Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,875)

Search Parameters:
Keywords = zT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4650 KiB  
Article
IoT Monitoring and Evaluating System for the Construction Quality of Foundation Pile
by Kai Wu, Peng Zhang, Jiejun Yuan, Xiaqing Qian and Runen Qi
Buildings 2025, 15(15), 2660; https://doi.org/10.3390/buildings15152660 - 28 Jul 2025
Abstract
The quality of foundation pile is greatly influenced by human factors, and quality assessment is delayed. This paper introduces a new evaluation system based on Internet of Things (IoT) monitoring data of the foundation pile construction process. First, an IoT monitoring system of [...] Read more.
The quality of foundation pile is greatly influenced by human factors, and quality assessment is delayed. This paper introduces a new evaluation system based on Internet of Things (IoT) monitoring data of the foundation pile construction process. First, an IoT monitoring system of foundation pile construction process quality is established to monitor the key parameters for quality control in the foundation pile construction process, such as pile length, position, verticality, water–cement ratio, grouting volume, drilling/lifting speed, etc. Next, the absolute gray relational degree analysis method and the analytic hierarchy process (AHP) entropy-weighted combination weighting method are used to divide the monitoring data into different levels and determine the weight coefficients for quality indicators during foundation pile construction. Last, the IoT monitoring and evaluation system of the foundation piles construction process quality is applied to engineering. The results indicate that the monitoring system is convenient and efficient, and the quality evaluation method is reliable. The construction process quality of cement-mixing piles is rated as excellent. The construction process quality of bored piles Z0103 and Z0232 is excellent, and pile Z0012 is qualified. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

30 pages, 429 KiB  
Article
Dombi Aggregation of Trapezoidal Neutrosophic Number for Charging Station Decision-Making
by Mohammed Alqahtani
Symmetry 2025, 17(8), 1195; https://doi.org/10.3390/sym17081195 - 26 Jul 2025
Viewed by 66
Abstract
In engineering and decision sciences, trapezoidal-valued neutrosophic fuzzy numbers (TzVNFNs) have become effective tools for managing imprecision and uncertainty in multi-attribute group decision-making (MAGDM) problems. This work introduces accumulation operators based on the Dombi t-norm [...] Read more.
In engineering and decision sciences, trapezoidal-valued neutrosophic fuzzy numbers (TzVNFNs) have become effective tools for managing imprecision and uncertainty in multi-attribute group decision-making (MAGDM) problems. This work introduces accumulation operators based on the Dombi t-norm (DTn) and Dombi t-conorm (DTcn) specifically designed for TzVNFNs. These operators enhance the flexibility, consistency, and fairness of the aggregation process. To demonstrate their practical applicability, we propose three novel geometric aggregation operator’s namely, the trapezoidal-valued neutrosophic fuzzy Dombi weighted geometric (TzVNFDWG), the trapezoidal-valued neutrosophic fuzzy Dombi ordered weighted geometric (TzVNFDOWG), and the trapezoidal-valued neutrosophic fuzzy Dombi hybrid Geometric (TzVNFDHG) operators. These are incorporated into a systematic MAGDM framework to support the selection of optimal locations for charging stations. Comparative analysis with current decision-making methodologies highlights the efficacy and benefits of the suggested method. The suggested method provides a flexible and mathematically based choice framework designed for uncertain condition. Full article
(This article belongs to the Section Mathematics)
15 pages, 6009 KiB  
Article
Establishment of an In Vitro Regeneration System and Analysis of Endogenous Hormone Dynamics in Melastoma dodecandrum
by Shunshun Wang, Ruonan Tang, Fei Wang, Yun Pan, Yanru Duan, Luyu Xue, Danqi Zeng, Jinliao Chen and Donghui Peng
Horticulturae 2025, 11(8), 875; https://doi.org/10.3390/horticulturae11080875 - 25 Jul 2025
Viewed by 91
Abstract
Melastoma dodecandrum is primarily propagated through stem cuttings, which limits genetic variation and constrains breeding efforts. To overcome this limitation and facilitate molecular breeding, the establishment of a reliable and efficient regeneration system is essential. This study investigated the effects of plant growth [...] Read more.
Melastoma dodecandrum is primarily propagated through stem cuttings, which limits genetic variation and constrains breeding efforts. To overcome this limitation and facilitate molecular breeding, the establishment of a reliable and efficient regeneration system is essential. This study investigated the effects of plant growth regulators (PGRs) and culture media on the in vitro regeneration system of M. dodecandrum. The highest rate of callus induction (96.67%) was achieved when sterile leaf explants were cultured on Murashige and Skoog (MS) basal medium supplemented with 2.00 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.50 mg·L−1 6-benzylaminopurine (6-BA). For callus differentiation, the optimal formulation of MS + 2.0 mg·L−1 6-BA + 0.5 mg·L−1 naphthylacetic acid (NAA) resulted in a differentiation frequency of 83.33%. The optimal PGR combinations for shoot proliferation were 1.5 mg·L−1 6-BA + 0.1 mg·L−1 NAA and 0.5 mg·L−1 6-BA + 0.2 mg·L−1 NAA. The optimal rooting media were MS medium supplemented with 0.1, 0.2, or 0.5 mg·L−1 indole-3-butyric acid (IBA) or 1/2MS medium supplemented with 0.1 mg·L−1 IBA. Additionally, this study investigated the dynamic changes in endogenous hormones during the regeneration process. The levels and ratios of hormones, including gibberellin (GA3), abscisic acid (ABA), indole-3-acetic acid (IAA), and zeatin (ZT), collectively regulated the regeneration process. Elevated levels of ABA and GA3 may promote callus initiation as well as the growth and development of adventitious roots during the early induction stage. Reduced levels of ABA and IAA favored callus differentiation into shoots, whereas elevated GA3 levels facilitated proliferation of adventitious shoots. Throughout the regeneration process, fluctuations in ZT levels remained relatively stable. This study successfully established an in vitro regeneration system for M. dodecandrum using leaf explants, providing theoretical guidance and technical support for further molecular breeding efforts, genetic transformation, and industrial development. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

20 pages, 4049 KiB  
Article
ADMET-Guided Docking and GROMACS Molecular Dynamics of Ziziphus lotus Phytochemicals Uncover Mutation-Agnostic Allosteric Stabilisers of the KRAS Switch-I/II Groove
by Abdessadek Rahimi, Oussama Khibech, Abdessamad Benabbou, Mohammed Merzouki, Mohamed Bouhrim, Mohammed Al-Zharani, Fahd A. Nasr, Ashraf Ahmed Qurtam, Said Abadi, Allal Challioui, Mostafa Mimouni and Maarouf Elbekay
Pharmaceuticals 2025, 18(8), 1110; https://doi.org/10.3390/ph18081110 - 25 Jul 2025
Viewed by 193
Abstract
Background/Objectives: Oncogenic KRAS drives ~30% of solid tumours, yet the only approved G12C-specific drugs benefit ≈ 13% of KRAS-mutant patients, leaving a major clinical gap. We sought mutation-agnostic natural ligands from Ziziphus lotus, whose stereochemically rich phenolics may overcome this limitation by occupying [...] Read more.
Background/Objectives: Oncogenic KRAS drives ~30% of solid tumours, yet the only approved G12C-specific drugs benefit ≈ 13% of KRAS-mutant patients, leaving a major clinical gap. We sought mutation-agnostic natural ligands from Ziziphus lotus, whose stereochemically rich phenolics may overcome this limitation by occupying the SI/II (Switch I/Switch II) groove and locking KRAS in its inactive state. Methods: Phytochemical mining yielded five recurrent phenolics, such as (+)-catechin, hyperin, astragalin, eriodictyol, and the prenylated benzoate amorfrutin A, benchmarked against the covalent inhibitor sotorasib. An in silico cascade combined SI/II docking, multi-parameter ADME/T (Absorption, Distribution, Metabolism, Excretion, and Toxicity) filtering, and 100 ns explicit solvent molecular dynamics simulations. Pharmacokinetic modelling predicted oral absorption, Lipinski compliance, mutagenicity, and acute-toxicity class. Results: Hyperin and astragalin showed the strongest non-covalent affinities (−8.6 kcal mol−1) by forging quadridentate hydrogen-bond networks that bridge the P-loop (Asp30/Glu31) to the α3-loop cleft (Asp119/Ala146). Catechin (−8.5 kcal mol−1) balanced polar anchoring with entropic economy. ADME ranked amorfrutin A the highest for predicted oral absorption (93%) but highlighted lipophilic solubility limits; glycosylated flavonols breached Lipinski rules yet remained non-mutagenic with class-5 acute-toxicity liability. Molecular dynamics trajectories confirmed that hyperin clamps the SI/II groove, suppressing loop RMSF below 0.20 nm and maintaining backbone RMSD stability, whereas astragalin retains pocket residence with transient re-orientation. Conclusions: Hyperin emerges as a low-toxicity, mutation-agnostic scaffold that rigidifies inactive KRAS. Deglycosylation, nano-encapsulation, or soft fluorination could reconcile permeability with durable target engagement, advancing Z. lotus phenolics toward broad-spectrum KRAS therapeutics. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

17 pages, 5847 KiB  
Article
Exploring the Metabolic Pathways of Melon (Cucumis melo L.) Yellow Leaf Mutants via Metabolomics
by Fan Zhang, Kexin Chen, Dongyang Dai, Bing Liu, Yaokun Wu and Yunyan Sheng
Plants 2025, 14(15), 2300; https://doi.org/10.3390/plants14152300 - 25 Jul 2025
Viewed by 86
Abstract
A yellow leaf mutant named ‘ZT00091’ was discovered during the cultivation of the melon variety ‘ZT091’. An analysis of the leaf ultrastructure revealed that the chloroplasts of ‘ZT00091’ were significantly smaller than those of ‘ZT091’, with irregular shapes, blurred contours, and no starch [...] Read more.
A yellow leaf mutant named ‘ZT00091’ was discovered during the cultivation of the melon variety ‘ZT091’. An analysis of the leaf ultrastructure revealed that the chloroplasts of ‘ZT00091’ were significantly smaller than those of ‘ZT091’, with irregular shapes, blurred contours, and no starch granules. Metabolomic analysis revealed 792 differentially abundant metabolites between ‘ZT00091’ and ‘ZT091’, with 273 upregulated and 519 downregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results indicated that the differentially abundant metabolites were enriched mainly in the carotenoid pathway. qRT-PCR was used to analyze key genes in the carotenoid pathway of melon. Compared with those in ‘ZT091’, the genes promoting carotenoids and lutein in ‘ZT00091’ were significantly upregulated, which may explain the yellow color of ‘ZT00091’ leaves. Significant differences in the chlorophyll contents (chlorophyll a, chlorophyll b, and total chlorophyll) and carotenoid contents were found between ‘ZT00091’ and ‘ZT091’, indicating that the yellowing of melon leaves is related to changes in the carotenoid and chlorophyll contents. This study provides a theoretical basis for research on the molecular mechanism of melon yellowing. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

13 pages, 292 KiB  
Article
On Dα-Spectrum of the Weakly Zero-Divisor Graph of Zn
by Amal S. Alali, Mohd Rashid, Asif Imtiyaz Ahmad Khan and Muzibur Rahman Mozumder
Mathematics 2025, 13(15), 2385; https://doi.org/10.3390/math13152385 - 24 Jul 2025
Viewed by 107
Abstract
Let us consider the finite commutative ring R, whose unity is 10. Its weakly zero-divisor graph, represented as WΓ(R), is a basic undirected graph with two distinct vertices, c1 and c2, [...] Read more.
Let us consider the finite commutative ring R, whose unity is 10. Its weakly zero-divisor graph, represented as WΓ(R), is a basic undirected graph with two distinct vertices, c1 and c2, that are adjacent if and only if there exist r ann(c1) and s ann(c2) that satisfy the condition rs=0. Let D(G) be the distance matrix and Tr(G) be the diagonal matrix of the vertex transmissions in basic undirected connected graph G. The Dα matrix of graph G is defined as Dα(G)=αTr(G)+(1α)D(G) for α[0,1]. This article finds the Dα spectrum for the graph WΓ(Zn) for various values of n and also shows that WΓ(Zn) for n=ϑ1ϑ2ϑ3ϑtη1d1η2d2ηsds(di2,t1,s0), where ϑi’s and ηi’s are the distinct primes, is Dα integral. Full article
(This article belongs to the Section E: Applied Mathematics)
15 pages, 5802 KiB  
Article
Study on the Influence Mechanism of Alkaline Earth Element Doping on the Thermoelectric Properties of ZnO
by Haitao Zhang, Bo Feng, Yonghong Chen, Peng Jin, Ruolin Ruan, Biyu Xu, Zhipeng Zheng, Guopeng Zhou, Yang Zhang, Kewei Wang, Yin Zhong and Yanhua Fan
Micromachines 2025, 16(8), 850; https://doi.org/10.3390/mi16080850 - 24 Jul 2025
Viewed by 168
Abstract
As a promising n-type semiconductor thermoelectric material, ZnO has great potential in the high-temperature working temperature range due to its advantages of abundant sources, low cost, high thermal stability, and good chemical stability, as well as being pollution-free. Sr-doped ZnO-based thermoelectric materials were [...] Read more.
As a promising n-type semiconductor thermoelectric material, ZnO has great potential in the high-temperature working temperature range due to its advantages of abundant sources, low cost, high thermal stability, and good chemical stability, as well as being pollution-free. Sr-doped ZnO-based thermoelectric materials were prepared using the methods of room-temperature powder synthesis and high-temperature block synthesis. The phase composition, crystal structure, and thermoelectric performances of ZnO samples with different Sr doping levels were analyzed using XRD, material simulation software and thermoelectric testing devices, and the optimal doping concentrations were obtained. The results show that Sr doping could cause the Zn-O bond to become shorter; in addition, the hybridization between Zn and O atoms would become stronger, and the Sr atom would modify the density of states near the Fermi level, which could significantly increase the carrier concentration, electrical conductivity, and corresponding power factor. Sr doping could cause lattice distortion, enhance the phonon scattering effect, and decrease the lattice thermal conductivity and thermal conductivity. Sr doping can achieve the effect of improving electrical transport performance and decreasing thermal transport performance. The ZT value increased to ~0.418 at 873 K, which is ~4.2 times the highest ZT of the undoped ZnO sample. The Vickers hardness was increased to ~351.1 HV, which is 45% higher than the pristine ZnO. Full article
(This article belongs to the Special Issue Functional Materials and Microdevices, 2nd Edition)
Show Figures

Figure 1

38 pages, 2454 KiB  
Article
Enhancing Secure Software Development with AZTRM-D: An AI-Integrated Approach Combining DevSecOps, Risk Management, and Zero Trust
by Ian Coston, Karl David Hezel, Eadan Plotnizky and Mehrdad Nojoumian
Appl. Sci. 2025, 15(15), 8163; https://doi.org/10.3390/app15158163 - 22 Jul 2025
Viewed by 127
Abstract
This paper introduces the Automated Zero Trust Risk Management with DevSecOps Integration (AZTRM-D) framework, a novel approach that embeds security throughout the entire Secure Software and System Development Life Cycle (S-SDLC). AZTRM-D strategically unifies three established methodologies: DevSecOps practices, the NIST Risk Management [...] Read more.
This paper introduces the Automated Zero Trust Risk Management with DevSecOps Integration (AZTRM-D) framework, a novel approach that embeds security throughout the entire Secure Software and System Development Life Cycle (S-SDLC). AZTRM-D strategically unifies three established methodologies: DevSecOps practices, the NIST Risk Management Framework (RMF), and the Zero Trust (ZT) model. It then significantly augments their capabilities through the pervasive application of Artificial Intelligence (AI). This integration shifts traditional, often fragmented, security paradigms towards a proactive, automated, and continuously adaptive security posture. AI serves as the foundational enabler, providing real-time threat intelligence, automating critical security controls, facilitating continuous vulnerability detection, and enabling dynamic policy enforcement from initial code development through operational deployment. By automating key security functions and providing continuous oversight, AZTRM-D enhances risk mitigation, reduces vulnerabilities, streamlines compliance, and significantly strengthens the overall security posture of software systems, thereby addressing the complexities of modern cyber threats and accelerating the delivery of secure software. Full article
(This article belongs to the Special Issue Application of IoT and Cybersecurity Technologies)
Show Figures

Figure 1

12 pages, 1502 KiB  
Article
Long-Term Impact of COVID-19 on Osteoporosis Risk Among Patients Aged ≥50 Years with New-Onset Overweight, Obesity, or Type 2 Diabetes: A Multi-Institutional Retrospective Cohort Study
by Sheng-You Su, Yi-Fan Sun and Jun-Jun Yeh
Medicina 2025, 61(8), 1320; https://doi.org/10.3390/medicina61081320 - 22 Jul 2025
Viewed by 443
Abstract
Background and Objectives: COVID-19 may have long-term adverse effects on bone health, particularly in individuals aged ≥50 years with obesity or diabetes, who are predisposed to impaired bone quality. Materials and Methods: This retrospective cohort study used TriNetX data from 141 [...] Read more.
Background and Objectives: COVID-19 may have long-term adverse effects on bone health, particularly in individuals aged ≥50 years with obesity or diabetes, who are predisposed to impaired bone quality. Materials and Methods: This retrospective cohort study used TriNetX data from 141 healthcare organizations across North America and Western Europe. Patients aged ≥50 years with overweight (body mass index 25–30 kg/m2), obesity (body mass index ≥ 30 kg/m2), or type 2 diabetes (T2DM) and COVID-19 (2019–2024) were propensity score-matched to non-COVID-19 controls. Exclusion criteria included prior overweight, obesity, diabetes, osteoporosis, T-score ≤ −2.5, Z score ≤ −2.0, fractures, pneumonia, tuberculosis, and cancer. Outcomes included new-onset osteoporosis, fragility fractures, and low T-scores (≤−2.5). Cox regression estimated hazard ratios (HRs); sensitivity analyses assessed lag effects (1–4 years). Results: Among 327,933 matched pairs, COVID-19 was linked to increased osteoporosis risk at 3 years (HR, 1.039; 95% CI, 1.003–1.077) and 6 years (HR, 1.095; 95% CI, 1.059–1.133). Sensitivity analysis showed rising risk with longer lag times: HRs were 1.212, 1.379, 1.563, and 1.884 at 1 to 4 years, respectively. Subgroup analyses confirmed consistent trends. Conclusions: COVID-19 is independently associated with elevated long-term osteoporosis risk in older adults with new-onset overweight, obesity, or T2DM, peaking at 4 years post-infection and persisting through 6 years. Full article
Show Figures

Figure 1

30 pages, 25151 KiB  
Article
Prospects for Multimessenger Observations of the Shapley Supercluster
by Valentyna Babur, Olexandr Gugnin and Bohdan Hnatyk
Universe 2025, 11(7), 239; https://doi.org/10.3390/universe11070239 - 21 Jul 2025
Viewed by 159
Abstract
The Shapley Supercluster, one of the largest and most massive structures in the nearby (redshift z0.1) Universe, located approximately 200 Mpc away, is a unique laboratory for high-energy astrophysics. Galaxy clusters that comprise it are promising targets for multimessenger study [...] Read more.
The Shapley Supercluster, one of the largest and most massive structures in the nearby (redshift z0.1) Universe, located approximately 200 Mpc away, is a unique laboratory for high-energy astrophysics. Galaxy clusters that comprise it are promising targets for multimessenger study due to the presence in the intracluster medium of the necessary conditions for the acceleration of cosmic rays up to ultra-high energies and the generation by them of non-thermal electromagnetic and neutrino emission. Using the Shapley Supercluster’s observational data from the recent eROSITA-DE Data Release, we recover the physical parameters of 45 X-ray luminous galaxy clusters and calculate the expected multiwavelength—from radio to very-high-energy γ-ray as well as neutrino emission, with a particular focus on hadronic interactions of accelerated cosmic ray nuclei with the nuclei of the intracluster medium. The results obtained allow verification of cluster models based on multimessenger observations of clusters, especially in γ-ray (Fermi-LAT, H.E.S.S., CTAO-South for the Shapley Supercluster case), and neutrino (Ice Cube, KM3NeT). We also estimate the ability of the Shapley Supercluster to manifest as cosmic Zevatrons and show that it can contribute to the PAO Hot Spot in the Cen A region at UHECR energies over 50 EeV. Full article
(This article belongs to the Special Issue Ultra-High-Energy Cosmic Rays)
Show Figures

Figure 1

16 pages, 2270 KiB  
Article
Performance Evaluation of FPGA, GPU, and CPU in FIR Filter Implementation for Semiconductor-Based Systems
by Muhammet Arucu and Teodor Iliev
J. Low Power Electron. Appl. 2025, 15(3), 40; https://doi.org/10.3390/jlpea15030040 - 21 Jul 2025
Viewed by 342
Abstract
This study presents a comprehensive performance evaluation of field-programmable gate array (FPGA), graphics processing unit (GPU), and central processing unit (CPU) platforms for implementing finite impulse response (FIR) filters in semiconductor-based digital signal processing (DSP) systems. Utilizing a standardized FIR filter designed with [...] Read more.
This study presents a comprehensive performance evaluation of field-programmable gate array (FPGA), graphics processing unit (GPU), and central processing unit (CPU) platforms for implementing finite impulse response (FIR) filters in semiconductor-based digital signal processing (DSP) systems. Utilizing a standardized FIR filter designed with the Kaiser window method, we compare computational efficiency, latency, and energy consumption across the ZYNQ XC7Z020 FPGA, Tesla K80 GPU, and Arm-based CPU, achieving processing times of 0.004 s, 0.008 s, and 0.107 s, respectively, with FPGA power consumption of 1.431 W and comparable energy profiles for GPU and CPU. The FPGA is 27 times faster than the CPU and 2 times faster than the GPU, demonstrating its suitability for low-latency DSP tasks. A detailed analysis of resource utilization and scalability underscores the FPGA’s reconfigurability for optimized DSP implementations. This work provides novel insights into platform-specific optimizations, addressing the demand for energy-efficient solutions in edge computing and IoT applications, with implications for advancing sustainable DSP architectures. Full article
(This article belongs to the Topic Advanced Integrated Circuit Design and Application)
Show Figures

Figure 1

12 pages, 1344 KiB  
Article
Transcriptomic Profiling of Paired Primary Tumors and CNS Metastases in Breast Cancer Reveals Immune Modulation Signatures
by Ana Julia Aguiar de Freitas, Muriele Bertagna Varuzza, Stéphanie Calfa, Rhafaela Lima Causin, Vinicius Duval da Silva, Cristiano de Pádua Souza and Márcia Maria Chiquitelli Marques
Int. J. Mol. Sci. 2025, 26(14), 6944; https://doi.org/10.3390/ijms26146944 - 19 Jul 2025
Viewed by 247
Abstract
Breast cancer is a leading cause of central nervous system (CNS) metastases in women, often associated with poor prognosis and limited therapeutic options. However, molecular differences between primary tumors and CNS metastases remain underexplored. We aimed to characterize transcriptomic differences between primary breast [...] Read more.
Breast cancer is a leading cause of central nervous system (CNS) metastases in women, often associated with poor prognosis and limited therapeutic options. However, molecular differences between primary tumors and CNS metastases remain underexplored. We aimed to characterize transcriptomic differences between primary breast tumors and matched CNS metastases and identify immune-related biomarkers associated with metastatic progression and patient outcomes. Transcriptomic profiling was based on 11 matched FFPE sample pairs (primary tumor and CNS metastasis). Paired formalin-fixed paraffin-embedded (FFPE) samples from primary tumors (T1) and CNS metastases (T2) were analyzed using the NanoString nCounter® platform and the PanCancer IO 360™ Gene Expression Panel. Differential gene expression, Z-score transformation, and heatmap visualization were performed in R. In silico survival analyses for overall survival (OS) and recurrence-free survival (RFS) were conducted using publicly available TCGA and GEO datasets. Forty-five genes were significantly differentially expressed between the T1 and T2 samples. Immune-related genes such as CXCL9, IL7R, CD79A, and CTSW showed consistent downregulation in CNS metastases. High expression of CXCL9 and CD79A was associated with improved OS and RFS, whereas high IL7R and CTSW expression correlated with worse outcomes. These findings indicate immune suppression as a hallmark of CNS colonization. Comparative transcriptomic analysis further underscored the distinct molecular landscapes between primary and metastatic tumors. This study highlights transcriptional signatures associated with breast cancer CNS metastases, emphasizing the role of immune modulation in metastatic progression. The identified genes have potential as prognostic biomarkers and therapeutic targets, supporting the need for site-specific molecular profiling in metastatic breast cancer management. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Oncology in Brazil, 3rd Edition)
Show Figures

Graphical abstract

17 pages, 3127 KiB  
Article
The Impact of Pile Diameter on the Performance of Single Piles: A Kinematic Analysis Based on the TBEC 2018 Guidelines
by Mehmet Hayrullah Akyıldız, Mehmet Salih Keskin, Senem Yılmaz Çetin, Sabahattin Kaplan and Gültekin Aktaş
Buildings 2025, 15(14), 2540; https://doi.org/10.3390/buildings15142540 - 19 Jul 2025
Viewed by 214
Abstract
This study investigates the effect of pile diameter on the seismic performance of single piles using the kinematic interaction framework outlined in Method III of the Turkish Building Earthquake Code TBEC-2018. Pile diameters of 65 cm, 80 cm, and 100 cm were analyzed [...] Read more.
This study investigates the effect of pile diameter on the seismic performance of single piles using the kinematic interaction framework outlined in Method III of the Turkish Building Earthquake Code TBEC-2018. Pile diameters of 65 cm, 80 cm, and 100 cm were analyzed under four different soil profiles—soft clay, stiff clay, very loose sand-A, and very loose sand-B. The methodology integrated nonlinear spring modeling (P-y, T-z, Q-z) for soil behavior, one-dimensional site response analysis using DEEPSOIL, and structural analysis with SAP2000. The simulation results showed that increasing the pile diameter led to a significant rise in internal forces: the maximum bending moment increased up to 4.0 times, and the maximum shear force increased 4.5 times from the smallest to the largest pile diameter. Horizontal displacements remained nearly constant, whereas vertical displacements decreased by almost 50%, indicating improved pile–soil stiffness interaction. The depth of the maximum moment shifted according to the soil stiffness, and stress concentrations were observed at the interfaces of stratified layers. The findings underline the importance of considering pile geometry and soil layering in seismic design. This study provides quantitative insights into the trade-off between displacement control and force demand in seismic pile design, contributing to safer foundation strategies in earthquake-prone regions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 2268 KiB  
Article
Epichloë Endophyte Alters Bacterial Nitrogen-Cycling Gene Abundance in the Rhizosphere Soil of Perennial Ryegrass
by Munire Maimaitiyiming, Yanxiang Huang, Letian Jia, Mofan Wu and Zhenjiang Chen
Biology 2025, 14(7), 879; https://doi.org/10.3390/biology14070879 - 18 Jul 2025
Viewed by 198
Abstract
Perennial ryegrass (Lolium perenne), an important forage and turfgrass species, can establish a mutualistic symbiosis with the fungal endophyte Epichloë festucae var. lolii. Although the physiological and ecological impacts of endophyte infection on ryegrass have been extensively investigated, the response of [...] Read more.
Perennial ryegrass (Lolium perenne), an important forage and turfgrass species, can establish a mutualistic symbiosis with the fungal endophyte Epichloë festucae var. lolii. Although the physiological and ecological impacts of endophyte infection on ryegrass have been extensively investigated, the response of the soil microbial community and nitrogen-cycling gene to this relationship has received much less attention. The present study emphasized abundance and diversity variation in the AOB-amoA, nirK and nosZ functional genes in the rhizosphere soil of the endophyte–ryegrass symbiosis following litter addition. We sampled four times: at T0 (prior to first litter addition), T1 (post 120 d of 1st litter addition), T2 (post 120 d of 2nd litter addition) and T3 (post 120 d of 3rd litter addition) times. Real-time fluorescence quantitative PCR (qPCR) and PCR amplification and sequencing were used to characterize the abundance and diversity of the AOB-amoA, nirK and nosZ genes in rhizosphere soils of endophyte-infected (E+) plants and endophyte-free (E−) plants. A significant enhancement of total Phosphorus (P), Soil Organic Carbon (SOC), Ammonium ion (NH4+) and Nitrate ion (NO3) contents in the rhizosphere soil was recorded in endophyte-infected plants at different sampling times compared to endophyte-free plants (p ≤ 0.05). The absolute abundance of the AOB-amoA gene at T0 and T1 times was higher, as was the absolute abundance of the nosZ gene at T0, T1 and T3 times in the E+ plant rhizophere soils relative to E− plant rhizosphere soils. A significant change in relative abundance of the AOB-amoA and nosZ genes in the host rhizophere soils of endophyte-infected plants at T1 and T3 times was observed. The experiment failed to show any significant alteration in abundance and diversity of the nirK gene, and diversity of the AOB-amoA and nosZ genes. Analysis of the abundance and diversity of the nirK gene indicated that changes in soil properties accounted for approximately 70.38% of the variation along the first axis and 16.69% along the second axis, and soil NH4+ (p = 0.002, 50.4%) and soil C/P ratio (p = 0.012, 15.8%) had a strong effect. The changes in community abundance and diversity of the AOB-amoA and nosZ genes were mainly related to soil pH, N/P ratio and NH4+ content. The results demonstrate that the existence of tripartite interactions among the foliar endophyte E. festucae var. Lolii, L. perenne and soil nitrogen-cycling gene has important implications for reducing soil losses on N. Full article
(This article belongs to the Collection Plant Growth-Promoting Bacteria: Mechanisms and Applications)
Show Figures

Figure 1

20 pages, 1676 KiB  
Article
Combining CSF and Serum Biomarkers to Differentiate Mechanisms of Disability Worsening in Multiple Sclerosis
by Enric Monreal, José Ignacio Fernández-Velasco, Susana Sainz de la Maza, Mercedes Espiño, Noelia Villarrubia, Ernesto Roldán-Santiago, Yolanda Aladro, Juan Pablo Cuello, Lucía Ayuso-Peralta, Alexander Rodero-Romero, Juan Luís Chico-García, Fernando Rodríguez-Jorge, Ana Quiroga-Varela, Eulalia Rodríguez-Martín, Belén Pilo de la Fuente, Guillermo Martín-Ávila, María Luisa Martínez-Ginés, José Manuel García-Domínguez, Lluïsa Rubio, Sara Llufriu, Manuel Comabella, Xavier Montalban, Gary Álvarez-Bravo, José Luís Veiga-González, Jaime Masjuan, Lucienne Costa-Frossard and Luisa María Villaradd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(14), 6898; https://doi.org/10.3390/ijms26146898 - 18 Jul 2025
Viewed by 335
Abstract
The combined use of serum and CSF biomarkers for prognostic stratification in multiple sclerosis (MS) remains underexplored. This multicenter observational study investigated associations between serum neurofilament light chain (sNfL), glial fibrillary acidic protein (sGFAP), and CSF lipid-specific IgM oligoclonal bands (LS-OCMB) with different [...] Read more.
The combined use of serum and CSF biomarkers for prognostic stratification in multiple sclerosis (MS) remains underexplored. This multicenter observational study investigated associations between serum neurofilament light chain (sNfL), glial fibrillary acidic protein (sGFAP), and CSF lipid-specific IgM oligoclonal bands (LS-OCMB) with different forms of disability worsening, such as relapse-associated worsening (RAW), active progression independent of relapse activity (aPIRA), and non-active PIRA (naPIRA). A total of 535 patients with MS were included, all sampled within one year of disease onset. Biomarkers were quantified using single-molecule array and immunoblotting techniques, and CSF cell subsets were analyzed by flow cytometry. High sNfL z-scores and LS-OCMB positivity were independently associated with increased risk of RAW and aPIRA, collectively termed inflammatory-associated worsening (IAW), while elevated sGFAP levels predicted naPIRA. Patients with both high sNfL and LS-OCMB positivity had the highest risk of IAW. Among LS-OCMB–positive patients, higher regulatory T cell percentages were associated with lower sNfL levels, suggesting a protective role. Conversely, in LS-OCMB–negative patients, sNfL levels correlated with CSF C3 concentrations. These findings support the complementary role of sNfL, sGFAP, and LS-OCMB in identifying distinct mechanisms of disease worsening and may inform early personalized management strategies in MS. Full article
(This article belongs to the Special Issue Insights in Multiple Sclerosis (MS) and Neuroimmunology: 2nd Edition)
Show Figures

Figure 1

Back to TopTop