European Directive 92/43/EEC (Habitats Directive). Despite [...] Read more.
The proposed study is focused on an ecological analysis of Latvian coastal lagoons, emphasizing their unique but vulnerable nature. Coastal lagoons are recognized as fragile ecosystems of significant ecological, social, and economic value, as recognized by the European Directive 92/43/EEC (Habitats Directive). Despite their protected status, the existence of these ecosystems can be threatened by morphological, hydrological, and anthropogenic changes. The uniqueness of these ecosystems can be determined by the large number of influencing factors and their dynamics. They are affected by seawater, their level of fluctuation, wind exposure, overgrowing with macrophytes, freshwater sources, and water flow generated streams affecting sediment transport and accumulation. All the influencing factors determine a highly trophic ecosystem, which in the studied lagoons is rated as medium to poor ecological status, which confirms the above-mentioned vulnerability and fragility. The aim of this study was to analyze two lagoons in the coastal area of the Baltic Sea in the Riga Gulf, by characterizing, for the first time, their current conditions and ecological parameters because understanding such ecosystems is only partial. The physicochemical composition of lagoon sediments and water shows the impact of seawater by increased electrical conductivity and the concentration of SO42− and Cl in water, while the presence of detritus in sediments is almost non-existent; thus, the content of organic matter is low with relatively variable pH. The results show that the diversity of studied benthic macroinvertebrates, macrophytes, zooplankton, and even phytoplankton species is low, but there is higher diversity in lagoons and their parts with regular water exchange with the sea. The study provides valuable insight into the ecological dynamics of coastal lagoons in Latvia, shedding light on their current conditions, anthropogenic impact, and the need for sustainable management measures. Full article
Show Figures

Figure 1

12 pages, 2931 KiB  
Article
Microplastics Residence Time in Marine Copepods: An Experimental Study
by Saif Uddin, Montaha Behbehani, Nazima Habibi, Scott W. Fowler, Hanan A. Al-Sarawi and Carlos Alonso-Hernandez
Sustainability 2023, 15(20), 14970; https://doi.org/10.3390/su152014970 - 17 Oct 2023
Cited by 1 | Viewed by 2356
Abstract
Microplastics are ubiquitous in aquatic environments, and in most marine environments, copepods are the main metazoans. The ingestion of microplastics by zooplankton is linked to various stresses, including oxidative stress, reduced reproductive capacities, and even mortality in nauplii. Microplastics are also reported to [...] Read more.
Microplastics are ubiquitous in aquatic environments, and in most marine environments, copepods are the main metazoans. The ingestion of microplastics by zooplankton is linked to various stresses, including oxidative stress, reduced reproductive capacities, and even mortality in nauplii. Microplastics are also reported to serve as vectors for hydrophobic contaminants. Our experimental results highlight that the retention and contact time of microplastics in copepods is quite short. The experimental results show that Parvocalanus crassirostis and Acartia pacifica defecated 75–84% and 61–71% of ingested microplastics within 60 min of ingestion. The observation raises several questions on the hypothesis of microplastic toxicity and ecological stresses: would a 180-minute contact time result in acute toxicity reported by various workers? An interesting observation was that these two copepod species did not consume microplastics larger than 50 µm in size. Considering this fact, inventories of smaller microplastics might be more important for assessing the ecological effects of MP ingestion among primary consumers in the marine food chain. Another important aspect that this study highlights is the likely change in faecal pellet sinking velocities due to the incorporation of MPs, and faecal pellets are probably efficient vectors for MP transport in the aquatic environment. Full article
(This article belongs to the Section Sustainable Oceans)
Show Figures

Figure 1

23 pages, 4913 KiB  
Article
Characterizing the Variability of a Physical Driver of North Atlantic Right Whale Foraging Habitat Using Altimetric Indices
by Jing Tao, Hui Shen, Richard E. Danielson and William Perrie
J. Mar. Sci. Eng. 2023, 11(9), 1760; https://doi.org/10.3390/jmse11091760 - 8 Sep 2023
Cited by 1 | Viewed by 1686
Abstract
Physical ocean circulation features, especially the Gaspé Current (GC) intrusion, influence the transport and aggregation of whale prey, thereby influencing the whale foraging habitat in the Gulf of St. Lawrence (GSL), Canada. We employ satellite altimetry-derived sea level anomaly (SLA) indices to monitor [...] Read more.
Physical ocean circulation features, especially the Gaspé Current (GC) intrusion, influence the transport and aggregation of whale prey, thereby influencing the whale foraging habitat in the Gulf of St. Lawrence (GSL), Canada. We employ satellite altimetry-derived sea level anomaly (SLA) indices to monitor interannual variations in the intensity of the GC in the North Atlantic Right Whale (Eubalaena glacialis; NARW) habitat in the GSL. Measurements of surface slope and volume transport are taken from the SLA profiles along a repeating ground track of the Jason-2/3 satellites. These are employed as complementary proxies in characterizations of physical processes in the GSL. The relationship between altimetric indices and indices of zooplankton abundance are explored in the southern GSL. Results demonstrate that an altimetric index estimated from surface slope (Indexslopehalf) is correlated with river discharge of the St. Lawrence River and can be utilized to infer variations in GC intensities. Time series of the altimetric indices during 2009–2021 are found to exhibit interannual and seasonal environmental variability, which influence transport into the southern GSL. As captured by the altimetric indices, these features of the surface ocean circulation can be linked to zooplankton variations in the Shediac Valley, where NARWs are frequently observed. Therefore, in linking physical drivers of ocean dynamics to the NARW foraging habitat, variations in these indices can also potentially help describe some features of the distribution patterns of NARW sightings in this area. Full article
(This article belongs to the Special Issue Numerical Modelling of Atmospheres and Oceans II)
Show Figures

Figure 1

14 pages, 2830 KiB  
Article
A Study on the Transport of 137Cs and 90Sr in Marine Biota in a Hypothetical Scenario of a Nuclear Accident in the Western Mediterranean Sea
by Raúl Periáñez and Carmen Cortés
J. Mar. Sci. Eng. 2023, 11(9), 1707; https://doi.org/10.3390/jmse11091707 - 29 Aug 2023
Cited by 1 | Viewed by 1404
Abstract
A Lagrangian model which simulates the transport of radionuclides released from nuclear accidents in the western Mediterranean Sea was recently described. This model was developed in spherical coordinates and includes three-dimensional mixing due to turbulence, advection by currents, radioactive decay, and radionuclide exchanges [...] Read more.
A Lagrangian model which simulates the transport of radionuclides released from nuclear accidents in the western Mediterranean Sea was recently described. This model was developed in spherical coordinates and includes three-dimensional mixing due to turbulence, advection by currents, radioactive decay, and radionuclide exchanges between water and bed sediments. Water circulation was downloaded from the HYCOM global ocean model. Water–sediment interactions were described using a dynamic model based on kinetic transfer coefficients. Mixing, decay, and water–sediment interactions were solved using a stochastic method. Now, a dynamic biological uptake model consisting of four species (phytoplankton, zooplankton, non-piscivorous fish, and piscivorous fish) has been integrated within the transport model to be able to assess the effects of a potential accident in biota and fishery regions. The model has been set up for 137Cs and 90Sr due to the radiological relevance of these radionuclides. Several hypothetical accidents were simulated, resulting in 137Cs concentrations in biota significantly higher than background levels. In contrast, 90Sr accumulates in the food chain to a considerably weaker extent. Full article
(This article belongs to the Section Marine Pollution)
Show Figures

Figure 1

20 pages, 7627 KiB  
Article
The Impact of Typhoon “In-Fa” (2021) on Temperature, Salinity, and Chlorophyll-a Concentration in the Upwelling Area of Northwestern East China Sea
by Yingliang Che, Biyun Guo, Venkata Subrahmanyam Mantravadi, Jushang Wang and Zhaokang Ji
Atmosphere 2023, 14(8), 1226; https://doi.org/10.3390/atmos14081226 - 29 Jul 2023
Cited by 1 | Viewed by 3970
Abstract
Severe typhoon “In-Fa” passed through the northwestern region of East China Sea (ECS) in July 2021, affecting oceanic variables such as seawater temperature, salinity, and chlorophyll-a (Chl-a) concentration over the upwelling area. In this study, we analyzed the influence of the passage of [...] Read more.
Severe typhoon “In-Fa” passed through the northwestern region of East China Sea (ECS) in July 2021, affecting oceanic variables such as seawater temperature, salinity, and chlorophyll-a (Chl-a) concentration over the upwelling area. In this study, we analyzed the influence of the passage of typhoon “In-Fa” on the marine environment over the Upwelling Area off the Yangtze River Estuary (UAYRE) and the Upwelling Area of Zhoushan (UAZS). The results showed a significant decrease in sea surface temperature (SST) during the “In-Fa” typhoon, with maximum SST reductions of 2.98 °C in the UAYRE and 1.46 °C in the UAZS, which showed a “right bias” (indicating a greater cooling effect on the right side of the typhoon path compared to the left side). “In-Fa” influenced the temperature and salinity structure of the study areas and deepened the mixed layer depth (MLD). The MLD varied from the shallowest values of 2.02 m (18 July) to the deepest values of 19.4 m (26 July) in the UAYRE and from 2.43 m (18 July) to 16.79 m (25 July) in the UAZS. Furthermore, “In-Fa” led to an increase in sea surface Chl-a concentration, with a maximum Chl-a concentration enhancement of 285.58% (from 20 July to 28 July) in the UAYRE and 233.33% (from 20 July to 27 July) in the UAZS. The Ekman suction effect of “In-Fa” strengthened the upwelling, facilitating the transport of deep-sea nutrients to the upper ocean and providing favorable conditions for the growth of phytoplankton, thus benefiting the reproduction and survival of zooplankton, fish, and shrimp. This study contributes to understanding the mechanisms by which typhoons impact the ocean environment in upwelling area and provides valuable insights for the sustainable development of marine fisheries resources. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

14 pages, 2285 KiB  
Article
Metal Ions, Element Speciation Forms Retained on Wet Chitin: Quantitative Aspects of Adsorption and Implications for Biomonitoring and Environmental Technology
by Stefan Fränzle
Pollutants 2023, 3(3), 337-350; https://doi.org/10.3390/pollutants3030023 - 6 Jul 2023
Viewed by 1424
Abstract
Analyses of mosses and lichens provide some information on the contents of both particulate and dissolved (from hydrometeors including snow and flooding) metal ions and other elements like As and Sb in the local environment. However, this information is compromised by rarity (and [...] Read more.
Analyses of mosses and lichens provide some information on the contents of both particulate and dissolved (from hydrometeors including snow and flooding) metal ions and other elements like As and Sb in the local environment. However, this information is compromised by rarity (and thus duly legal protection) of suitable species (particularly lichens) for regular sampling and also by poorly understood mechanisms of binding. Hence, it is crucial to find an alternative that does not harm or kill rare and/or protected organisms for sampling purposes while providing data that can be traced to environmental levels (e.g., metal ions in water) in a comprehensible way. Studying the coordination of aq. metal ions on some biogenic surface which can form ligating bonds to these ions provides such information. The most abundant and thus cheap such biopolymer acting as both a possible ligand and a water- (or environment-)biomass interface is chitin. Data from chitin exposed in either water, common sandy sediments, and ferric gels delivered by Fe-oxidizing bacteria are processed to understand adsorption in quantitative terms depending on local conditions, accounting for observed BCFs >> 1 for certain elements (Bi, V, LREEs). Slopes of functions that describe the increase of retention of some element upon increasing aq. concentrations allow us to construct (a) some function giving BCF by numerical integration, (b) predict the behavior of other elements for which certain parameters guiding complex formation are known as well. It turns out that top sensitivities (maximum BCF- or partition factor) values are reached with different elements depending on the environment the chitin sample was exposed to. PF can extend the detection and determination of many elements below levels directly observable in water or sediments. The detection of fallout radionuclides on chitin is even more sensitive (by a factor of 20–25) because of omitting dilution in workup by direct observation of γ radiation. Full article
(This article belongs to the Special Issue Surveys and Case Studies in Biomonitoring of Atmospheric Pollution)
Show Figures

Graphical abstract

34 pages, 5194 KiB  
Article
Multiple Approaches to the Trophic Role of Mesopelagic Fish around the Iberian Peninsula
by Ainhoa Bernal, Víctor Manuel Tuset and María Pilar Olivar
Animals 2023, 13(5), 886; https://doi.org/10.3390/ani13050886 - 28 Feb 2023
Cited by 4 | Viewed by 2549
Abstract
Myctophids, commonly vertical migrators, and partial and non-migrant stomiiforms constitute most of the mesopelagic biomass, and transport organic matter throughout the food web from the surface to the ocean’s depths. Both the diet and trophic structure of twenty-nine species of mesopelagic fish collected [...] Read more.
Myctophids, commonly vertical migrators, and partial and non-migrant stomiiforms constitute most of the mesopelagic biomass, and transport organic matter throughout the food web from the surface to the ocean’s depths. Both the diet and trophic structure of twenty-nine species of mesopelagic fish collected around the Iberian Peninsula were studied through the analysis of stomach contents, quantifying food items with a high taxonomic resolution. The investigation covered oligotrophic to productive habitats, with sampling stations distributed in five discrete zones of the western Mediterranean Sea and the northeastern Atlantic Ocean. The geographic environmental conditions, migratory behavior, and species-specific body sizes allowed for the identification of some major feeding patterns for these fish communities. The trophic niche of migrant myctophids showed a high overlap, with copepods as the primary prey category. The diet composition of generalist myctophids (e.g., Ceratoscopelus maderensis and Hygophum benoiti) reflected the distinct zooplanktonic communities between zones. Large stomiiforms (Chauliodus spp., Sigmops elongatus) preferred feeding on micronekton, while the smallest stomiiforms (e.g., Argyropelecus spp., Cyclothone spp., Vinciguerria spp.) preyed on copepods and ostracods. Given the relevance of the mesopelagic fish communities for commercially exploited species and, therefore, for maintaining the sustainability of the fisheries’ activity in the zones analyzed, the information provided in the present study is essential for a better understanding of the biology and ecology of these species. Full article
(This article belongs to the Special Issue Trophic Web and Predator–Prey Dynamics in Marine Environment)
Show Figures

Figure 1

21 pages, 3842 KiB  
Article
Elemental Composition of Particulate Matter in the Euphotic and Benthic Boundary Layers of the Barents and Norwegian Seas
by Dina P. Starodymova, Marina D. Kravchishina, Anastasia I. Kochenkova, Alexey S. Lokhov, Natalia M. Makhnovich and Svetlana V. Vazyulya
J. Mar. Sci. Eng. 2023, 11(1), 65; https://doi.org/10.3390/jmse11010065 - 2 Jan 2023
Cited by 6 | Viewed by 2147
Abstract
The increasing influence of Atlantic inflows in the Arctic Ocean in recent decades has had a potential impact on regional biogeochemical cycles of major and trace elements. The warm and salty Atlantic water, entering the Eurasian Basin through the Norwegian Sea margin and [...] Read more.
The increasing influence of Atlantic inflows in the Arctic Ocean in recent decades has had a potential impact on regional biogeochemical cycles of major and trace elements. The warm and salty Atlantic water, entering the Eurasian Basin through the Norwegian Sea margin and the Barents Sea, affects particle transport, sink, phyto-, and zooplankton community structure and could have far-reaching consequences for the marine ecosystems. This study discusses the elemental composition of suspended particulate matter and fluffy-layer suspended matter derived from samples collected in the Barents Sea and northern Norwegian Sea in August 2017. The mosaic distribution of SPM elemental composition is mainly determined by two factors: (i) The essential spatial variability of biological processes (primary production, abundance, and phytoplankton composition) and (ii) differences in the input of terrigenous sedimentary matter to the sea area from drainage sources (weak river runoff, melting of archipelago glaciers, etc.). The distribution of lithogenic, bioessential, and redox-sensitive groups of elements in the particulate matter was studied at full-depth profiles. Marine cycling of strontium in the Barents Sea is shown to be significantly affected by increasing coccolithophorid bloom, which is associated with Atlantic water. Mn, Cu, Cd, and Ba significantly enrich the suspended particulate matter of the benthic nepheloid layer relative to the fluffy layer particulate matter within the benthic boundary layer. Full article
Show Figures

Figure 1

15 pages, 1043 KiB  
Article
Concentrations and Characteristics of Polybrominated Diphenyl Ethers (PBDEs) in Marine Zooplankton from the Gaoping Waters of Southwestern Taiwan
by Hung-Yen Hsieh, Kuang-Ching Huang, Jing-O Cheng, Fung-Chi Ko and Pei-Jie Meng
J. Mar. Sci. Eng. 2022, 10(12), 1943; https://doi.org/10.3390/jmse10121943 - 8 Dec 2022
Cited by 1 | Viewed by 2344
Abstract
Bioaccumulation by zooplankton is the outset for persistent organic pollutants that enter the marine food chain. Owing to a full spectrum of anthropogenic activities, the Gaoping waters of southwestern Taiwan are exposed to large quantities of polybrominated diphenyl ethers (PBDEs). However, information on [...] Read more.
Bioaccumulation by zooplankton is the outset for persistent organic pollutants that enter the marine food chain. Owing to a full spectrum of anthropogenic activities, the Gaoping waters of southwestern Taiwan are exposed to large quantities of polybrominated diphenyl ethers (PBDEs). However, information on these contaminants in zooplankton in this study area is lacking. In this study, we analyzed 19 PBDE congeners concentrations in 36 zooplankton samples from the Gaoping waters. A high variation in the total PBDE concentrations in zooplankton (from not detected to 1415 ng g−1 dry weight) was found, with the highest PBDE levels being recorded near the entrance of the Kaohsiung Harbor (KH). Significantly higher levels were noted for the KH transect than for the Gaoping River estuary (GR) and Fengshan Township (FS) transects, indicating that PBDE inputs originate from the ocean sewage outfalls. BDE-15 (43%) and BDE-209 (16%) were the predominant PBDE congeners in the zooplankton. Our results suggest that anthropogenic activities might predominantly contribute to significantly high PBDE concentrations. The traditional food web may easily transport these higher levels of PBDEs in zooplankton to higher trophic levels of marine organisms, since the Gaoping waters serve as essential nursery and spawning grounds for invertebrates and fishes. Full article
(This article belongs to the Special Issue The Impact of Changes in the Marine Environment on Marine Organisms)
Show Figures

Figure 1

16 pages, 3323 KiB  
Article
Influences of Seasonal Variability and Potential Diets on Stable Isotopes and Fatty Acid Compositions in Dominant Zooplankton in the East Sea, Korea
by Jieun Kim, Hee-Young Yun, Eun-Ji Won, Hyuntae Choi, Seok-Hyeon Youn and Kyung-Hoon Shin
J. Mar. Sci. Eng. 2022, 10(11), 1768; https://doi.org/10.3390/jmse10111768 - 17 Nov 2022
Cited by 2 | Viewed by 2381
Abstract
Despite their crucial roles in transporting primary productions in marine food webs, the trophic dynamics of zooplankton throughout the seasons have rarely been studied. In this study, four dominant zooplankton taxa with phytoplankton size composition and productivity were collected over four seasons in [...] Read more.
Despite their crucial roles in transporting primary productions in marine food webs, the trophic dynamics of zooplankton throughout the seasons have rarely been studied. In this study, four dominant zooplankton taxa with phytoplankton size composition and productivity were collected over four seasons in the East Sea, which is known to change more rapidly than global trends. We then analyzed the δ13C and δ15N values and fatty acid composition of zooplankton. The heavy δ13C values in February and August 2021 were observed with high concentrations of total chlorophyll-a, and the δ13C differences among the four zooplankton taxa in the coastal region (site 105-05) were most pronounced in February 2021. The relative amounts of eicosapentaenoic acid (C20:5(n-3)) and docosahexaenoic acid (C22:6(n-3)), indicators of phytoplankton nutritional quality, were also highest in February 2021. Non-metric multivariate analyses showed dissimilarity among zooplankton taxa during the high productivity period based on chlorophyll-a concentrations (51.6%), which may be due to an increase in available foods during the highly productive season. In conclusion, the dietary intake of zooplankton can be reduced by the transition of phytoplankton, which has important implications for the impact of climate change on planktonic ecosystems in the East Sea. Full article
Show Figures

Figure 1

33 pages, 1590 KiB  
Review
Non-Indigenous Cladocera (Crustacea: Branchiopoda): From a Few Notorious Cases to a Potential Global Faunal Mixing in Aquatic Ecosystems
by Alexey A. Kotov, Dmitry P. Karabanov and Kay Van Damme
Water 2022, 14(18), 2806; https://doi.org/10.3390/w14182806 - 9 Sep 2022
Cited by 28 | Viewed by 6648
Abstract
Non-indigenous species may pose a threat to native ecosystems worldwide. In aquatic environments, invasives may have a negative impact on human food security and livelihoods. Several water fleas (Crustacea: Branchiopoda: Cladocera) are notorious invasive alien species influencing large freshwater lake systems and even [...] Read more.
Non-indigenous species may pose a threat to native ecosystems worldwide. In aquatic environments, invasives may have a negative impact on human food security and livelihoods. Several water fleas (Crustacea: Branchiopoda: Cladocera) are notorious invasive alien species influencing large freshwater lake systems and even inland seas. In the current review, we discuss the state of knowledge regarding non-indigenous species in the Cladocera and their invasiveness potential in different continents. We argue that the potential impacts and occurrence of cladoceran exotics may be higher than generally assumed. We critically review 79 cases from literature sources, involving 61 cladoceran taxa where records outside of their natural distribution ranges were previously interpreted as invasions. We assessed the probability of natural range expansions versus human-mediated introductions and we discuss several major corridors of invasion. We estimate human-mediated transportations for at least 43 taxa (out of 61; ca 70%), while other cases can be seen as natural expansions of their distribution ranges (not necessarily/not likely human-mediated) and/or taxonomical confusion. We confirm non-indigenous presence in recipient regions for at least 41 cladoceran taxa, of which several are true invasives (i.e., with negative impacts on native ecosystems). The majority are zooplankters with effects on pelagic freshwater ecosystems, yet we also report on introductions by littoral taxa. We argue that cryptic introductions of cladocerans are taking place on a global scale, yet they remain under the radar. We highlight several striking case studies, such as the Ponto–Caspian onychopods that have invaded the Baltic Sea and the Laurentian Great Lakes, and several clones of the anomopod genera Daphnia and Bosmina that have successfully colonised new environments, causing equilibria shifts in native aquatic worlds. At the same time, we dispel some myths about taxa that were misconstrued as invasive in certain localities. Based on our review, the first of its kind for freshwater zooplankton, future environmental monitoring tools including molecular techniques and detailed surveys with rigorous and critical taxonomical assessments may help to provide a clearer picture on the extent of invasiveness of cladocerans. Full article
(This article belongs to the Special Issue Species Richness and Diversity of Aquatic Ecosystems)
Show Figures

Figure 1

13 pages, 2367 KiB  
Article
Seven Years Study of the Seasonal Dynamics of Zooplankton Communities in a Large Subtropical Floodplain Ecosystem: A Test of the PEG Model
by Baogui Liu, Jiayi Wu, Yang Hu, Guoxiang Wang and Yuwei Chen
Int. J. Environ. Res. Public Health 2022, 19(2), 956; https://doi.org/10.3390/ijerph19020956 - 15 Jan 2022
Cited by 9 | Viewed by 2890
Abstract
Irregular hydrological events, according to a classic plankton ecology group (PEG) study, can generate major deviations from the standard PEG model. However, little is known about the function of hydrological factors in influencing the seasonal dynamics of plankton. We used multivariate and Partial [...] Read more.
Irregular hydrological events, according to a classic plankton ecology group (PEG) study, can generate major deviations from the standard PEG model. However, little is known about the function of hydrological factors in influencing the seasonal dynamics of plankton. We used multivariate and Partial Least Squares Path Modeling to analyze the seasonal variation in crustacean zooplankton and related environmental factors from winter 2009 to winter 2016 in Lake Poyang, the largest freshwater lake in China. We found a distinct seasonal pattern in zooplankton development, which deviated, in part, from the PEG model, as we found indications of (1) a weaker degree of food limitation in winter and spring, likely due to high concentrations of allochthonous sources caused by decomposition of seasonally flooded hygrophytes, also affecting sediment dynamics; (2) a peak in crustacean zooplankton biomass in summer when the water level was high (and predation was lower), and where horizontal transport of zooplankton from the littoral zone to the pelagic was possibleand (3) a higher predation pressure in autumn, likely due to a shrinking water volume that left the fish concentrated in less water. The majority of these differences can be attributed to the direct or indirect impacts of physical factor variation. Full article
(This article belongs to the Special Issue Wetland Ecology: Principles and Conservation)
Show Figures

Figure 1

Back to TopTop