Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = young cotyledon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2979 KiB  
Article
A Metabolomics Exploration of Young Lotus Seeds Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging
by Ying Chen, Xiaomeng Xu and Chunping Tang
Molecules 2025, 30(15), 3242; https://doi.org/10.3390/molecules30153242 - 1 Aug 2025
Viewed by 192
Abstract
Lotus (Nelumbo nucifera Gaertn.) is a quintessential medicinal and edible plant, exhibiting marked differences in therapeutic effects among its various parts. The lotus seed constitutes a key component of this plant. Notably, the entire seed and the plumule display distinct medicinal properties. [...] Read more.
Lotus (Nelumbo nucifera Gaertn.) is a quintessential medicinal and edible plant, exhibiting marked differences in therapeutic effects among its various parts. The lotus seed constitutes a key component of this plant. Notably, the entire seed and the plumule display distinct medicinal properties. To investigate the “homologous plants with different effects” phenomenon in traditional Chinese medicine, this study established a Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) method. This study employed immature lotus seeds as the experimental material, diverging from the mature seeds conventionally used. Conductive double-sided tape was employed for sample preparation, and complete longitudinal sections of the seeds were obtained, followed by MALDI-MSI analysis to identify and visualize the spatial distribution of characteristic secondary metabolites within the entire seeds. The results unveiled the diversity of metabolites in lotus seeds and their differential distribution across tissues, with pronounced distinctions in the plumule. A total of 152 metabolites spanning 13 categories were identified in lotus seeds, with 134, 89, 51, and 98 metabolites discerned in the pericarp, seed coat, cotyledon, and plumule, respectively. Strikingly, young lotus seeds were devoid of liensinine/isoliensinine and neferine, the dominant alkaloids of mature lotus seed plumule, revealing an early-stage alkaloid profile that sharply contrasts with the well-documented abundance found in mature seeds and has rarely been reported. We further propose a biosynthetic pathway to explain the presence of the detected benzylisoquinoline and the absence of the undetected bisbenzylisoquinoline alkaloids in this study. These findings present the first comprehensive metabolic atlas of immature lotus seeds, systematically exposing the pronounced chemical divergence from their mature counterparts, and thus lays a metabolomic foundation for dissecting the spatiotemporal mechanisms underlying the nutritional and medicinal value of lotus seeds. Full article
Show Figures

Figure 1

11 pages, 855 KiB  
Article
A Water Solution from the Seeds, Seedlings and Young Plants of the Corn Cockle (Agrostemma githago) Showed Plant-Growth Regulator Efficiency
by Jana Ambrožič-Dolinšek, Vid Golič, Víctor Rouco Saco, Petra Peranić, Veno Jaša Grujić and Terezija Ciringer
Plants 2025, 14(15), 2349; https://doi.org/10.3390/plants14152349 - 30 Jul 2025
Viewed by 237
Abstract
Corn cockle (Agrostemma githago L. (Lychnis githago (L.) Scop.)) is the main ingredient in some plant preparations for biostimulation in agriculture, and it elicits many positive responses. In our study, we attempted to determine if the fresh and dry plant material [...] Read more.
Corn cockle (Agrostemma githago L. (Lychnis githago (L.) Scop.)) is the main ingredient in some plant preparations for biostimulation in agriculture, and it elicits many positive responses. In our study, we attempted to determine if the fresh and dry plant material of A. githago contained auxin-like and cytokinin-like growth regulators (PGRs). Cucumis and mung bean bioassays were used to determine the presence of auxin-like PGRs and Cucumis and Triticum bioassays were used to determine the presence of cytokinin-like PGRs. A water solution derived from the crushed, homogenized and extracted seeds, fresh and dry seedlings, and fresh and dry young plants showed auxin-like activity in both bioassays. The activity in the Cucumis bioassay corresponded to 0.5 to 2 mg L−1 of Indole-3-butyric acid (IBA), and in the mung bean bioassay, the activity corresponded to 0.5 to 4 mg L−1 of IBA. While the same water solutions showed weak or no cytokinin-like activity in the Cucumis cotyledon expansion bioassay, and they showed an activity of approximately 0.5 to 1 mg L−1 of 6-Benzylaminopurine (BAP) in the Triticum bioassay. An LC-MS analysis confirmed the presence of free auxins, low levels of or no auxin analogues, a small amount of free cytokinins and a higher level of their cytokinin analogues in the samples, seeds, dry seedlings and young plants of A. githago, which was likely related to the fine-tuning between the free and analogue forms of the PGRs in the water solutions used in the experiments. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

16 pages, 2015 KiB  
Article
Somatic Embryogenesis and Genetic Transformation of Caragana intermedia
by Ju Tian, Jialei Zhu, Xiaohan Deng, Xu Zhu, Ruigang Wang and Guojing Li
Plants 2025, 14(10), 1545; https://doi.org/10.3390/plants14101545 - 21 May 2025
Viewed by 516
Abstract
Caragana intermedia is a perennial shrub species in the genus Caragana (Fabaceae), demonstrating remarkable stress resistance and adaptability. However, research on its somatic embryogenesis (SE) and genetic transformation techniques remains limited. In this study, we established an SE system by utilizing immature cotyledons [...] Read more.
Caragana intermedia is a perennial shrub species in the genus Caragana (Fabaceae), demonstrating remarkable stress resistance and adaptability. However, research on its somatic embryogenesis (SE) and genetic transformation techniques remains limited. In this study, we established an SE system by utilizing immature cotyledons isolated from young C. intermedia seeds. Our findings demonstrated that the immature cotyledons at 6–7 weeks after flowering (WAF) were the best explants for SE. The optimal embryo induction medium consisted of an MS basal medium supplemented with 5 mg/L α-naphthaleneacetic acid (NAA), 3 mg/L 6-benzylaminopurine (6-BA), 30 g/L sucrose, 7 g/L agar, and 500 mg/L hydrolyzed casein. Cotyledon-stage embryos germinated on a half-strength MS medium, exhibiting a 34.36% germination rate. Based on the SE system, we developed a preliminary genetic transformation system using the RUBY reporter gene, which successfully generated transgenic calli and cotyledon-stage embryos. The establishment of the SE system is expected to shorten breeding cycles, facilitate propagation of superior cultivars, and support large-scale industrial applications in C. intermedia. Furthermore, the stable transformation system provides a platform for molecular breeding and gene function verification. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

15 pages, 10772 KiB  
Article
Stem Cell Factors BAM1 and WOX1 Suppressing Longitudinal Cell Division of Margin Cells Evoked by Low-Concentration Auxin in Young Cotyledon of Arabidopsis
by Yuli Jiang, Jian Liang, Chunyan Wang, Li Tan, Yoji Kawano and Shingo Nagawa
Int. J. Mol. Sci. 2025, 26(10), 4724; https://doi.org/10.3390/ijms26104724 - 15 May 2025
Viewed by 416
Abstract
Highly differentiated tissues and organs play essential biological functions in multicellular organisms. Coordination of organ developmental process with tissue differentiation is necessary to achieve proper development of mature organs, but mechanisms for such coordination are not well understood. We used cotyledon margin cells [...] Read more.
Highly differentiated tissues and organs play essential biological functions in multicellular organisms. Coordination of organ developmental process with tissue differentiation is necessary to achieve proper development of mature organs, but mechanisms for such coordination are not well understood. We used cotyledon margin cells from Arabidopsis plant as a new model system to investigate cell elongation and cell division during organ growth and found that margin cells endured a developmental phase transition from the “elongation” phase to the “elongation and division” phase at the early stage in germinating seedlings. We also discovered that the stem cell factors BARELY ANY MERISTEM 1 (BAM1) and WUSCHEL-related homeobox1 (WOX1) are involved in the regulation of margin cell developmental phase transition. Furthermore, exogenous auxin treatment (1 nanomolar,nM) promotes cell division, especially longitudinal cell division. This promotion of cell division did not occur in bam1 and wox1 mutants. Based on these findings, we hypothesized a new “moderate auxin concentration” model which emphasizes that a moderate auxin concentration is the key to triggering the developmental transition of meristematic cells. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 2125 KiB  
Article
Phytochemical Profiling and Antioxidant Activity of True Leaves and Cotyledons of Adenocaulon himalaicum
by Sang-Yun Lee, Nari Yoon, Neil Patrick Uy, Chung-Ho Choi and Sanghyun Lee
ChemEngineering 2025, 9(2), 31; https://doi.org/10.3390/chemengineering9020031 - 10 Mar 2025
Viewed by 1411
Abstract
Adenocaulon himalaicum is widely distributed across Asia. In its early growth stages, A. himalaicum is traditionally consumed as a food source in Korea. Although previous research has identified the presence of bioactive compounds in A. himalaicum extract, suggesting its potential as a medicinal [...] Read more.
Adenocaulon himalaicum is widely distributed across Asia. In its early growth stages, A. himalaicum is traditionally consumed as a food source in Korea. Although previous research has identified the presence of bioactive compounds in A. himalaicum extract, suggesting its potential as a medicinal resource, the phytochemical profile of A. himalaicum extract has not been extensively determined. This investigation aimed to identify the phytochemicals present in the true leaf and cotyledon of A. himalaicum (TLA and CLA, respectively) and evaluate their radical-scavenging activity. By performing LC-MS/MS and HPLC, varying amounts of isochlorogenic acid A, cryptochlorogenic acid, isochlorogenic acid B, rutin, chlorogenic acid, hyperin, and neochlorogenic acid were detected in the TLA and CLA extracts. Chlorogenic acid (9.002 mg/g DW), isochlorogenic acid A (28.512 mg/g DW), and isochlorogenic acid B (12.223 mg/g DW) were the most abundant in TLA. TLA exhibited higher phytochemical content (49.737 mg/g DW), total phenolic content (45.51 mg tannic acid equivalent/g extract), and total flavonoid content (16.24 mg quercetin equivalent/g extract) than CLA. Moreover, the radical-scavenging activity of TLA was two times higher than that of CLA. The young leaf of A. himalaicum has a rich phytochemical profile and robust antioxidant activity; hence, it has potential as natural antioxidant sources for human health and valuable pharmacognosy raw materials for pharmaceutical and functional food applications. Full article
Show Figures

Figure 1

17 pages, 2768 KiB  
Article
The Antioxidant Profile of Some Species of Microgreens Cultivated on Hemp and Coconut Substrate Under the Action of a Biostimulator Based on Humic Acids
by Alina Elena Marta, Florina Stoica, Ștefănica Ostaci and Carmenica Doina Jităreanu
Horticulturae 2024, 10(12), 1238; https://doi.org/10.3390/horticulturae10121238 - 21 Nov 2024
Cited by 1 | Viewed by 1984
Abstract
Microplants are vegetables, grains and aromatic herbs that are consumed in the stage of young plants, without roots, developed after the germination stage, in the stage of cotyledons and which have a high content of nutrients (antioxidants, vitamins, minerals, fatty acids, lutein, β-carotene, [...] Read more.
Microplants are vegetables, grains and aromatic herbs that are consumed in the stage of young plants, without roots, developed after the germination stage, in the stage of cotyledons and which have a high content of nutrients (antioxidants, vitamins, minerals, fatty acids, lutein, β-carotene, proteins and fibers, etc.), which makes them functional, concentrated foods capable of feeding the world’s ever-growing population. The significant amounts of antioxidants in microgreens have the role of neutralizing free radicals and reducing their harmful impact on human health. The microgreens studied were spinach (Spinacia oleracea) cultivar ‘Lorelay’, mustard (Sinapis alba) cultivar ‘White’ and radish (Raphanus sativus) cultivar ‘Red Rambo’, tested on hemp and coconut substrates and under the influence of the organic biostimulator Biohumussol, based on humic acids. The antioxidant content of the plants was determined by analyzing total carotenoids, lycopene, chlorophyll, β-carotene, polyphenols and flavonoids, as well as the antioxidant activity by ABTS and DPPH methods. The obtained results indicated that the reaction of the plant material depends on the composition of the substrate and the presence of the applied biostimulator. The highest contents of substances with an antioxidant role were obtained from the microgreens on the hemp substrate, especially mustard and radishes, and the biostimulator proved to be compatible with the spinach microgreens. Full article
Show Figures

Figure 1

16 pages, 3588 KiB  
Article
Efficient Plantlet Regeneration from Branches in Mangifera indica L.
by Huijing Zhou, Jinglang Sun, Keyuan Zheng, Xinyuan Zhang, Yuan Yao and Mulan Zhu
Plants 2024, 13(18), 2595; https://doi.org/10.3390/plants13182595 - 17 Sep 2024
Cited by 2 | Viewed by 1873
Abstract
Mango (Mangifera indica L.) is one of the most significant tropical and subtropical fruit species, with high ecological and economic value. However, research on the in vitro culture of mangoes is relatively weak, so establishing an efficient and stable mango plant regeneration [...] Read more.
Mango (Mangifera indica L.) is one of the most significant tropical and subtropical fruit species, with high ecological and economic value. However, research on the in vitro culture of mangoes is relatively weak, so establishing an efficient and stable mango plant regeneration system is of great significance. In this study, a preliminary mango regeneration system was established with Mangifera indica L. cv. Keitt from young branches as the starting explants. The results showed that the optimal plant growth regulator (PGR) formula for direct adventitious shoot induction on the branches was 1 mg/L 6-benzylaminopurine (6-BA) + 0.1 mg/L a-naphthaleneacetic acid (NAA), with an adventitious shoot induction rate of 73.63% and an average of 6.76 adventitious shoots. The optimal basal medium for adventitious shoot induction was wood plant medium (WPM), with an adventitious shoot induction rate of 63.87% and an average of 5.21 adventitious shoots. The optimal culture medium for adventitious shoot elongation was WPM + 1 mg/L 6-BA + 0.5 mg/L NAA, with an adventitious shoot elongation rate of 89.33% and an average length of 5.17 cm. The optimal formula for the induction of mango rooting was Douglas fir cotyledon revised medium (DCR) + 3 mg/L indole-3-butyric acid (IBA), with a maximum rooting rate of 66.13% and an average rooting quantity of 6.43. The genetic fidelity of the in vitro-regenerated plants was evaluated using inter-simple sequence repeat (ISSR) molecular markers. There was no difference between the in vitro-regenerated plants and the parent plant. This study provides an efficient and stable propagation system for Mangifera indica L., laying the foundation for its rapid propagation and genetic improvement. Full article
Show Figures

Figure 1

9 pages, 1135 KiB  
Article
Response of Seedling Growth Characteristics to Seed Size and Cotyledon Damage in Quercus wutaishanica
by Yonghong Luo, Jinfeng Zhang, Xingfu Yan, Min Zhang, Shuhua Wei, Hui Yang, Yan Shen, Jinbao Zhang and Jiming Cheng
Forests 2023, 14(9), 1905; https://doi.org/10.3390/f14091905 - 19 Sep 2023
Cited by 4 | Viewed by 2242
Abstract
The successful establishment of seedlings is very important for plant regeneration, but it is vulnerable to many factors at this stage. Cotyledon damage will directly affect the health of seedlings, thus affecting the regeneration of the plant population. However, little is known about [...] Read more.
The successful establishment of seedlings is very important for plant regeneration, but it is vulnerable to many factors at this stage. Cotyledon damage will directly affect the health of seedlings, thus affecting the regeneration of the plant population. However, little is known about the effects of different cotyledon loss degrees of large and small seeds on seedling growth. We investigated the effects of 1/4 (light excision), 1/2 (moderate excision), and complete excision of cotyledons (heavy excision) on the growth characteristics of seedlings germinating from different sizes of seeds. The results showed that (1) shoot height, basal stem diameter, number of leaves, leaf area per plant, specific leaf area, and biomass were significantly higher in large-seeded seedlings than in small-seeded seedlings; (2) slight cotyledon excision had no effect on the biomass of large-seeded seedlings but significantly reduced the biomass of small-seeded seedlings. Our study highlights that large-seeded seedlings are more tolerant than small-seeded seedlings in the early seedling recruitment, suggesting that large-seeded seedlings have a strong fitness for recruitment in young populations of Q. wutaishanica. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

13 pages, 4177 KiB  
Article
Production of Tetraploid Plants from Cotyledons of Diploid Melia volkensii Gürke
by Constantin Dushimimana, Katrijn Van Laere, Titus Magomere, Guy Smagghe and Stefaan P. O. Werbrouck
Horticulturae 2023, 9(7), 791; https://doi.org/10.3390/horticulturae9070791 - 11 Jul 2023
Cited by 4 | Viewed by 3407
Abstract
Polyploidy was induced in Melia volkensii (Mukau), a valuable native tree from the semi-arid regions of East Africa. Cotyledons of diploid M. volkensii (2n = 2x = 28) were treated with oryzalin for 0 (control), 1, 2, or 3 h with or without [...] Read more.
Polyploidy was induced in Melia volkensii (Mukau), a valuable native tree from the semi-arid regions of East Africa. Cotyledons of diploid M. volkensii (2n = 2x = 28) were treated with oryzalin for 0 (control), 1, 2, or 3 h with or without pretreatment with 1.1 µM thidiazuron. Cotyledons treated with 10 mg·L−1 oryzalin for three hours yielded 40% tetraploids. Pretreatment of cotyledons with thidiazuron for 18 days followed by treatment with oryzalin increased tetraploid plant production to 52.5%, but this also yielded more mixoploids. Compared to diploid M. volkensii, the tetraploid in vitro and young potted plants were compacter, with thicker stems, wider leaves, and a low density of longer and wider stomata. In the coming years, tetraploid M. volkensii plants will be observed in field trials and serve as a basis for further breeding efforts. Full article
(This article belongs to the Special Issue A New Decade in the Propagation of Horticultural and Medicinal Plants)
Show Figures

Figure 1

18 pages, 6684 KiB  
Article
Ectopic Expression of BcCUC2 Involved in Sculpting the Leaf Margin Serration in Arabidopsis thaliana
by Wanqi Li, Tongtong Wang, Yu Ma, Nan Wang, Wenjing Wang, Jun Tang, Changwei Zhang, Xilin Hou and Hualan Hou
Genes 2023, 14(6), 1272; https://doi.org/10.3390/genes14061272 - 15 Jun 2023
Cited by 2 | Viewed by 1952
Abstract
Leaf margin serration is a morphological characteristic in plants. The CUC2 (CUP-SHAPED COTYLEDON 2) gene plays an important role in the outgrowth of leaf teeth and enhances leaf serration via suppression of growth in the sinus. In this study, we isolated [...] Read more.
Leaf margin serration is a morphological characteristic in plants. The CUC2 (CUP-SHAPED COTYLEDON 2) gene plays an important role in the outgrowth of leaf teeth and enhances leaf serration via suppression of growth in the sinus. In this study, we isolated the BcCUC2 gene from Pak-choi (Brassica rapa ssp. chinensis), which contains a 1104 bp coding sequence, encoding 367 amino acid residues. Multiple sequence alignment exhibited that the BcCUC2 gene has a typical conserved NAC domain, and phylogenetic relationship analysis showed that the BcCUC2 protein has high identity with Cruciferae plants (Brassica oleracea, Arabidopsis thaliana, and Cardamine hirsuta). The tissue-specific expression analysis displayed that the BcCUC2 gene has relatively high transcript abundance in floral organs. Meanwhile, the expression profile of BcCUC2 was relatively higher in the ‘082’ lines with serrate leaf margins than the ‘001’ lines with smooth leaf margins in young leaves, roots, and hypocotyls. In addition, the transcript level of BcCUC2 was up-regulated by IAA and GA3 treatment, especially at 1–3 h. The subcellular localization assay demonstrated that BcCUC2 was a nuclear-target protein. Furthermore, leaf serration occurred, and the number of the inflorescence stem was increased in the transgenic Arabidopsis thaliana plants’ overexpressed BcCUC2 gene. These data illustrated that BcCUC2 is involved in the development of leaf margin serration, lateral branches, and floral organs, contributing to further uncovering and perfecting the regulation mechanism of leaf serration in Pak-choi. Full article
(This article belongs to the Special Issue Genetics and Breeding of Horticulture Crops)
Show Figures

Graphical abstract

11 pages, 1045 KiB  
Article
Neurotoxin (N-Oxalyl-L-α,β-Diamino Propionic Acid) Content in Different Plant Parts of Grass Pea (Lathyrus sativus L.) Spanning Seedling to Maturity Stage: Does It Increase over Time?
by Surendra Barpete, Priyanka Gupta, Debjyoti Sen Gupta, Jitendra Kumar, Arpan Bhowmik and Shiv Kumar
Molecules 2022, 27(12), 3683; https://doi.org/10.3390/molecules27123683 - 8 Jun 2022
Cited by 5 | Viewed by 2261
Abstract
ODAP (N-oxalyl-L-2,3-diaminopropionic acid) is present in the seeds of grass pea. In this study, variation of total ODAP accumulation in leaves throughout the crop growth starting from 40 days after sowing to maturity, and the distribution pattern of ODAP in different plant parts [...] Read more.
ODAP (N-oxalyl-L-2,3-diaminopropionic acid) is present in the seeds of grass pea. In this study, variation of total ODAP accumulation in leaves throughout the crop growth starting from 40 days after sowing to maturity, and the distribution pattern of ODAP in different plant parts including the seeds at the mature stage was analyzed. Five grass pea accessions were evaluated for two subsequent growing seasons in one location of ICARDA, Aleppo (Syria). The results found that the rate of accumulation of total ODAP varied during plant development. Increased rates of synthesis were noticed in young leaves of grass pea. The highest total ODAP content in leaves was noted in the early growth stage (40–50 days after sowing). Mean total ODAP content in leaves ranged from 0.17 to 0.96 percent during 2010–2011 and from 0.19 to 1.28 percent during 2011–2012. During maturity, the total ODAP content was lowest in the seeds than in leaves, stems, pod cover, seed coat, and cotyledons. The ranges of total ODAP content were 0.13 (seed)–0.34 (stem), 0.20 (seed)–1.01 (leaf), 0.22 (seed)–0.62 (leaf), 0.21 (seed)–0.66 (leaf), and 0.21 (seed)–0.78 (leaf) percent in B387, B222, B390, Bio-520, and B587 accessions, respectively, during maturity. The results indicated that the rate of accumulation and synthesis of total ODAP varied during the plant lifespan. The lowest total ODAP content of leaves was observed after 130 days of sowing. The lower total ODAP content after the early vegetative stage of grass pea plants makes them suitable as a feed. Full article
(This article belongs to the Special Issue Food Bioactive Compounds: Chemical Challenges and Opportunities)
Show Figures

Figure 1

13 pages, 45537 KiB  
Article
Cotton Seed Priming with Brassinosteroid Promotes Germination and Seedling Growth
by Shyama Prashad Chakma, Stephen Mushimwa Chileshe, Richard Thomas and Priti Krishna
Agronomy 2021, 11(3), 566; https://doi.org/10.3390/agronomy11030566 - 17 Mar 2021
Cited by 24 | Viewed by 6020
Abstract
Cotton (Gossypium hirsutum) is the largest fibre crop globally and an important oilseed crop. Rising temperatures and declining water supplies, which are also impacting soil salinity, threaten cotton plant productivity. Germination, emergence and young seedling stages in cotton are highly sensitive [...] Read more.
Cotton (Gossypium hirsutum) is the largest fibre crop globally and an important oilseed crop. Rising temperatures and declining water supplies, which are also impacting soil salinity, threaten cotton plant productivity. Germination, emergence and young seedling stages in cotton are highly sensitive to salinity and heat stresses. Brassinosteroids (BRs) are plant steroid hormones that are essential for proper plant growth and development and also promote tolerance to a range of environmental stresses. Cotton seeds were primed with BR (24-epibrassinolide) alone or in combination with other hormones (abscisic acid, auxin and gibberellic acid) and tested for germination and early seedling growth. BR promoted germination under no stress as well as under salinity and heat stress conditions, while other hormones were ineffective under stress conditions. BR also promoted cotyledon opening and the development of lateral roots in germinated seedlings. The ability of BR to positively impact seedling growth across different stress conditions suggests that priming cotton seeds with BR may help in early and successful establishment of seedlings, which may benefit the plant through its lifecycle. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

17 pages, 3819 KiB  
Article
Bioconversion of Callus-Produced Precursors to Silymarin Derivatives in Silybum marianum Leaves for the Production of Bioactive Compounds
by Dina Gad, Hamed El-Shora, Daniele Fraternale, Elisa Maricchiolo, Andrea Pompa and Karl-Josef Dietz
Int. J. Mol. Sci. 2021, 22(4), 2149; https://doi.org/10.3390/ijms22042149 - 21 Feb 2021
Cited by 5 | Viewed by 3817
Abstract
The present study aimed to investigate the enzymatic potential of Silybum marianum leaves to bioconvert phenolic acids produced in S. marianum callus into silymarin derivatives as chemopreventive agent. Here we demonstrate that despite the fact that leaves of S. marianum did not accumulate [...] Read more.
The present study aimed to investigate the enzymatic potential of Silybum marianum leaves to bioconvert phenolic acids produced in S. marianum callus into silymarin derivatives as chemopreventive agent. Here we demonstrate that despite the fact that leaves of S. marianum did not accumulate silymarin themselves, expanding leaves had the full capacity to convert di-caffeoylquinic acid to silymarin complex. This was proven by HPLC separations coupled with electrospray ionization mass spectrometry (ESI-MS) analysis. Soaking the leaf discs with S. marianum callus extract for different times revealed that silymarin derivatives had been formed at high yield after 16 h. Bioconverted products displayed the same retention time and the same mass spectra (MS or MS/MS) as standard silymarin. Bioconversion was achieved only when using leaves of a specific age, as both very young and old leaves failed to produce silymarin from callus extract. Only medium leaves had the metabolic capacity to convert callus components into silymarin. The results revealed higher activities of enzymes of the phenylpropanoid pathway in medium leaves than in young and old leaves. It is concluded that cotyledon-derived callus efficiently produces compounds that can be bio-converted to flavonolignans in leaves tissue of S. marianum. Full article
Show Figures

Figure 1

10 pages, 1763 KiB  
Article
Assessment of Andean lupin (Lupinus mutabilis) Genotypes for Improved Frost Tolerance
by Danut Petru Simioniuc, Violeta Simioniuc, Denis Topa, Merlijn van den Berg, Udo Prins, Penelope J. Bebeli and Iulian Gabur
Agriculture 2021, 11(2), 155; https://doi.org/10.3390/agriculture11020155 - 13 Feb 2021
Cited by 10 | Viewed by 5209
Abstract
Spring frost poses a challenge for all major crops and, in the case of Lupinus mutabilis (Andean lupin) can cause severe damage or even total loss of the crop. Within the LIBBIO project consortium, we conducted a series of experiments in order to [...] Read more.
Spring frost poses a challenge for all major crops and, in the case of Lupinus mutabilis (Andean lupin) can cause severe damage or even total loss of the crop. Within the LIBBIO project consortium, we conducted a series of experiments in order to develop a suitable protocol for screening lupin germplasm under frost-simulation conditions. Four lupin accessions, one Lupinus albus and three Andean lupins were used in the experiments (L. albus Mihai, L. mutabilis LIB 220, LIB 221, LIB 222). Seedlings at four developmental stages were challenged with five different levels of ‘frost’ stress from low (−2 °C) to high (−10 °C). Notably, young seedling (cotyledons just breaking through the soil surface) showed little evidence of frost damage for temperatures down to −6 °C. At −8 °C, however, damage was evident, suggesting a cold tolerance threshold occurs at this temperature. Interestingly, for later developmental stages, when the first and second leaves were visible, notable differences were observed starting at −6 °C. The results indicate that the plant growth stage is an important parameter when screening for frost tolerance in germplasm. Overall, by identifying Andean lupin genotypes adapted to high abiotic stress factors, farmers will be able to use it as a reference crop with potentially a commercial interest from the food sector, or cosmetics, and biofuel industries. Full article
Show Figures

Figure 1

15 pages, 5013 KiB  
Article
The CBL-Interacting Protein Kinase NtCIPK23 Positively Regulates Seed Germination and Early Seedling Development in Tobacco (Nicotiana tabacum L.)
by Sujuan Shi, Lulu An, Jingjing Mao, Oluwaseun Olayemi Aluko, Zia Ullah, Fangzheng Xu, Guanshan Liu, Haobao Liu and Qian Wang
Plants 2021, 10(2), 323; https://doi.org/10.3390/plants10020323 - 8 Feb 2021
Cited by 11 | Viewed by 3062
Abstract
CBL-interacting protein kinase (CIPK) family is a unique group of serine/threonine protein kinase family identified in plants. Among this family, AtCIPK23 and its homologs in some plants are taken as a notable group for their importance in ions transport and stress responses. However, [...] Read more.
CBL-interacting protein kinase (CIPK) family is a unique group of serine/threonine protein kinase family identified in plants. Among this family, AtCIPK23 and its homologs in some plants are taken as a notable group for their importance in ions transport and stress responses. However, there are limited reports on their roles in seedling growth and development, especially in Solanaceae plants. In this study, NtCIPK23, a homolog of AtCIPK23 was cloned from Nicotiana tabacum. Expression analysis showed that NtCIPK23 is mainly expressed in the radicle, hypocotyl, and cotyledons of young tobacco seedlings. The transcriptional level of NtCIPK23 changes rapidly and spatiotemporally during seed germination and early seedling growth. To study the biological function of NtCIPK23 at these stages, the overexpressing and CRISPR/Cas9-mediated knock-out (ntcipk23) tobacco lines were generated. Phenotype analysis indicated that knock-out of NtCIPK23 significantly delays seed germination and the appearance of green cotyledon of young tobacco seedling. Overexpression of NtCIPK23 promotes cotyledon expansion and hypocotyl elongation of young tobacco seedlings. The expression of NtCIPK23 in hypocotyl is strongly upregulated by darkness and inhibited under light, suggesting that a regulatory mechanism of light might underlie. Consistently, a more obvious difference in hypocotyl length among different tobacco materials was observed in the dark, compared to that under the light, indicating that the upregulation of NtCIPK23 contributes greatly to the hypocotyl elongation. Taken together, NtCIPK23 not only enhances tobacco seed germination, but also accelerate early seedling growth by promoting cotyledon greening rate, cotyledon expansion and hypocotyl elongation of young tobacco seedlings. Full article
(This article belongs to the Special Issue Plant Development)
Show Figures

Figure 1

Back to TopTop