Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (202)

Search Parameters:
Keywords = zirconium oxide (ZrO2)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7820 KiB  
Article
Role of Dystrophic Calcification in Reparative Dentinogenesis After Rat Molar Pulpotomy
by Naoki Edanami, Kunihiko Yoshiba, Razi Saifullah Ibn Belal, Nagako Yoshiba, Shoji Takenaka, Naoto Ohkura, Shintaro Takahara, Takako Ida, Rosa Baldeon, Susan Kasimoto, Pemika Thongtade and Yuichiro Noiri
Int. J. Mol. Sci. 2025, 26(15), 7130; https://doi.org/10.3390/ijms26157130 - 24 Jul 2025
Viewed by 270
Abstract
Vital pulp therapy with calcium hydroxide or mineral trioxide aggregate (MTA) rapidly induces dystrophic calcification and promotes the accumulation of two members of small integrin-binding ligand N-linked glycoproteins: osteopontin (OPN) and dentin matrix protein-1 (DMP1). However, the precise relationship between these initial events [...] Read more.
Vital pulp therapy with calcium hydroxide or mineral trioxide aggregate (MTA) rapidly induces dystrophic calcification and promotes the accumulation of two members of small integrin-binding ligand N-linked glycoproteins: osteopontin (OPN) and dentin matrix protein-1 (DMP1). However, the precise relationship between these initial events and their roles in reparative dentinogenesis remain unclear. This study aimed to clarify the relationship between dystrophic calcification, OPN and DMP1 accumulation, and reparative dentin formation. Pulpotomy was performed on rat molars using MTA or zirconium oxide (ZrO2). ZrO2 was used as a control to assess pulp healing in the absence of dystrophic calcification. Pulpal responses were evaluated from 3 h to 7 days postoperatively via elemental mapping, micro-Raman spectroscopy, and histological staining. In the MTA-treated group, a calcium-rich dystrophic calcification zone containing calcite and hydroxyapatite was observed at 3 h after treatment; OPN and DMP1 accumulated under the dystrophic calcification zone by day 3; reparative dentin formed below the region of OPN and DMP1 accumulation by day 7. In contrast, these reactions did not occur in the ZrO2-treated group. These results suggest that dystrophic calcification serves as a key trigger for OPN and DMP1 accumulation and plays a pivotal role in reparative dentinogenesis. Full article
Show Figures

Figure 1

20 pages, 1106 KiB  
Article
Synchrotron-Based Structural Analysis of Nanosized Gd2(Ti1−xZrx)2O7 for Radioactive Waste Management
by Marco Pinna, Andrea Trapletti, Claudio Minelli, Armando di Biase, Federico Bianconi, Michele Clemente, Alessandro Minguzzi, Carlo Castellano and Marco Scavini
Nanomaterials 2025, 15(14), 1134; https://doi.org/10.3390/nano15141134 - 21 Jul 2025
Viewed by 322
Abstract
Complex oxides with the general formula Gd2(Ti1−xZrx)2O7 are promising candidates for radioactive waste immobilization due to their capacity to withstand radiation by dissipating part of the free energy driving defect creation and phase transitions. [...] Read more.
Complex oxides with the general formula Gd2(Ti1−xZrx)2O7 are promising candidates for radioactive waste immobilization due to their capacity to withstand radiation by dissipating part of the free energy driving defect creation and phase transitions. In this study, samples with varying zirconium content (xZr = 0.00, 0.15, 0.25, 0.375, 0.56, 0.75, 0.85, 1.00) were synthesized via the sol–gel method and thermally treated at 500 °C to obtain nanosized powders mimicking the defective structure of irradiated materials. Synchrotron-based techniques were employed to investigate their structural properties: High-Resolution X-ray Powder Diffraction (HR-XRPD) was used to assess long-range structure, while Pair Distribution Function (PDF) analysis and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy provided insights into the local structure. HR-XRPD data revealed that samples with low Zr content (xZr ≤ 0.25) are amorphous. Increasing Zr concentration led to the emergence of a crystalline phase identified as defective fluorite (xZr = 0.375, 0.56). Samples with the highest Zr content (xZr ≥ 0.75) were fully crystalline and exhibited only the fluorite phase. The experimental G(r) functions of the fully crystalline samples in the low r range are suitably fitted by the Weberite structure, mapping the relaxations induced by structural disorder in defective fluorite. These structural insights informed the subsequent EXAFS analysis at the Zr-K and Gd-L3 edges, confirming the splitting of the cation–cation distances associated with different metal species. Moreover, EXAFS provided a local structural description of the amorphous phases, identifying a consistent Gd-O distance across all compositions. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Graphical abstract

20 pages, 2590 KiB  
Article
Application of Fused Filament Fabrication in Preparation of Ceramic Monolithic Catalysts for Oxidation of Gaseous Mixture of Volatile Aromatic Compounds
by Filip Car, Dominik Horvatić, Vesna Tomašić, Domagoj Vrsaljko and Zoran Gomzi
Catalysts 2025, 15(7), 677; https://doi.org/10.3390/catal15070677 - 11 Jul 2025
Viewed by 415
Abstract
The aim of this work was the preparation of ceramic monolithic catalysts for the catalytic oxidation of gaseous mixture of benzene, toluene, ethylbenzene and o-xylene BTEX. The possibility of using zirconium dioxide (ZrO2) as a filament for the fabrication of 3D-printed [...] Read more.
The aim of this work was the preparation of ceramic monolithic catalysts for the catalytic oxidation of gaseous mixture of benzene, toluene, ethylbenzene and o-xylene BTEX. The possibility of using zirconium dioxide (ZrO2) as a filament for the fabrication of 3D-printed ceramic monolithic carriers was investigated using fused filament fabrication. A mixed manganese and iron oxide, MnFeOx, was used as the catalytically active layer, which was applied to the monolithic substrate by wet impregnation. The approximate geometric surface area of the obtained carrier was determined to be 53.4 cm2, while the mass of the applied catalytically active layer was 50.3 mg. The activity of the prepared monolithic catalysts for the oxidation of BTEX was tested at different temperatures and space times. The results obtained were compared with those obtained with commercial monolithic catalysts made of ceramic cordierite with different channel dimensions, and with monolithic catalysts prepared by stereolithography. In the last part of the work, a kinetic analysis and the modeling of the monolithic reactor were carried out, comparing the experimental results with the theoretical results obtained with the 1D pseudo-homogeneous and 1D heterogeneous models. Although both models could describe the investigated experimental system very well, the 1D heterogeneous model is preferable, as it takes into account the heterogeneity of the reaction system and therefore provides a more realistic description. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Figure 1

20 pages, 4923 KiB  
Article
Effect of Oxygen and Zirconium on Oxidation and Mechanical Behavior of Fully γ Ti52AlxZr Alloys
by Michal Kuris, Maria Tsoutsouva, Marc Thomas, Thomas Vaubois, Pierre Sallot, Frederic Habiyaremye and Jean-Philippe Monchoux
Metals 2025, 15(7), 745; https://doi.org/10.3390/met15070745 - 2 Jul 2025
Viewed by 291
Abstract
This work provides a comprehensive investigation into the synergistic effects of zirconium and oxygen on the microstructural evolution, high-temperature oxidation resistance, and mechanical properties of γ-phase Ti52AlxZr alloys (x = 0, 0.5, 1, and 2 at.%) under systematically controlled oxygen concentrations. Unlike prior [...] Read more.
This work provides a comprehensive investigation into the synergistic effects of zirconium and oxygen on the microstructural evolution, high-temperature oxidation resistance, and mechanical properties of γ-phase Ti52AlxZr alloys (x = 0, 0.5, 1, and 2 at.%) under systematically controlled oxygen concentrations. Unlike prior studies that have examined these alloying elements in isolation, this study uniquely decouples the contributions of interstitial (oxygen) and substitutional (zirconium) solutes by employing low (LOx) and high (HOx) oxygen levels. Alloys were synthesized via vacuum arc melting and subsequently subjected to homogenization annealing at 1250 °C for 100 h to ensure phase and microstructural stability. Characterization techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD) were employed to elucidate phase constitution and grain morphology. Zirconium addition was found to stabilize the γ-TiAl matrix, suppress α2-phase formation, and promote grain coarsening in LOx specimens. Conversely, elevated oxygen concentrations led to α2-phase precipitation along grain boundaries. Mechanical testing, comprising Vickers hardness and uniaxial compression at ambient and elevated temperatures (800 °C), revealed that both zirconium and oxygen significantly enhanced strength and hardness, with Ti52Al2Zr delivering optimal mechanical performance. Moreover, zirconium substantially improved oxidation resistance by promoting the formation of a thinner, adherent Al2O3 scale while simultaneously inhibiting TiO2 growth. Collectively, the findings demonstrate the critical role of zirconium in engineering advanced γ-TiAl-based intermetallics with superior high-temperature structural integrity and oxidation resistance. Full article
(This article belongs to the Section Crystallography and Applications of Metallic Materials)
Show Figures

Figure 1

18 pages, 1871 KiB  
Article
Magnesia Partially Stabilized Zirconia/Hydroxyapatite Biocomposites: Structural, Morphological and Microhardness Properties
by Liliana Bizo, Adriana-Liana Bot, Marieta Mureșan-Pop, Lucian Barbu-Tudoran, Claudia Andreea Cojan and Réka Barabás
Crystals 2025, 15(7), 608; https://doi.org/10.3390/cryst15070608 - 30 Jun 2025
Viewed by 484
Abstract
Hydroxyapatite (HAP) is the most widely accepted biomaterial for repairing bone tissue defects, demonstrating excellent biocompatibility and bioactivity that promote new bone formation. Zirconia (ZrO2), known for its strength and fracture toughness, is commonly used to reinforce ceramics. In this study, [...] Read more.
Hydroxyapatite (HAP) is the most widely accepted biomaterial for repairing bone tissue defects, demonstrating excellent biocompatibility and bioactivity that promote new bone formation. Zirconia (ZrO2), known for its strength and fracture toughness, is commonly used to reinforce ceramics. In this study, magnesium oxide (MgO) served as a stabilizer for zirconia, resulting in magnesia partially stabilized zirconia (Mg-PSZ). Both Mg-PSZ and HAP were synthesized via coprecipitation and mixed in specific ratios to create composites through a ceramic method involving mixing, compaction, and sintering at 1100 °C. The samples were characterized using techniques such as X-ray powder diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Structural analyses confirmed the presence of both monoclinic and tetragonal zirconia phases. Besides, the increased wt.% HAP in the composites produced distinct peaks for hexagonal HAP. Crystallite sizes ranged from 27.45 nm to 31.5 nm, and surface morphology was homogeneous with small pores. Elements such as calcium, phosphorus, magnesium, zirconium, and oxygen were detected in all samples. This research also examined microhardness changes in the materials. The findings revealed enhancement in microhardness for the biocomposite with higher zirconia content, 90Mg-PSZ/10HAP sample, with the smallest average pore size, highlighting its potential for biomedical applications. Full article
Show Figures

Figure 1

10 pages, 2450 KiB  
Communication
Preparation of Metallic Zr from ZrO2 via Carbothermal and Electrochemical Reduction in Molten Salts
by Wenchen Song, Xu Chen, Yanhong Jia, Mingshuai Yang, Guoan Ye and Fuxing Zhu
Materials 2025, 18(11), 2634; https://doi.org/10.3390/ma18112634 - 4 Jun 2025
Viewed by 471
Abstract
Zirconium, a critical rare metal with exceptional corrosion resistance and nuclear applications, is conventionally produced via the energy-intensive Kroll process. The electrolysis of ZrCxOy soluble anodes has been extensively investigated due to its advantages in having a short process flow [...] Read more.
Zirconium, a critical rare metal with exceptional corrosion resistance and nuclear applications, is conventionally produced via the energy-intensive Kroll process. The electrolysis of ZrCxOy soluble anodes has been extensively investigated due to its advantages in having a short process flow and resulting in high-quality products. In particular, during the electrolysis of zirconium oxycarbide with a C:O molar ratio of 1:1, gaseous CO can be released, and no residual anodes are generated, which is extremely appealing. In this regard, this paper explores the feasibility of preparing zirconium metal through high-temperature vacuum reduction to produce zirconium oxycarbide using ZrO2 as the raw material, followed by direct molten-salt electrolysis. Firstly, the reduction products were characterized using an X-ray diffractometer (XRD) and a scanning electron microscope (SEM). The results showed that under a vacuum of <10 Pa at 1750 °C, the reduction products mainly consisted of ZrCxOy and a small amount of ZrO2, and they exhibited good electrical conductivity (0.0169 Ω·cm). Subsequently, the cyclic voltammetry test results of the reduction products revealed the reversible redox behavior of ZrCxOy. There were characteristic oxidation peaks at −0.53 V and −0.01 V (vs. Pt), corresponding to the formation of Zr2+ and Zr4+, respectively, and a reduction peak at −1.51 V, indicating the conversion from Zr2+ to Zr. Finally, β-zirconium metal with a purity of 99.2 ± 0.3 wt.% was obtained through potentiostatic electrolysis, and its quality met the R60704 grade specified in ASTM B551-12 (2021). This study offers a novel approach for the short-flow preparation of zirconium metal, which is conducive to expanding its applications. Full article
Show Figures

Figure 1

16 pages, 3178 KiB  
Article
The Impact of Zirconium Oxide Nanoparticles on the Mechanical and Physical Properties of Glass Ionomer Dental Materials
by Faiza Amin, Syed Faraz Moin, Naresh Kumar, Muhammad Asif Asghar, Syed Junaid Mahmood and Paulo J. Palma
Int. J. Mol. Sci. 2025, 26(11), 5382; https://doi.org/10.3390/ijms26115382 - 4 Jun 2025
Viewed by 716
Abstract
Glass ionomer cements (GICs) have been clinically attractive dental restorative materials for many years and are widely used as luting, lining, and restorative materials. However, these materials still have limitations in terms of weak physio-mechanical properties. The aim of the study was to [...] Read more.
Glass ionomer cements (GICs) have been clinically attractive dental restorative materials for many years and are widely used as luting, lining, and restorative materials. However, these materials still have limitations in terms of weak physio-mechanical properties. The aim of the study was to evaluate the effect of zirconium oxide nanoparticles (nano-ZrO2 particles) on the physical and mechanical properties of two commercially available GICs. Four groups were prepared for each material: the control group (without nanoparticles) and three groups modified by the incorporation of nanoparticles at 2, 5, and 7 weight% (wt%). Firstly, the morphology and size of the nanoparticles were evaluated via scanning electron microscopy (SEM) and X-ray diffraction (XRD). Secondly, flexural strength, flexural modulus, Vickers hardness, water sorption, and solubility were evaluated. The main effect plots revealed that the addition of nano-ZrO2 particles enhances flexural strength, flexural modulus, and water sorption of GICs at a 7 wt% concentration and Vickers hardness at a 2 wt% concentration. The SEM analysis clearly shows that the cracks became narrower with the addition of nano-ZrO2 particles, whereas these cracks were completely closed at 7% nano-ZrO2 particles. The findings of the study appear promising, and it is anticipated that the optimization of nano-ZrO2 particles may aid the development of improved materials for load-bearing restorations. Full article
(This article belongs to the Special Issue Recent Advances in Biopolymer Composites)
Show Figures

Figure 1

16 pages, 4136 KiB  
Article
Synthesis and Characterization of MgO-ZrO2 Heterostructure: Optical, Mechanical and Electrical Properties
by Tabasum Huma, Nadimullah Hakimi, Muhammad Anwar ul haq, Tanzeel Huma, Lei Xu and Xinkun Zhu
Crystals 2025, 15(5), 465; https://doi.org/10.3390/cryst15050465 - 15 May 2025
Viewed by 613
Abstract
The synthesis and characterization of MgO-ZrO2 heterostructures are examined in this work. To promote the creation of nanowires, the Si substrate is first covered with a catalyst layer of various Au thicknesses. Sputtering is used to achieve this deposition. After that, chemical [...] Read more.
The synthesis and characterization of MgO-ZrO2 heterostructures are examined in this work. To promote the creation of nanowires, the Si substrate is first covered with a catalyst layer of various Au thicknesses. Sputtering is used to achieve this deposition. After that, chemical vapor deposition (CVD) with a Au catalyst layer is used to create MgO nanowire arrays on the silicon substrate. Second, MgO/ZrO2 Core–shell Nanowire Arrays are created by applying ZrO2 layers to the surface of MgO nanowires of different diameters using chemical vapor deposition (CVD) procedures. The presence of both magnesium oxide (MgO) and zirconium dioxide (ZrO2) in their oxidized forms was shown by the detailed characterization of the MgO-ZrO2 core–shell nanowire samples utilizing a variety of methods. Phase formation, mechanical homogeneity, optical characteristics, and topographical structure and roughness were all thoroughly examined at various stresses. MgO hardness values ranged from 1.4 to 3.2 GPa, whereas MgO-ZrO2 ranged from 0.38 to 1.2 GPa. The I–V parameter study was a further step in the examination of the heterostructure’s electrical properties. The structural, morphological, optical, mechanical, and electrical properties of the MgO-ZrO2 heterostructure were all thoroughly described using these techniques. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

15 pages, 4930 KiB  
Article
Organophosphorus Pesticide Photoelectrochemical/Electrochemical Dual-Mode Smartsensors Derived from Synergistic Co,N-TiO2@ZrO2/3DGH Platform
by Zhouxiaolong Zhang, Hongting Ma, Hao Mo and Nan Zhu
Chemosensors 2025, 13(5), 167; https://doi.org/10.3390/chemosensors13050167 - 5 May 2025
Viewed by 728
Abstract
Organophosphorus pesticides (OPs), while pivotal for agricultural productivity, pose severe environmental and health risks due to their persistence and bioaccumulation. Existing detection methods, such as chromatography and spectroscopy, face limitations in field adaptability, cost, and operational complexity. To address these challenges, this study [...] Read more.
Organophosphorus pesticides (OPs), while pivotal for agricultural productivity, pose severe environmental and health risks due to their persistence and bioaccumulation. Existing detection methods, such as chromatography and spectroscopy, face limitations in field adaptability, cost, and operational complexity. To address these challenges, this study introduces a novel dual-mode photoelectrochemical–electrochemical (PEC-EC) sensor based on a Co,N-TiO2@ZrO2/3DGH nanocomposite. The sensor synergistically integrates zirconium oxide (ZrO2) for selective OP capture via phosphate-Zr coordination, cobalt-nitrogen co-doped titanium dioxide (Co,N-TiO2) for visible-light responsiveness, and a three-dimensional graphene hydrogel (3DGH) for enhanced conductivity. In the PEC mode under light irradiation, OP adsorption induces charge recombination, yielding a logarithmic photocurrent attenuation with a detection limit of 0.058 ng mL−1. Subsequently, the EC mode via square wave voltammetry (SWV) self-validates the results, achieving a detection limit of 0.716 ng mL−1. The dual-mode system demonstrates exceptional reproducibility, long-term stability, and selectivity against common interferents. Parallel measurements revealed <5% inter-mode discrepancy, validating the intrinsic self-checking capability. This portable platform bridges the gap between laboratory-grade accuracy and field-deployable simplicity, offering transformative potential for environmental monitoring and food safety management. Full article
Show Figures

Figure 1

9 pages, 2242 KiB  
Communication
Stability Improvement of Solution-Processed Metal Oxide Thin-Film Transistors Using Fluorine-Doped Zirconium Oxide Dielectric
by Haoxuan Xu, Bo Deng and Xinan Zhang
Materials 2025, 18(9), 1980; https://doi.org/10.3390/ma18091980 - 27 Apr 2025
Cited by 1 | Viewed by 641
Abstract
Solution-processed metal oxide dielectrics often result in unstable thin-film transistor (TFT) performance, hindering the development of next-generation metal oxide electronics. In this study, we prepared fluorine (F)-doped zirconium oxide (ZrO2) dielectric layers using a chemical solution method to construct TFTs. The [...] Read more.
Solution-processed metal oxide dielectrics often result in unstable thin-film transistor (TFT) performance, hindering the development of next-generation metal oxide electronics. In this study, we prepared fluorine (F)-doped zirconium oxide (ZrO2) dielectric layers using a chemical solution method to construct TFTs. The characterization by X-ray photoelectron spectroscopy (XPS) revealed that appropriate fluoride doping significantly reduces oxygen vacancies and the concentration of hydroxyl groups, thereby suppressing polarization processes. Subsequently, the electrical properties of Al/F:ZrO2/n++Si capacitors were evaluated, demonstrating that the optimized 10% F:ZrO2 dielectric exhibits a low leakage current density and stable capacitance across a wide frequency range. Indium zinc oxide (IZO) TFTs incorporating 10% F:ZrO2 dielectric layers were then fabricated. These devices displayed reliable electrical characteristics, including high mobility over a broad frequency range, reduced dual-sweep hysteresis, and excellent stability under positive-bias stress (PBS) after three months of aging. These findings indicate that the use of the fluorine-doped ZrO2 dielectric is a versatile strategy for achieving high-performance metal oxide thin-film electronics. Full article
(This article belongs to the Special Issue The Optical, Ferroelectric and Dielectric Properties of Thin Films)
Show Figures

Figure 1

9 pages, 4795 KiB  
Article
Super High-k Dielectric via Composition-Dependent Hafnium Zirconium Oxide Superlattice for Si Nanosheet Gate-All-Around Field-Effect Transistors with NH3 Plasma-Optimized Interfaces
by Yi-Ju Yao, Yu-Min Fu, Yu-Hung Chen, Chen-You Wei, Kai-Ting Huang, Guang-Li Luo, Fu-Ju Hou, Yu-Sheng Lai and Yung-Chun Wu
Materials 2025, 18(8), 1740; https://doi.org/10.3390/ma18081740 - 10 Apr 2025
Cited by 1 | Viewed by 775
Abstract
This paper presents an advanced dielectric engineering approach utilizing a composition-dependent hafnium zirconium oxide (Hf1-xZrxO2) superlattice (SL) structure for Si nanosheet gate-all-around field-effect transistors (Si NSGAAFETs). The dielectric (DE) properties of solid solution (SS) and SL Hf [...] Read more.
This paper presents an advanced dielectric engineering approach utilizing a composition-dependent hafnium zirconium oxide (Hf1-xZrxO2) superlattice (SL) structure for Si nanosheet gate-all-around field-effect transistors (Si NSGAAFETs). The dielectric (DE) properties of solid solution (SS) and SL Hf1-xZrxO2 capacitors were systematically characterized through capacitance-voltage (C-V) and polarization-voltage (P-V) measurements under varying annealing conditions. A high dielectric constant (k-value) of 59 was achieved in SL-Hf0.3Zr0.7O2, leading to a substantial reduction in equivalent oxide thickness (EOT). Furthermore, the SL-Hf0.3Zr0.7O2 dielectric was integrated into Si NSGAAFETs, with the interfacial layer (IL) further optimized via NH3 plasma treatment. The resulting devices exhibited superior electrical performance, including an enhanced ON-OFF current ratio (ION/IOFF) reaching 107, an increased drive current, and significantly reduced gate leakage. These results highlight the potential of SL-Hf0.3Zr0.7O2 as a high-k dielectric solution for overcoming EOT scaling challenges in advanced CMOS technology and enabling further innovation in next-generation logic applications. Full article
Show Figures

Figure 1

17 pages, 8236 KiB  
Article
Polyvinyl Alcohol Composite Films Containing Flame-Retardant DOPO-VTES and α-ZrP
by Jiayou Xu, Minyi Luo, Riyan Lin and Shu Lv
Polymers 2025, 17(8), 1011; https://doi.org/10.3390/polym17081011 - 9 Apr 2025
Viewed by 604
Abstract
Polyvinyl alcohol (PVA) is used in various fields; however, its highly flammable property greatly limits its application. In order to improve the flame-retardant properties of PVA, one method is by adding flame retardants directly, while another method is through grafting, cross-linking and hydrogen [...] Read more.
Polyvinyl alcohol (PVA) is used in various fields; however, its highly flammable property greatly limits its application. In order to improve the flame-retardant properties of PVA, one method is by adding flame retardants directly, while another method is through grafting, cross-linking and hydrogen bonding. A flame retardant, 9, 10-dihydro-9, 10-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-vinyltrimethoxysilane (VTES), was synthesized through the addition reaction of a P–H bond on the DOPO and unsaturated carbon–carbon double bonds on the VTES. Then, the DOPO-VTES and zirconium phosphate (α-ZrP) were blended with PVA to cast a film, in which DOPO-VTES was grafted onto the PVA by cross-linking the hydroxyl group in the molecular structure of DOPO-VTES with the hydroxyl group in PVA; α-ZrP was used as a cooperative agent of DOPO-VTES. The cone calorimetry test (CCT) showed a significant reduction in both the heat release rate (HRR) and total heat release rate (THR) for the flame-retardant PVA films compared to pure PVA. Additionally, thermogravimetric analysis (TGA) revealed a higher residual char content in the flame-retardant PVA films than in pure PVA. These findings suggested that the combination of DOPO-VTES and α-ZrP could improve the flame retardancy of PVA. The cooperative flame-retardant mode of action at play was possibly that DOPO in the DOPO-VTES acted as a mainly gas-phase flame retardant, which yielded a PO radical; VTES in the DOPO-VTES produced silicon dioxide (SiO2), which acted as a thermal insulator; and α-ZrP catalyzed the carbonization of the PVA. By combining DOPO-VTES with α-ZrP, a continuous dense carbon layer was formed, which effectively inhibited oxygen and heat exchange, resulting in a flame-retardant effect. It is expected that flame-retardant films for PVA have a broad development prospect and potential in the fields of packaging materials, electronic appliances, and lithium-ion battery separators. Full article
(This article belongs to the Special Issue Advances in Flame Retardant Polymeric Materials and Composites)
Show Figures

Figure 1

16 pages, 4949 KiB  
Article
High-Temperature Oxidation Behavior of TiN-, Cr-, and TiN–Cr PVD-Coated Zircaloy 4 Alloy at 1200 °C
by Yan-Yu Tang, Yin-Lin Chang, Wen Luo and De-Wen Tang
Materials 2025, 18(8), 1692; https://doi.org/10.3390/ma18081692 - 8 Apr 2025
Viewed by 551
Abstract
Zirconium alloys are essential materials for nuclear fuel cladding. During a loss-of-coolant accident (LOCA), zirconium alloy cladding can oxidize in high-temperature steam (>1000 °C), generating hydrogen and releasing significant heat. Without timely emergency actions, this can result in hydrogen explosions or nuclear leakage. [...] Read more.
Zirconium alloys are essential materials for nuclear fuel cladding. During a loss-of-coolant accident (LOCA), zirconium alloy cladding can oxidize in high-temperature steam (>1000 °C), generating hydrogen and releasing significant heat. Without timely emergency actions, this can result in hydrogen explosions or nuclear leakage. In this study, titanium nitride (TiN), chromium (Cr), and TiN–Cr composite coatings were deposited on the surface of Zr-4 alloy using the magnetron sputtering method. The coatings’ surface and cross-sectional morphologies were examined using scanning electron microscopy (SEM), and their phase structures were analyzed with X-ray diffraction (XRD). The mechanical properties were evaluated using scratch tests, and their resistance to high-temperature steam oxidation was tested in a tube furnace connected to a steam generator. The results showed that the TiN, Cr, and TiN–Cr coatings exhibited strong adhesion to the Zr-4 substrates, with distinct interfaces and pure phase structures. After high-temperature steam oxidation, cracks appeared on the surfaces of the TiN, Cr, and TiN–Cr coatings, likely due to differences in the thermal expansion coefficients of TiO2, Cr2O3, and residual Cr layers. These cracks created pathways for the oxidizing medium, potentially leading to the oxidation of the substrate or inner layers of the composite coatings. For the Cr and TiN–Cr coatings, despite cracking of the Cr layer and melting of the TiN layer at high temperatures, the residual Cr layer effectively restricted oxygen diffusion into the Zr-4 substrate. This study suggests that layers with low melting points, such as TiN, are unsuitable for composite coatings in high-temperature applications. However, adding a Cr layer on top of the TiN layer to form a TiN–Cr composite coating improves adhesion between the coating and the substrate. The TiN–Cr composite coating functions as an effective diffusion barrier at temperatures up to 1200 °C, comparable to a pure Cr coating. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

17 pages, 3998 KiB  
Article
Contributions of Oxide Support Reducibility for Selective Oxidation of 5-Hydroxymethylfurfural over Ag-Based Catalysts
by Haichen Lai, Gaolei Shi, Liuwei Shen and Xingguang Zhang
Catalysts 2025, 15(3), 248; https://doi.org/10.3390/catal15030248 - 5 Mar 2025
Cited by 1 | Viewed by 880
Abstract
As a type of sustainable and renewable natural source, biomass-derived 5-hydroxymethyl furfural (HMF) can be converted into high-value chemicals. This study investigated the interactions between silver (Ag) and oxide supports with varied reducibility and their contributions to tuning catalytic performance in the selective [...] Read more.
As a type of sustainable and renewable natural source, biomass-derived 5-hydroxymethyl furfural (HMF) can be converted into high-value chemicals. This study investigated the interactions between silver (Ag) and oxide supports with varied reducibility and their contributions to tuning catalytic performance in the selective oxidation of HMF. Three representatives of manganese dioxide (MnO2), zirconium dioxide (ZrO2), and silicon dioxide (SiO2) were selected to support the Ag active sites. The catalysts were characterized by techniques such as STEM (TEM), Raman, XPS, H2-TPR, and FT-IR spectroscopy to explore the morphology, Ag dispersion, surface properties, and electronic states. The catalytic results demonstrated that MnO2 with the highest reducibility exhibited superior catalytic performance, achieving 75.4% of HMF conversion and 41.6% of selectivity for 2,5-furandicarboxylic acid (FDCA) at 120 °C. In contrast, ZrO2 and SiO2 exhibited limited oxidation capabilities, mainly producing intermediate products like FFCA and/or HMFCA. The oxidation ability of these catalysts was governed by support reducibility, because it determined the density of oxygen vacancies (Ov) and surface hydroxyl groups (OOH), and eventually influenced the catalytic activity, as demonstrated by the reaction rate: Ag/MnO2 (3214.5 molHMF·gAg−1·h−1), Ag/ZrO2 (2062.3 molHMF·gAg−1·h−1), and Ag/SiO2 (1394.4 molHMF·gAg−1·h−1). These findings provide valuable insights into the rational design of high-performance catalysts for biomass-derived chemical conversion. Full article
Show Figures

Figure 1

17 pages, 13526 KiB  
Article
Thermal Barrier Coating on Diamond Particles for the SPS Sintering of the Diamond–ZrO2 Composite
by Lucyna Jaworska, Michał Stępień, Małgorzata Witkowska, Tomasz Skrzekut, Piotr Noga, Marcin Podsiadło, Dorota Tyrała, Janusz Konstanty and Karolina Kapica
Materials 2025, 18(4), 869; https://doi.org/10.3390/ma18040869 - 17 Feb 2025
Cited by 1 | Viewed by 733
Abstract
The aim of this work was to obtain a protective ZrO2 coating on diamond particles, which was to protect diamond from oxidation and graphitization, enabling sintering of diamond at higher temperatures and lower pressures than its thermodynamic stability in atmospheric conditions. The [...] Read more.
The aim of this work was to obtain a protective ZrO2 coating on diamond particles, which was to protect diamond from oxidation and graphitization, enabling sintering of diamond at higher temperatures and lower pressures than its thermodynamic stability in atmospheric conditions. The coatings were obtained by mixing diamond with zirconium and oxidizing in air or oxygen. Mixtures of diamond and 80 wt% zirconium were sintered by SPS method at temperatures of 1250 °C and 1450 °C. To stabilize the tetragonal structure of ZrO2, 3 mol% Y2O3 was added to zirconium before the milling process. The composition of powder phases, morphology, and microstructures of sintered materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectrometry (EDS). Diffraction studies show the presence of zirconium monoclinic and tetragonal oxides in coatings, after oxidation in air, and in oxygen. Oxidation in oxygen flow is possible for lower temperatures (75 °C), which results in the presence of unreacted zirconium. In ZrO2 doped with yttria after the oxidation process in oxygen, there is no monoclinic ZrO2. It is possible to sinter the ZrO2–diamond composite at 1250 °C using the spark plasma sintering method without graphitization of the diamond. The sintered material consists of monoclinic and tetragonal ZrO2 structures. Full article
(This article belongs to the Special Issue Surface Engineering in Materials (2nd Edition))
Show Figures

Figure 1

Back to TopTop