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Abstract: Leaf margin serration is a morphological characteristic in plants. The CUC2 (CUP-SHAPED
COTYLEDON 2) gene plays an important role in the outgrowth of leaf teeth and enhances leaf
serration via suppression of growth in the sinus. In this study, we isolated the BcCUC2 gene from
Pak-choi (Brassica rapa ssp. chinensis), which contains a 1104 bp coding sequence, encoding 367 amino
acid residues. Multiple sequence alignment exhibited that the BcCUC2 gene has a typical conserved
NAC domain, and phylogenetic relationship analysis showed that the BcCUC2 protein has high
identity with Cruciferae plants (Brassica oleracea, Arabidopsis thaliana, and Cardamine hirsuta). The
tissue-specific expression analysis displayed that the BcCUC2 gene has relatively high transcript
abundance in floral organs. Meanwhile, the expression profile of BcCUC2 was relatively higher in the
‘082’ lines with serrate leaf margins than the ‘001’ lines with smooth leaf margins in young leaves,
roots, and hypocotyls. In addition, the transcript level of BcCUC2 was up-regulated by IAA and GA3
treatment, especially at 1–3 h. The subcellular localization assay demonstrated that BcCUC2 was a
nuclear-target protein. Furthermore, leaf serration occurred, and the number of the inflorescence
stem was increased in the transgenic Arabidopsis thaliana plants’ overexpressed BcCUC2 gene. These
data illustrated that BcCUC2 is involved in the development of leaf margin serration, lateral branches,
and floral organs, contributing to further uncovering and perfecting the regulation mechanism of leaf
serration in Pak-choi.
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1. Introduction

Leaves are important vegetative organs in plants, and their shape and size directly
affect the photosynthesis, transpiration, stress response, and ornamental value of plants.
Leaf morphogenesis starts from the flanks of a small group of totipotent stem cells, the
shoot apical meristem (SAM) [1]. The development of leaves can be divided into three
main stages: (1) the initiation of leaf primordium; (2) the establishment of primary leaf
shape, the leaf primordium continuing to grow and differentiate, and the production of
secondary structures such as serrate leaves, lobed leaves, and leaflets; (3) the formation of
secondary leaf morphology, producing leaf margins, stomata, trichome, and eventually
forming mature leaves [2,3].

Plant leaves can be defined as entire leaves (smooth margins), serrate leaves, and
lobed leaves according to the margins of the leaf and leaflet blades [4]. Leaf morphology is
complex and varied in diverse species, which mainly depends on the regulation of genetic,
developmental, and environmental factors [5]. So far, a number of leaf margin regulators
have been identified with crucial roles in elaborating leaf shape. The KNAT1, KNAT2,
and SHOOT MERISTEMLESS (STM) genes belong to KNOTTED-like homeodomain class I
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(KNOX1) transcription factors, which are involved in the formation and maintenance of the
SAM. The expression level of KNOX1 genes is down-regulated during early leaf initiation,
and the overexpression of KNAT1 and KNAT2 leads to occasional ectopic shoots on the
adaxial surface of leaves, lobed leaves, and ectopic stipules [6–10]. In Arabidopsis thaliana
(A. thaliana) (L.) Heynh., the loss of function of STM is associated with the evolution of the
unlobed leaf form; thereby, STM is essential for lobe formation [11].

CUP-SHAPED COTYLEDON (CUC), members of the NAC transcription factors (such
as NAM in Petunia hybrida and ATAF1/2 and CUC2 in A. thaliana), which contain a con-
served NAC domain at the N-terminus and a highly variable domain in the C-terminal
region [12], act as major players in shoot apical meristem (SAM) construction, organ sep-
aration, leaf development, and the regulation of the axillary meristem initiation in leaf
axils [4,13–17]. In Arabidopsis, the CUC subfamily contains three members, CUC1, CUC2,
and CUC3, which act redundantly to regulate cotyledons’ separation, organ boundary
specification, and embryonic shoot meristem formation, in part [13,16,18]. The CUC1
and CUC2 genes are necessary for shoot meristem initiation via promoting the transcript
level of STM [19]. The cuc1 and cuc2 single mutants display few morphological pheno-
types due to their functional redundancy, while the cuc1cuc2 mutant exhibits complete
absence of shoot meristem and forms dramatically fused cotyledons [13,18,20]. Mutation of
the CUC homologs, the CUPULIFORMIS, NO APICAL MERISTEM (NAM), and GOBLET
genes in snapdragon, petunia, and tomato, respectively, results in similar development
defects [21–24], illustrating that these genes share an evolutionarily conserved function in
organ separation and SAM development. CUC2 plays an important role in the initiation of
leaf serration during the early phase and has a synergistic interaction with CUC3 in the
maintenance of leaf serration during the later stage [15]. In addition, MIR164A encodes a
microRNA, which is involved in the regulation of leaf margin serration through cooperating
with CUC2 in Arabidopsis. The mir164a mutants display significant deep serrate leaf margins
compared with the wild type in Arabidopsis [4]. The CUC2 gene is one of the target genes of
miR164, and the balance between CUC2 and miR164a has a prominent role in the extent of
leaf serrations. In Solanum lycopersicum, loss of GOBLET (GOB), the homologous gene of
Arabidopsis CUC2, results in reduced complexity of compound leaves and fruit shape [24],
suggesting that the CUC2 gene has diverse functions in different species and plays a crucial
role in leaf development.

Pak-choi (Brassica rapa ssp. chinensis) belongs to Brassicaceae crops, is an important
leafy vegetable, and is widely cultivated in the middle and lower regions of the Yangtze
River. Leaf morphology, as an important agronomic trait, has a direct effect on its yield and
ornamental value. In this study, we isolated a CUC2 gene encoding 367 amino acids from
Pak-choi, which has three highly conserved CUC2-specific motifs. The expression patterns
and biological function of BcCUC2 were systematically investigated.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

Pak-choi cultivar ‘001’ with entire leaf margin and ‘082’ with serrate leaf margin were
used in this study. Seeds were dispersed on wet filter paper for germination and grown in
pots containing humus soil/vermiculite (2:1) mixture in plant artificial climate chamber
controlled at 23/17 ◦C, 16/8 h for light/dark cycle. The illumination intensity was set to
12,000 xl, and the relative humidity was 65–75%. For different tissues, the samples were
harvested at seedling, rosette, flowering, and podding stages. Three biological replicates
were used for each sample.

A. thaliana wild type (Columbia-0) was used in this study and grown in illumination in-
cubator under the same condition. Four-week-old tobacco (Nicotiana benthamiana) seedlings
were used for subcellular localization assay.
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2.2. IAA and GA3 Treatments

Seedlings of cultivar ‘001’ with six fully expanded leaves were foliar sprayed with
100 µM GA3 and IAA. The leaves were collected at 1 h, 3 h, 6 h, 12 h, 24 h, and 48 h
after treatment (0 h was used as a control) and frozen rapidly in liquid nitrogen, followed
by storage at −70 ◦C in refrigerators for RNA extraction. Three biological repeats were
implemented for each sample.

2.3. Cloning and Sequence Analysis

Total RNA was extracted from leaves using RNAprep pure Plant Kit (TIANGEN, Beijing,
China), and the first strands of cDNA were synthesized via reverse transcription using Prime-
Script™ II 1st Strand cDNA Synthesis Kit (Takara, Dalian, China). The coding sequence (CDS)
of BcCUC2 was amplified by gene-specific primers (see Table A1) based on the sequence of
Bra022685 using homology cloning referred to in our previous report [25]. The resulting frag-
ment was cloned into pEASYBlunt Simple Vector (Transgene, Beijing, China) and sequenced
by Genscript Company (Nanjing, China). The physicochemical characteristics of BcCUC2 were
predicted using Expasy proteomics server (https://web.expasy.org/protparam/, accessed
on 10 July 2020). The secondary structure of BcCUC2 was predicted using PSIPRED 4.0
(http://bioinf.cs.ucl.ac.uk/psipred/, accessed on 10 July 2020).

2.4. Phylogenetic Tree Analysis

The protein sequences of A. thaliana were obtained from TAIR database (http://
arabidopsis.org/index.jsp, accessed on 15 July 2020). The protein sequences of Brassica
oleracea, Brassica hirsuta, Solanum lycopersicum, Oryza sativa, Zea mays, and Vitis vinifera were
downloaded from NCBI database (https://www.ncbi.nlm.nih.gov/, accessed on 15 July
2020). Multiple sequence alignment of CUC genes in different species was performed using
ClustalW software. The phylogenetic tree was constructed by MEGA 7.0 using neighbor-
joining (NJ) method with the bootstrap of 1000 replications. All protein sequences used in
this study are listed in Table A2. The conserved motifs distribution was analyzed by the
MEME program, and the number of motifs was set as 10 (Figure 1B).

2.5. Subcellular Localization Assay

The full-length CDS of BcCUC2 without stop codon was subcloned into linear pRI101-
GFP vector with NdeI and BamHI restriction enzyme to generate the construct 35S:BcCUC2-
GFP. For transient expression assay, empty vector (35S:GFP) and recombinant construct
were introduced into Agrobacterium tumefaciens GV3101 and injected into tobacco foliar
epidermis, respectively. After dark culturing for 24 h, the seedlings were moved to normal
growth conditions for 24–36 h, and then fluorescent images were photographed using a
confocal laser scanning microscope (Zeiss, LSM780, Jena, Germany).

2.6. Ectopic Expression in Arabidopsis

The coding sequence of BcCUC2 was inserted into the pCAMBIA1301 vector to pro-
duce the construct 35S:BcCUC2-GUS; then, the recombinant construct was transformed into
Arabidopsis using the floral dipping method via Agrobacterium-mediated transformation [26].
In brief, the 35S:BcCUC2-GUS plasmids were transferred into A. tumefaciens GV3101 and
agroinfiltrated into the Arabidopsis flowers for 45–60 s, cultivated in dark conditions for
2 d, and then grown in plant artificial climate chamber. To obtain the positive overex-
pression lines, seeds of Arabidopsis transgenic plants were surface sterilized and sown on
half-strength Murashige and Skoog (1/2 MS) tissue culture plates containing 30 mg/L
of hygromycin. The resistant seedlings were further testified using gene-specific primers
amplification and GUS staining. Finally, 20 plants for each T3 positive transgenic line were
cultivated and used for phenotype analysis.

https://web.expasy.org/protparam/
http://bioinf.cs.ucl.ac.uk/psipred/
http://arabidopsis.org/index.jsp
http://arabidopsis.org/index.jsp
https://www.ncbi.nlm.nih.gov/
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Figure 1. Alignment and conserved motif of plant CUC protein sequences. (A) Multiple sequence
alignment of BcCUC2 with other CUC proteins. (B) Conserved motif analysis of CUC proteins.

2.7. Quantitative Real-Time PCR

Total RNAs were extracted using RNAprep pure Plant Kit (TIANGEN, Beijing, China)
according to the operation manual, and cDNA was synthetized with PrimeScript™RT
reagent Kit with gDNA Eraser (Perfect Real Time) (Takara, Dalian, China). qRT-PCR was
performed with ABI StepOnePlus™ Real-Time PCR System (Applied Biosystems, Foster



Genes 2023, 14, 1272 5 of 18

City, CA, USA) using TransStart Tip Green qPCR SuperMix (TransGen, Beijing, China). The
PCR procedure was carried out with the following parameters: 94 ◦C for 30 s and 40 cycles
of 94 ◦C for 5 s, 60 ◦C for 15 s, 72 ◦C for 10 s. The Actin genes of Pak-choi and Arabidopsis
were used as internal control, and the relative expression levels were calculated utilizing
the 2−∆∆Ct method [27]. All primers used in this study are listed in Table A1.

3. Results
3.1. Cloning and Characteristic Analysis of BcCUC2

The full-length fragment of the BcCUC2 gene was amplified from Pak-choi cultivar
‘001’ using primer pair BcCUC2-F and BcCUC2-R. The BcCUC2 protein is an unstable and
hydrophilic protein (GRAVY = −0.567), encoding 367 amino acid residues; the theoretical
isoelectric point (pI) is 8.47, and the molecular weight is 40.97 KDa via Expasy online
prediction. The BcCUC2 protein has a typical conserved NAC domain at the N-terminal
(18–144 amino acid sites) through conserved domain search analysis in NCBI, and it belongs
to the NAC family of plant-specific transcription factors. Meanwhile, multiple sequence
alignment analysis revealed that the CUC protein sequence of different species shares a
highly conserved NAC domain at the N-terminal, while the C-terminal is a transcriptional
activation region with abundant variation, reflecting the diversity of species, which is
also a general structural feature of NAC transcription factors (Figure 1A). Furthermore,
multiple sequence alignment implied that the BcCUC2 protein shares 38.61% and 48.5%
identity with OsNAM from rice and SlNAM from tomato, while sharing 81.38% and 74.73%
identity with AtCUC2 from Arabidopsis and ChCUC2 from Cardamine hirsuta, suggesting the
conservation of Cruciferae species in evolution. Meanwhile, the MEME analysis indicated
that motifs 1/2/3/6 were extremely conserved sequences in all species, while motifs 7/9/10
were CUC2-specific sequences of Cruciferae plants (Figure 1B). Additionally, the secondary
structure analysis showed that the BcCUC2 protein was mainly composed of α helices,
random coils, and extended strands (Figure A1).

3.2. Phylogenetic Tree Analysis of BcCUC2

To explore the phylogenetic relationship of CUC genes, an unrooted phylogenetic tree
was constructed using MEGA 7.0 software with the neighbor-joining (NJ) method. As
shown in the phylogenetic tree (Figure 2), the CUC genes were firstly divided into two
clades, the NAM/CUC1/CUC2 clade and the CUC3 clade. Meanwhile, the CUC genes
from dicots (A. thaliana, C. hirsuta, S. lycopersicum, V. vinifera, B. oleracea, and Pak-choi)
were clustered together and separated from monocots (O. sativa and Z. mays) into two
clades, and the dicot–monocot split occurred 150 million years ago (Mya) [28]. Furthermore,
BcCUC2 has a higher similarity with the B. oleracea CUC2 gene (Brassica), followed by the
A. thaliana and C. hirsuta CUC2 gene (Cruciferae), and Brassica rapa diverged from A. thaliana
and B. oleracea at 20 Mya and 8 Mya, respectively [29,30]. The result indicated that the
molecular evolutionary relationship of the CUC2 protein between Pak-choi and seven other
species is basically consistent with the genetic relationship.

3.3. Expression Pattern Analysis of BcCUC2 in Pak-choi

The NAM/CUC3 subfamily plays an important role in the formation of shoot meris-
tem and boundary, leaf margin serration, compound leaf, and axillary meristem (lateral
branch) [4,13–15]. To mirror the spatiotemporal expression patterns of BcCUC2 in Pak-choi,
quantitative RT-PCR analysis was carried out. As shown in Figure 3, BcCUC2 was expressed
relatively higher in petioles at the seedling stage, in stems and roots at the rosette stage,
and in floral organs at the flowering and podding stages, while being weakly expressed in
leaves and hypocotyls in cultivar ‘001’ with entire leaf margins.

In addition, to investigate the function of BcCUC2 in leaf morphology, we comprehen-
sively examined the transcript levels of the BcCUC2 gene in cultivar ‘082’ with a serrate
leaf margin. The result indicated that BcCUC2 has higher expression in leaves, roots, and
hypocotyls at the seedling stage, stems at the rosette stage, and pods and floral organs
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at the flowering and podding stages. The transcript levels of BcCUC2 were significantly
higher in the young leaves of cultivar ‘082’ than in cultivar ‘001’, while being decreased
in mature leaves, suggesting a possibility that BcCUC2 has a role in the early steps of leaf
serration. Therefore, we inferred that BcCUC2 may participate in leaf morphogenesis and
flower development.
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3.4. Expression Analysis of BcCUC2 Gene under Hormone Treatment

Several studies have shown that auxin and gibberellin have an important role in the
regulation of leaf shape development [31–33]. To dissect the response of BcCUC2 to auxin
and gibberellin, quantitative expression analysis was performed for the BcCUC2 gene under
IAA and GA3 treatment. As shown in Figure 4, the BcCUC2 gene was highly expressed
under exogenous IAA and GA3 treatment at the initial stage and peaked at the 3 h time
point, demonstrating that the BcCUC2 gene may be regulated by IAA and GA3 through the
means of promotion.

3.5. Subcellular Localization Analysis of BcCUC2

To confirm whether the BcCUC2 gene, as a putative transcription factor, is localized in
the nucleus, the 35S:BcCUC2-GFP fusion protein was constructed and used for transient
transformation in Nicotiana benthamiana using Agrobacterium tumefaciens-mediated transfec-
tion methodology. The laser confocal scanning microscope images of tobacco epidermal
cells showed that the green fluorescence of the 35S:BcCUC2-GFP fusion protein was mainly
distributed in the cell nucleus, while the empty vector (35S:GFP protein, negative control)
was expressed in the whole cell, illustrating that BcCUC2 is a nuclear-localized protein
(Figure 5).

3.6. Ectopic Expression of BcCUC2 Caused Leaf Margin Serration and Increased Lateral Branches
in Arabidopsis

In order to explore the potential function of BcCUC2, we first transformed the Bc-
CUC2 gene into Arabidopsis. The positive transgenic plants were authenticated by PCR
amplification using specific primers and GUS staining, and the qRT-PCR was used to check
the gene expression level for further verification (Figure A2). Finally, thirteen transgenic
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lines (termed as OE1-OE13) were obtained, and four lines (OE5, OE6, OE9, OE11) with
relatively higher expression levels of BcCUC2 were selected for further research (Figure 6B).
We observed that leaf margins were modified when the BcCUC2 gene was overexpressed
in Arabidopsis. The phenotype of leaf margin serration was significantly presented in trans-
genic Arabidopsis plants expressing the BcCUC2 gene, which were clearly distinct from the
leaves of wild-type Arabidopsis (Figure 6C). In addition, the ectopic expression lines with the
BcCUC2 gene displayed a significant increase in the number of inflorescence stems, flowers,
and siliques in comparison with the wild type (Figure 6D). These results demonstrated that
BcCUC2 plays critical roles in the formation of leaf margin serration and the development
of flower and lateral branches, which is consistent with the high expression abundance in
stem and floral organs.
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stage Pak-choi plants (cultivar ‘001’) were subjected to IAA and GA3 treatments over a continuous
time course (0, 1, 3, 6, 12, 24, 48 h). The transcript abundance of BcCUC2 at 0 h was used as a control.
Statistical significance (ANOVA) is designated by * p < 0.05, ** p < 0.01.
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4. Discussion

Previous studies have shown that the serrate morphology of deep-lobed leaf blades
is conducive to heat dissipation and defense against high-temperature burns, thereby
improving the survival probability of plants [34]. The hydraulic efficiency of the deep-lobed
leaves is high, which enhances their adaptability in arid environments [35]. Meanwhile,
deep-lobed morphology makes the leaves have a larger specific leaf area in space and thus
has stronger competition for light resources and higher photosynthesis efficiency than
entire leaves [36]. In addition to its adaptive ability in diverse conditions, the degree of
dissection of the leaf margins may add to the ornamental value of leaves in different species.
The functional analysis of genes associated with leaf serration development contributes
to improving the leaf margin traits using biotechnological methods. Leaf shape is a major
agronomic trait, and leaf margins can be lobed, serrate, or entire in plants. Pak-choi, as an
economically leafy vegetable, has important edible value and is widely cultivated in Asia.
However, the candidate genes and molecular mechanism of serrate leaf margins remain to
be fully elucidated.

The NAM/CUC subfamily, including CUC1, CUC2, and CUC3, belongs to the NAC
(NAM, ATAF1/2, and CUC) transcription factors family, playing a central and redundant
role in plant organ development and organ boundary formation, e.g., in floral organs
(gynoecium and ovules), leaf serration, and primary and axillary shoots (reviewed in [37]).
So far, CUC genes have been widely studied in several species. For example, in Arabidopsis,
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CUC1 and CUC2 are involved in the formation of carpel margin meristem by controlling
shoot meristem activity [38] and regulating carpel margin development through interacting
with SPATULA (SPT) [39], and CUC3 has significant roles in regulating organ boundary
formation and postembryonic shoot meristem [16]. In addition, CUC2 participates in
ovule primordia formation via direct interaction with the DELLA protein GAI [33]. The
balance between miR164a and CUC2 is responsible for the extent of leaf serrations [4].
In strawberry, the miR164-CUC2 regulatory module plays conserved and novel roles in
specifying leaf and floral organ morphology [40]. In tomato, the GOBLET (GOB) gene,
homologous to the CUC2 gene, plays important roles in regulating fruit shape and the
complexity of compound leaves [24]. In Liriodendron chinense, the LcCUC2-like (LcCUC2L)
gene, homologous to AtCUC2 in sequence, has an important role in controlling cotyledon
development and rosette leaf number [32]. According to the above reports, the CUC2 gene
has prominent roles in organ boundary formation and organ number.

The functional importance and relationship of the CUC2 gene in Pak-choi, however, is
poorly understood. Here, we performed systematic analysis of the characterization and
function of BcCUC2 using bioinformatics tools, real-time PCR, and ectopic expression
in Arabidopsis. The phylogenetic tree displayed that the BcCUC2 gene was clustered
into the NAM/CUC1/CUC2 clade and close to the B. oleracea BoCUC2 and A. thaliana
AtCUC2, which all belong to Cruciferae, consistent with their evolutionary history. The
tissue-specific expression analysis showed that BcCUC2 has relatively higher transcript
levels in stem and floral organs and differential expression in leaves with smooth margins
or serrate margins, indicating that BcCUC2 may be involved in the proper control of leaf
morphology and the development of floral organs. In addition, the expression abundance
of the BcCUC2 gene was observably greater in young leaves with serrate margins (cultivar
‘082’) than smooth margins (cultivar ‘001’), while being markedly decreased in mature
leaves, possibly implying that BcCUC2 participated in the formation of serrate margins in
early leaf development. In the Pro35:BcCUC2 lines, the transcript levels of BcCUC2 were
significantly up-regulated and the phenotype of leaf serration and increased inflorescence
stems, flowers, and siliques were found, supporting our hypothesis that BcCUC2 is involved
in modulating the development of floral organs and leaf morphology. It is interesting that
the phenotype of leaf serration was significant at the seedling stage, while being diminished
at mature and flower stages in transgenic lines, which is consistent with the spatiotemporal
expression profile of BcCUC2. On the other hand, given that the overexpression of BcCUC2
in Arabidopsis resulted in non-significant enhancement of serration, it is possible that
BcCUC2 may be less functional in Arabidopsis than in Pak-choi, or line ‘082’ may have
another potential gene to enhance serration.

In plants, phytohormones have a crucial role in the growth and development and cell
morphogenesis of diverse tissues. Leaf shape traits are regulated by an intricate regulatory
network concerning transcription factors and hormone signaling [4]. For instance, PIN1,
as an auxin efflux carrier, plays an essential role in auxin distribution in the placenta, and
the expression of PIN1 was up-regulated by CUC genes, which have crucial roles in leaf
shape [31]. In L. chinense, LcCUC2L regulates leaf development by regulating the auxin
content [32]. Furthermore, the ovule primordia formation was modulated by CUC2’s direct
interaction with the gibberellin signaling protein GAI [33]. To investigate the response of
BcCUC2 to auxin and gibberellin, the expression patterns of BcCUC2 under IAA and GA3
treatment were analyzed. The result showed that the transcript levels of BcCUC2 were
significantly increased at 1–3 h after treatment, indicating that BcCUC2 responds to auxin
and gibberellin. Based on the above results, we speculated that BcCUC2 is involved in the
formation of serrate leaf margins through the mediation of auxin or gibberellin.

Although the expression patterns and potential function of BcCUC2 have been prelim-
inarily determined based on real-time PCR and overexpression assay, the specific reason
for the difference in leaf morphology and BcCUC2 expression profiles between the lines
‘001’ and ‘082’ remains unclear. Several studies have shown that miR164 level or auxin
levels have an essential role in the development of leaf morphology [4,31,32,40]. Thus, the
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promoter sequence of BcCUC2, miR164 level, or auxin levels between the lines ‘001’ and
‘082’ will be analyzed to further elucidate the molecular mechanism of leaf morphology
and BcCUC2 expression difference between the lines.

5. Conclusions

In conclusion, we have isolated a CUP-SHAPED COTYLEDON (CUC) gene in Pak-
choi named BcCUC2. The phylogenetic reconstruction displayed that the BcCUC2 gene is
clustered into the CUC1/CUC2 clade and is close to the B. oleracea BoCUC2 and A. thaliana
AtCUC2, which all belong to Cruciferae. The expression patterns of the BcCUC2 gene
were significantly different in leaves and petioles between cultivar ‘001’ with entire leaf
margins and ‘082’ with serrate leaf margins, while similar in floral organs. In addition, the
transcript abundance of BcCUC2 was significantly induced by IAA and GA3 treatment.
The heterologous expression of BcCUC2 resulted in leaves with serrate margins and more
inflorescence stems.
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Appendix A

Table A1. Primers used in this study.

Primer Sequence (5′-3′)

Cloning
BcCUC2-F ATGGACATTCCGTACTACCAC
BcCUC2-R GTAATTCCATACGCAATCAAG
qRT-PCR

qBcCUC2-F CGGAGGCTCAGCAGAAGCAA
qBcCUC2-R GGTGTAGCCGAGGGTTGTGG
qBcActin-F GTTGCTATCCAGGCTGTTCT
qBcActin-R AGCGTGAGGAAGAGCATAAC
qAtActin-F TTGACAATTGATGCAAACAAT
qAtActin-R CCATTGCTTAATTCCACGGAC

Overexpression
KpnI-BcCUC2-F GGGGTACCATGGACATTCCGTACTACCAC

BamHI-BcCUC2-R CGGGATCCGTAATTCCATACGCAATCAAG
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qBcCUC2-F CGGAGGCTCAGCAGAAGCAA 
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qAtActin-F TTGACAATTGATGCAAACAAT 
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Overexpression   
KpnI-BcCUC2-F GGGGTACCATGGACATTCCGTACTACCAC 
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Table A2. The protein sequences of CUC gene used in this study. 

Gene 
Name 

GenBank Acces-
sion 

Plant Spe-
cies Protein Sequences 

AtCUC1 NM_112380 
Arabidop-

sis thaliana 

MDVDVFNGWGRPRFEDESLMPPGFRFHPTDEELITYYLLKKVLDSNF-
SCAAISQVDLNKSEPWELPEKAKMGEKEWYFFTLRDRKYPTGLRTNRATEAGYWKATG

KDREIKSSKTKSLLGMKKTLVFYKGRAPKGEKSCWVMHEYRLDGKFSYHYISSSAK-
DEWVLCKVCLKSGVVSRETNLISSSSSSAVTGEFSSAGSAIAPIINTFATEHVSCFSNNSAAH

TDASFHTFLPAPPPSLPPRQPRHVGDGVAFGQFLDLGSSGQIDFDAAAAAFF-
PNLPSLPPTVLPPPPSFAMYGGGSPAVSVWPFTL 

AtCUC2 NM_124774 
Arabidop-

sis thaliana 

MDIPYYHYDHGGDSQYLPPGFRFHPTDEELITHYLLRKVLDGCFSSRAIAEVDLNKCEP-
WQLPGRAKMGEKEWYFFSLRDRKYPTGLRTNRATEAGYWKATGKDREIFSSKTCALVG
MKKTLVFYKGRAPKGEKSNWVMHEYRLEGKFSYHFISRSSKDEWVISRVFQKTTLAST-

GAVSEGGGGGGATVSVSSGTGPSKKTKVPSTISRNYQEQPSSPSSVSLPPLLDPTTTLGYTD

Figure A2. The verification of transgenic plants. The positive transgenic plants were identified using
PCR amplification with gene-specific primers (A) and GUS staining (B).
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Table A2. The protein sequences of CUC gene used in this study.

Gene Name GenBank Accession Plant Species Protein Sequences

AtCUC1 NM_112380 Arabidopsis thaliana

MDVDVFNGWGRPRFEDESLMPPGFRFHPTDEELITYYLL
KKVLDSNFSCAAISQVDLNKSEPWELPEKAKMGEKEWY
FFTLRDRKYPTGLRTNRATEAGYWKATGKDREIKSSKTK
SLLGMKKTLVFYKGRAPKGEKSCWVMHEYRLDGKFSYH
YISSSAKDEWVLCKVCLKSGVVSRETNLISSSSSSAVTGEF
SSAGSAIAPIINTFATEHVSCFSNNSAAHTDASFHTFLPAPP
PSLPPRQPRHVGDGVAFGQFLDLGSSGQIDFDAAAAAFFP

NLPSLPPTVLPPPPSFAMYGGGSPAVSVWPFTL

AtCUC2 NM_124774 Arabidopsis thaliana

MDIPYYHYDHGGDSQYLPPGFRFHPTDEELITHYLLRKV
LDGCFSSRAIAEVDLNKCEPWQLPGRAKMGEKEWYFFS
LRDRKYPTGLRTNRATEAGYWKATGKDREIFSSKTCALV
GMKKTLVFYKGRAPKGEKSNWVMHEYRLEGKFSYHFISR
SSKDEWVISRVFQKTTLASTGAVSEGGGGGGATVSVSSGT
GPSKKTKVPSTISRNYQEQPSSPSSVSLPPLLDPTTTLGYTD
SSCSYDSRSTNTTVTASAITEHVSCFSTVPTTTTALGLDVNS
FSRLPPPLGFDFDPFPRFVSRNVSTQSNFRSFQENFNQFPYF
GSSSASTMTSAVNLPSFQGGGGVSGMNYWLPATAEENES

KVGVLHAGLDCIWNY

AtCUC3 NM_106292 Arabidopsis thaliana

MMLAVEDVLSELAGEERNERGLPPGFRFHPTDEELITFYL
ASKIFHGGLSGIHISEVDLNRCEPWELPEMAKMGEREWY
FYSLRDRKYPTGLRTNRATTAGYWKATGKDKEVFSGGG
GQLVGMKKTLVFYKGRAPRGLKTKWVMHEYRLENDHS
HRHTCKEEWVICRVFNKTGDRKNVGLIHNQISYLHNHS
LSTTHHHHHEALPLLIEPSNKTLTNFPSLLYDDPHQNYNN
NNFLHGSSGHNIDELKALINPVVSQLNGIIFPSGNNNNDE
DDFDFNLGVKTEQSSNGNEIDVRDYLENPLFQEASYGLL

GFSSSPGPLHMLLDSPCPLGFQL

ChCUC1 ACL14369.1 Cardamine hirsuta

MDIVVFNGSERPRFEDDTLMPPGFRFHPTDEELITYYLL
KKVLDSNFSCAAISQVNLNKSEPWELPEKAKMGEKEW
YFFTLRDRKYPTGLRTNRATEAGYWKATGKDREIKSSK
TKSLLGMKKTLVFYKGRAPKGEKSSWVMHEYRLDGKF
SYHYISSSAKDEWVLCKVCLKSGVVNRETKSISSSTSAA

GEFSSPGSTIAPIIDAFASEHVSCFSNDAAHANESFRTTYL
PAPPPSLPPRQPRHIGDDVAFGQFMDFGFSGQIHYDAAAF

FPNLPSLPPTALPPPPSFAMYGGGSTLSYWPFAL

ChCUC2 ACL14370.1 Cardamine hirsuta

MDIPYYHYDHGGDSQYLPPGFRFHPTDEELITHYLLRKV
LDGCFSSRAIAEVDLNKCEPWQLPGRAKMGEKEWYFFS
LRDRKYPTGLRTNRATEAGYWKATGKDREIYSSKTCAL
IGMKKTLVFYKGRAPKGEKSNWVMHEYRLEGKFSYHF
ISRSSKDEWVISRVFQKTGLLSTGAAGAGAIVSGSNGTG
TSKKTKIPSTISRNYQEQPSSPSSVSLPPLLGYTDSSCSYDG
HSTNTTVTATGITEHVSCFSTATTTNTTTTDLGLDVNVD
SFNHFPPPVFDPLPRFVSRNVSNLSNFRSFQDNQFPYFG
SSSSASTMTSSVHLPSSQSGGSGVSGMNYWLQATAEEN

ETKAGVLQAGLDCIWNY

ChCUC3 ACL14365.1 Cardamine hirsuta

MMLAVEDVLSELAGEERNERGLPPGFRFHPTDEELISFYL
ASKVFDGGLCGIHITEVDLNRCEPWELPEMAKMGEKEW
YFYSLRDRKYPTGLRTNRATTAGYWKATGKDKEVFGSG
GGQLVGMKKTLVFYKGRAPRGLKTKWVMHEYRLETDLS
HRHSCKEEWVICRVFNKTGDRKNVGVHSQISCLHNHSLS
TYHHHHHETLPPLLEPSKTISNFPSLLYDDHTHQNHNNN
LFHGSSGHHHIDELKALINPVVSQLNGIIFSPGNNNNVD
DEDDFNLGVKTEPFLNGGSNELDVRDYLENPLFHEVGY

GLLGVSSAPGPLHMLLDSPCPLGFQL
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Table A2. Cont.

Gene Name GenBank Accession Plant Species Protein Sequences

OsNAM EAZ00836.1 Oryza sativa

MERCSVLGLGGGGGGGGRLDGELPPGFRFHPTDEELIT
YYLLRKVVDGSFNGRAIAEIDLNKCEPWELPEKAKMGE
KEWYFYSLRDRKYPTGLRTNRATGAGYWKATGKDREI

RSARTGALVGMKKTLVFYRGRAPKGQKTQWVMHEYRL
DGTYAYHFLSSSTRDEWVIARIFTKPGVFPVVRKGRLGIS
GGGGDTSCFSDSTSASVGGGGGTSASSALRAPLAEASLF
AAAAAPAVDGADSSNYGGGGGGGSATATANLVTGLELVP
CFSTTAHMDASFGTGQYNPAPLAVEPPPPPPAFFPSLRSLQ
ENLQLPLFLSGGMQAGVSSQPLSGSGAFHWQSGMDVKVE

GAVGRAPPQMAVGPGQLDGAFAWGF

OsCUC3 NP_001062212.1 Oryza sativa

MPTTEILQHYSVVSQIKSHGKGIASEFPSALASWSADQIST
DGAANLAGKLKQARSQIKNWTKNRTSCRFLDNDCKFVI
DLFDFLEELRELSAPERLLRQMVQDKFTQYKLMQASYWK
QRGKVKKIRLGIDNTHFFKAHATQNHRRTFIRSIKLTDME
VSEHSDKATTMFSYYNSILGASTETSWSFDLHTIYHGCAM
ANADELVQPFSEQEIFQAIKHMDKNSAPGPDGFGPGFFQ
AAWAMIKPDILHLLQSFYDETADMERINRAFIVLIPKPGK
TNTPDGYRPISLQNCSVKIIAKVMANRMQRQLPPLIDLD
QSGFLKREKHLGELHLCKILQARGFPFLWRSWTNRLLQT
SKSAIMINGVPGNWINCKRGVRQGDPMSPYLFILVADVL
QKLIRHSGEIKHPIYPDQPCATLQYADDTIIICRATEQDLA
ALKTCLNHFAAATGLHINFSKSTLVTMHVPDEVTTALANI
LQCKTDSSWGRWIWQEHSGSALFCDNQLGPHWDSLSTL
LPILQRLTRVQVGDGTRTSFWHDCWYGSSTFKDRFAPLF
SHALNREATVAVFLSKPIEDQFAPRLSSTAETQLARLREML
QNFYLSNSTDLCPSRDAPGILRTKFIYSSTHMGLPLCKNW
RFIWDNRAPPRVQFFAWLLAKDRLPTKANLHKKNIVPT
AGCIVCNCADETATHLFLQCQFAQEFWRALRTSVVSNV
QDLADLVAPCHLPVKHFQVFFLLCFWGLWNHRHDVVF
RGLPNSRTRNLQSLKPAESQAAGQPPEVWYACVAWAQL
CRDIADNRTKPRSAAFEKSRNQPAIEHACMQGKNGFCV
RGTSDSEMHHHSATMGDALWEMLGEEMAAAAAAAGE
HGLPPGFRFHPTDEELVTFYLAAKVFNGACCGGVDIAE
VDLNRCEPWELPEAARMGEKEWYFFSLRDRKYPTGLR

TNRATGAGYWKATGKDREVVAAAAAGGALIGMKKTLV
FYKGRAPRGEKTKWVLHEYRLDGDFAAARRSTKEEWVI
CRIFHKVGDQYSKLMMMKSPASYYLPVSHHHPSSIFHDL
PPVPFPNPSLVPFHHDLPTSFHPPLLQHSHANSKNSSSNN
GGFVFPNEPNTTNSSDNHISCNGAMAAAAAAAFPSFSC
ASTVTGKGGPPAQLGVNAGQQEPPPPTWMDAYLQHSG

FIYEMGPPAVPRGA

ZmNAM1 CAH56057.1 Zea mays

MERFGLDGGGGGGELPPGFRFHPTDEELITYYLLRKAV
DGSFCGRAIAEIDLNKCEPWELPGKAKMGEKEWYFYS
LRDRKYPTGLRTNRATVAGYWKATGKDREIRSGRTGA
LVGMKKTLVFYRGRAPKGQKTHWVMHEYRLEGAYAY
HFLPSSTRQDEWVIARVFQKPGEVPPAARKHRLGALSS
TTGTAAGDSCFSDSTSASIGGASSSSTPGPLFASAAAAV

ANAGAADGDTSSYCGGAANHGNLVTGRELVPCFSTATI
NGPLVAAALGIGQPYNAAPLPFEQQPPPPAFLPSLRSLQ
DNLQLPPFLSAGGLGGGGALHWLPAGGMEVKVEGRSA

PPQMAVGPGQLDGAFGWSF
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Table A2. Cont.

Gene Name GenBank Accession Plant Species Protein Sequences

ZmNAM2 CAH56058.1 Zea mays

MERLGVGVGVGELPPGFRFHPTDEELITYYLLCKAVDGG
FCGGRAIAEIDLNKCEPWELPGKAKMGEKEWYFYCLR
DRKYPTGLRTNRATAAGYWKATGKDREVRSGRSGALV
GMKKTLVFYRGRAPRGQKTRWVMHEYRLDGTYAYHFLP
GSTRDEWVIARVFQKPGEVPCGRKHRLGGPSAAAGDSCF
SDSTTSASIGGGGGGGASASSRPLLTVTDTSSPSLFVANAN
AAASNNNGNPVTGRELVPCFSTTASPLEAAALGVVGHPY
NAAPLRLGLDFEAPSPGFVVPNLRSLQVQDDGGLPLFLS
AAAGGGMSSATLGIMGSLGGSLHCPPHAGMDVVKVEG

RAAPPQMAVGPGLLDGAFAWGF

ZmCUC3 CAH56059.1 Zea mays

MAAAGGEHGLPPGFRFHPTDEELVTFYLAAKVFNGA
CCGIDIAEVDLNRCEPWELPDAARMGEREWYFFSLR
DRKYPTGLRTNRATGAGYWKATGKDREVLNAATGA
LLGMKKTLVFYKGRAPRGEKTKWVLHEYRLDGDFA
AARRPCKEEWVICRILHKAGDQYSKLMMVKSPYYL

PMAMDPSSFCFQEDPTGHPLPNPSGCTPFHHGHPHH
SMQPPPPLPPSNHAGKAVFTGAAAACCMQQEPADG
SNSAVLPMPPFPPFTPIVAGKPAAPAPPPQVVNAGPQ

EPPPPTWLEAYLQHTGGILYEMGPTAAPRGA

SlNAM ACL14371.1 Solanum lycopersicum

MEIYHQMQFDCGDPHLPPGFRFHPTDEELITYYLLKK
VLDCNFTARAIAEVDLNKCEPWELPGKAKMGEKEW
YFFSLRDRKYPTGLRTNRATEAGYWKATGKDREIFSSK
TCALVGMKKTLVFYRGRAPKGEKSNWVMHEYRLDGK
FAYHYISRSSKDEWVISRVFQKSTGSNGAATSTGGGKK
RLSSSINMYQEVSSPSSVSHLPPLLDSSPYSTTATSAAA
IVIGDRDRDHSFKKEHVPCFSTTATATITAQSLTFDPTS
VFDISSNTLHALQPTPSFASILDSSPSNFTNYTRNSTFPS

LRSLHENLQLPLFSGGTSAMHGGFSNPMVNWTVPETQ
KVEQSELDCMWSY

VvNAM1 XP_002282655.1 Vitis vinifera

MDAYHHFDNSDAHLPPGFRFHPTDEELITYYLIKKV
LDSNFTGRAIAEVDLNKCEPWELPEKAKMGEKEWY
FFSLRDRKYPTGLRTNRATEAGYWKATGKDREIYSSK

TCSLVGMKKTLVFYRGRAPKGEKSNWVMHEYRLEGK
FAYHYLSRSSKDEWVISRVFQKSGSSGGGGATGGKKA
RLSSTVNLYPEVSSPSSASLPPLLDVSPYAGTSAAAAVN

DRESCSYDGGESSNNSNARDQHVPWFSTIAAAAAAAA
ANSFNAHHQPPPFDLAPPSIIGSIDPSRFPRNGAVPAFPN
LRSLQENLHLPFFFSQVAPPIPSSGDPSTEMGITNSAGN

WPAPENQKMDNGRLPMGATELDCMWSY

VvNAM2 XP_002280812.1 Vitis vinifera

MEEERKEETLPPGFRFHPTDEELITCYLINKISDATFTGRA
IADVDLNKCEPWELPGKAKMGEKEWYFFSLRDRKYPTG
VRTNRATNTGYWKTTGKDKEIFNSVTSELVGMKKTLVFY
RGRAPRGEKTNWVMHEYRIHSKSAFRTSKDEWVVCRVF
QKSAAGKKYPSNQSRGMNPYSLDIGPSVMPPPMLQADS
SQFPMGRNYVSNAELAELTRVLRGGSTGGLNLPIQSQLN
YPLGGGCFTISGLNLNLGGTSTQPVLRPNSLPQPMQMNQ
QDHMMTSPMLTSGSIPTDQTGYGAEVNNGNGHNSRFMN

MVDHCVDLDNYWPPY
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Table A2. Cont.

Gene Name GenBank Accession Plant Species Protein Sequences

VvNAM3 XP_002276293.2 Vitis vinifera

MQQAANQMHEKMEESLPPGFRFHPTDEELITYYLTP
KVSNTNFASRAIADVDLNKCEPWDLPAKASMGEKEW
YFFSLRDRKYPTGIRTNRATEAGYWKTTGKDKEIYRA
GILVGMKKTLVFYKGRAPKGEKSNWVMHEYRLETKL
SFKPKKEEWVVCRVFKKSSAVKKPHQPAPSSLPSLESP
CDTNTIVSEFGDIEFPNMNSIANSSSGFSNINSAQSYNT

STDDNLNMNMNMNMNMNWAAAREAASLPSLPWSSS
LLSPNLQMNSLLIKALQLGSYRPREATSTENYSFLPQGI

SNFGTDFISNFQASSSKVLDSLHQQQQQQQQEQPFNLD
SINWFGHMSRSNSLNYLGKHSTSRLINSHRTAPQHKQA
AGLSSCHMFLTPGPAPFLVNVLKTHGHHGSQQQSILCHT
ITHTKQLTQLLTSSAALLAACHSGLLPGASTAAPLCSVAS
TGQWLPSSICSAQPTCRRRQDSAKENPWDGLMGMVGD
NGYEEVNRKGHVWPCKGGGDRHEGRASMVMGIRRTMS

LAWRLMHGMIPHGA

VvCUC3 XP_002273222.1 Vitis vinifera

MLAMEEVLCELSREDINEQGLPPGFRFHPTDEELITFYL
ASKVFNGSFCGVEIAEVDLNRCEPWELPDVAKMGERE
WYFFSLRDRKYPTGLRTNRATGAGYWKATGKDREVH
SASSGALLGMKKTLVFYKGRAPRGEKTKWVMHEYRL
DGDFSYRHTCKEEWVICRIFHKTGEKKNPMFQGQAYL
LGSSAAAAVATSSLPALLESQTTLLESQSHPTMQGGISS

SFLVHHHHDQESNELKALINPVLSQSPLAFPINSGFQSC
SFSTTPTTNIPNTNNINSTTGNNNPSTSILFKSLLSHQECS
LKEQTTIPKQCKTEANFSHFQLPDANMHWVDRMNSN
LHQNPLFFEMDYCSGGVLGFTAATATGGGGGGGGASA
AATSAAVASAAETVHEMSTSIAFNRAGFQMMVDFPIRV

PGGESWPLDP

BoCUC2 HQ703968 Brassica oleracea

DHGGDSQYLPPGFRFHPTDEELITHYLLRKVIEGCFSSR
AIAEVDLNKSEPWQLPGKAKMGEKEWYFFSLRDRKYP
TGLRTNRATEAGYWKATGKDREIYSSKTCALVGMKKT
LVFYKGRAPKGEKSSWVMHEYRLEGKFSYHFISRSSKD
EWVISRVFKKTGLATTGASAGASISVSNCTGTSKKTKIP
SNISTNYREQPSSPSSVSLPPLLDPTTTLGYTDSSWSYD

SRSTNTPVITTAIT

BoCUC3 HQ703970 Brassica oleracea

NDRGLPPGFRFHPTDEELITFYLASKVFHGGLCGIHIAEV
DLNRCEPWELPEMAKMGEREWYFYSLRDRKYPTGLRT
NRATTAGYWKATGKDKEVFAGGGSGGGALVGMKKTLV
FYKGRAPRGLKTKWVMHEYRLETDLSHRHTCKEEWVI
CRVFNKTGDRKNVGIHNQISYLHNTSLSTTHQQRNHNH
YHHLEILPPLLEPSKTLTNFPSLLYDDTHQNYNNNLLHGS
SGHNVDEFKTLINPAVSQLNGVIFSPEISNYNNEDDNNF
GIKTEQYSNGGNNDLDVRDYLDNPFCQEAGYGLLGLSS

SPGPLM
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