Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,234)

Search Parameters:
Keywords = woven

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 8312 KiB  
Article
Quantitative Assessment of Woven Fabric Surface Changes During Martindale Abrasion Using Contactless Optical Profilometry
by Małgorzata Matusiak and Gabriela Kosiuk
Materials 2025, 18(15), 3636; https://doi.org/10.3390/ma18153636 - 1 Aug 2025
Viewed by 184
Abstract
The abrasion resistance of fabrics is one of the basic properties determining the utility performance and durability. The abrasion resistance of textile materials is measured using the Martindale device according to appropriate standards. The sample breakage method is the most commonly used of [...] Read more.
The abrasion resistance of fabrics is one of the basic properties determining the utility performance and durability. The abrasion resistance of textile materials is measured using the Martindale device according to appropriate standards. The sample breakage method is the most commonly used of the three methods. The method is based on organoleptic assessment of fabric breakage. The method is time-consuming, and results may be subject to error resulting from the subjective nature of the assessment. The aim of the presented work was to check the possibility of the application of contactless 3D surface geometry measurement using an optical profilometer in an assessment of changes in fabrics’ surface due to the abrasion process. The obtained results confirmed that some parameters of the geometric structure of fabric surfaces, such as the highest height of the roughness profile Rz, the height of the highest pick of the roughness profile Rp, the depth of the lowest valley of the roughness profile Rv, the depth of the total height of the roughness profile Rt, and the kurtosis Rku, can be used to assess the abrasion resistance of fabrics. It is also stated that using the non-contact optical measurement of fabric surface geometry allows for an assessment of the directionality of surface texture. For this purpose, the autocorrelation function and angle distribution function can be applied. Full article
Show Figures

Figure 1

15 pages, 8138 KiB  
Article
Study on the Characteristics of Straw Fiber Curtains for Protecting Embankment Slopes from Rainfall Erosion
by Xiangyong Zhong, Feng Xu, Rusong Nie, Yang Li, Chunyan Zhao and Long Zhang
Eng 2025, 6(8), 179; https://doi.org/10.3390/eng6080179 - 1 Aug 2025
Viewed by 125
Abstract
Straw fiber curtain contains a plant fiber blanket woven from crop straw, which is mainly used to protect embankment slopes from rainwater erosion. To investigate the erosion control performance of slopes covered with straw fiber curtains of different structural configurations, physical model tests [...] Read more.
Straw fiber curtain contains a plant fiber blanket woven from crop straw, which is mainly used to protect embankment slopes from rainwater erosion. To investigate the erosion control performance of slopes covered with straw fiber curtains of different structural configurations, physical model tests were conducted in a 95 cm × 65 cm × 50 cm (length × height × width) test box with a slope ratio of 1:1.5 under controlled artificial rainfall conditions (20 mm/h, 40 mm/h, and 60 mm/h). The study evaluated the runoff characteristics, sediment yield, and key hydrodynamic parameters of slopes under the coverage of different straw fiber curtain types. The results show that the A-type straw fiber curtain (woven with strips of straw fiber) has the best effect on water retention and sediment reduction, while the B-type straw fiber curtain (woven with thicker straw strips) with vertical straw fiber has a better effect regarding water retention and sediment reduction than the B-type transverse straw fiber curtain. The flow of rainwater on a slope covered with straw fiber curtain is mainly a laminar flow. Straw fiber curtain can promote the conversion of water flow from rapids to slow flow. The Darcy-Weisbach resistance coefficient of straw fiber curtain increases at different degrees with an increase in rainfall time. Full article
Show Figures

Figure 1

14 pages, 10176 KiB  
Article
Recrystallization During Annealing of Low-Density Polyethylene Non-Woven Fabric by Melt Electrospinning
by Yueming Ren, Changjin Li, Minqiao Ren, Dali Gao, Yujing Tang, Changjiang Wu, Liqiu Chu, Qi Zhang and Shijun Zhang
Polymers 2025, 17(15), 2121; https://doi.org/10.3390/polym17152121 - 31 Jul 2025
Viewed by 282
Abstract
The effect of annealing on the microstructure and tensile properties of low-density polyethylene (LDPE) non-woven fabric produced by melt electrospinning was systematically investigated using DSC, SAXS, SEM, etc. The results showed that, above an annealing temperature of 80 °C, both the [...] Read more.
The effect of annealing on the microstructure and tensile properties of low-density polyethylene (LDPE) non-woven fabric produced by melt electrospinning was systematically investigated using DSC, SAXS, SEM, etc. The results showed that, above an annealing temperature of 80 °C, both the main melting point and crystallinity of LDPE decreased compared to the original sample, as did the tensile strength of the non-woven fabric. Additionally, the lamellar distribution became broader at annealing temperatures above 80 °C. The recrystallization mechanism of molten lamellae (disordered chains) in LDPE was elucidated by fitting the data using a Gaussian function. It was found that secondary crystallization, forming thicker lamellae, and spontaneous crystallization, forming thinner lamellae, occurred simultaneously at rates dependent on the annealing temperature. Secondary crystallization dominated at temperatures ≤80 °C, whereas spontaneous crystallization prevailed at temperatures above 80 °C. These findings explain the observed changes in the microstructure and tensile properties of the LDPE non-woven fabric. Furthermore, a physical model describing the microstructural evolution of the LDPE non-woven fabric during annealing was proposed based on the experimental evidence. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

16 pages, 2657 KiB  
Article
Damage Analysis and a Novel Mathematical Relation Between the Interface Quality and the Impact Fracture Energy for Epoxy Composites Reinforced with Medium and High Ramie Woven Fabric Volume Fractions
by Marcelo Vitor Ferreira Machado, Felipe Perissé Duarte Lopes, Noan Tonini Simonassi, Eduardo Atem de Carvalho, Carlos Maurício Fontes Vieira and Sergio Neves Monteiro
Polymers 2025, 17(15), 2105; https://doi.org/10.3390/polym17152105 - 31 Jul 2025
Viewed by 229
Abstract
A literature review about polymer composites reveals that natural fibers have been widely used as a reinforcement phase in recent years. In this framework, the lignocellulosic fibers have received marked attention because of their environmental, thermomechanical, and economic advantages for many industrial sectors. [...] Read more.
A literature review about polymer composites reveals that natural fibers have been widely used as a reinforcement phase in recent years. In this framework, the lignocellulosic fibers have received marked attention because of their environmental, thermomechanical, and economic advantages for many industrial sectors. This research aims to identify the impact behavior of ramie reinforced epoxy composites with medium- and high-volume fractions of fibers in intact (nonaged) and aged conditions as well as to analyze if the influence of interface quality on the impact fracture energy can be described by a novel mathematical model. To reach these objectives, the study is designed with three groups (40%, 50%, and 60% of fiber theoretical volume fractions) of intact specimens and three groups of aged samples by condensation and ultraviolet radiation (C-UV) simulation containing the same fiber percentages. Consecutively, impact strength and fracture surface analyses are done to expand the comprehension of the damage mechanisms suffered by the biocomposites and to support the development of the mathematical relation. Certainly, this novel model can contribute to more sustainable and greener industries in the near future. Full article
(This article belongs to the Special Issue Biodegradable Polymer Composites, 2nd Edition)
Show Figures

Figure 1

29 pages, 7510 KiB  
Article
Stretchability and Melt Strength Enhancement of Biodegradable Polymer Blends for Packaging Solutions
by Katy D. Laevsky, Achiad Zilberfarb, Amos Ophir and Ana L. Dotan
Molecules 2025, 30(15), 3211; https://doi.org/10.3390/molecules30153211 - 31 Jul 2025
Viewed by 320
Abstract
Biodegradable polymers offer environmental advantages compared to fossil-based alternatives, but they currently lack the stretchability required for demanding applications such as mesh fabrics for woven flexible intermediate bulk container (FIBC) bags and stretch, shrink, and cling films. The goal of this research is [...] Read more.
Biodegradable polymers offer environmental advantages compared to fossil-based alternatives, but they currently lack the stretchability required for demanding applications such as mesh fabrics for woven flexible intermediate bulk container (FIBC) bags and stretch, shrink, and cling films. The goal of this research is to enhance the stretchability of biodegradable blends based on 80% poly(butylene adipate-co-terephthalate) (PBAT) and 20% poly(lactic acid) (PLA) through reactive extrusion. Radical initiator (dicumyl peroxide (DCP)) and chain extenders (maleic anhydride (MA), glycidyl methacrylate (GMA)) were employed to improve the melt strength and elasticity of the extruded films. The reactive blends were initially prepared using a batch mixer and subsequently compounded in a twin-screw extruder. Films were produced via cast extrusion. 0.1% wt. DCP led to a 200% increase in elongation at break and a 44% improvement in tensile strength. Differential scanning calorimetry and scanning electron microscopy revealed enhanced miscibility between components. Shear and complex viscosity increased by 38% and 85%, compared to the neat blend, respectively. Reactive extrusion led to a better dispersion and distribution of the phases. An improved interfacial adhesion between the phases, in addition to higher molecular weight, led to enhanced melt strength and improved stretchability. Full article
Show Figures

Figure 1

18 pages, 6795 KiB  
Article
Strain-Rate-Dependent Tensile Behaviour and Viscoelastic Modelling of Kevlar® 29 Plain-Woven Fabric for Ballistic Applications
by Kun Liu, Ying Feng, Bao Kang, Jie Song, Zhongxin Li, Zhilin Wu and Wei Zhang
Polymers 2025, 17(15), 2097; https://doi.org/10.3390/polym17152097 - 30 Jul 2025
Viewed by 176
Abstract
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal [...] Read more.
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal material testing machine and a Split Hopkinson Tensile Bar (SHTB) apparatus. Tensile mechanical responses were obtained under various strain rates. Fracture morphology was characterised using scanning electron microscopy (SEM) and ultra-depth three-dimensional microscopy, followed by an analysis of microstructural damage patterns. Considering the strain rate effect, a viscoelastic constitutive model was developed. The results indicate that the tensile mechanical properties of Kevlar® 29 plain-woven fabric are strain-rate dependent. Tensile strength, elastic modulus, and toughness increase with strain rate, whereas fracture strain decreases. Under quasi-static loading, the fracture surface exhibits plastic flow, with slight axial splitting and tapered fibre ends, indicating ductile failure. In contrast, dynamic loading leads to pronounced axial splitting with reduced split depth, simultaneous rupture of fibre skin and core layers, and fibrillation phenomena, suggesting brittle fracture characteristics. The modified three-element viscoelastic constitutive model effectively captures the strain-rate effect and accurately describes the tensile behaviour of the plain-woven fabric across different strain rates. These findings provide valuable data support for research on ballistic mechanisms and the performance optimisation of protective materials. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

23 pages, 8390 KiB  
Article
Autoregulation of Woven Fabric Structure: Image-Based and Regression Analysis of Structural Homogeneity Under Varying Weaving Parameters
by Magdalena Owczarek
Materials 2025, 18(15), 3554; https://doi.org/10.3390/ma18153554 - 29 Jul 2025
Viewed by 218
Abstract
This study investigates the influence of weaving process parameters on the structural homogeneity of woven fabrics, with a focus on the structural autoregulation phenomenon. Two experimental fabric groups of 30 each, plain and twill weaves, were produced using varied loom settings: shed closure [...] Read more.
This study investigates the influence of weaving process parameters on the structural homogeneity of woven fabrics, with a focus on the structural autoregulation phenomenon. Two experimental fabric groups of 30 each, plain and twill weaves, were produced using varied loom settings: shed closure timing, lease rod position, backrest roller position, warp pre-tension, and yarn twist direction. Structural uniformity was assessed using a proprietary method and the MagFABRIC 2.1. image analysis system, which quantify intra-repeat, inter-repeat, and global inhomogeneity. This method uses the size, shape, and location of inter-thread pores as well as warp and weft pitches. The results indicate that autoregulation can reduce local structural disturbances, including warp yarn grouping. In plain weaves, loom parameters and humidity significantly contributed to structural autoregulation. In contrast, twill weaves demonstrated dominant internal feedback mechanisms, significantly influenced by yarn twist direction. Regression models at F = 10 revealed nonlinear interactions, confirming autoregulation and experimentally supporting Nosek’s quasi-dynamic theory for these types of fabrics. The results of these studies have practical relevance in high-performance textiles such as filtration, barrier fabrics, and composite reinforcements, where local structural deviations critically affect the functional properties of fabrics. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

26 pages, 8400 KiB  
Article
Conceptual Design of a Hybrid Composite to Metal Joint for Naval Vessels Applications
by Man Chi Cheung, Nenad Djordjevic, Chris Worrall, Rade Vignjevic, Mihalis Kazilas and Kevin Hughes
Materials 2025, 18(15), 3512; https://doi.org/10.3390/ma18153512 - 26 Jul 2025
Viewed by 324
Abstract
This paper describes the development of a new hybrid composite for the metal joints of aluminium and glass fibre composite adherents. The aluminium adherend is manufactured using friction stir-formed studs that are inserted into the composite adherend in the through-thickness direction during the [...] Read more.
This paper describes the development of a new hybrid composite for the metal joints of aluminium and glass fibre composite adherents. The aluminium adherend is manufactured using friction stir-formed studs that are inserted into the composite adherend in the through-thickness direction during the composite manufacturing process, where the dry fibres are displaced to accommodate the studs before the resin infusion process. The materials used were AA6082-T6 aluminium and plain-woven E-glass fabric reinforced epoxy, with primary applications in naval vessels. This joining approach offers a cost-effective solution that does not require complicated onsite welding. The joint design was developed based on a simulation test program with finite element analysis, followed by experimental characterisation and validation. The design solution was analysed in terms of the force displacement response, sequence of load transfer, and characterisation of the joint failure modes. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

29 pages, 5215 KiB  
Article
Supply Chain Cost Analysis for Interior Lighting Systems Based on Polymer Optical Fibres Compared to Optical Injection Moulding
by Jan Kallweit, Fabian Köntges and Thomas Gries
Textiles 2025, 5(3), 29; https://doi.org/10.3390/textiles5030029 - 24 Jul 2025
Viewed by 239
Abstract
Car interior design should evoke emotions, offer comfort, convey safety and at the same time project the brand identity of the car manufacturer. Lighting is used to address these functions. Modules required for automotive interior lighting often feature injection-moulded (IM) light guides, whereas [...] Read more.
Car interior design should evoke emotions, offer comfort, convey safety and at the same time project the brand identity of the car manufacturer. Lighting is used to address these functions. Modules required for automotive interior lighting often feature injection-moulded (IM) light guides, whereas woven fabrics with polymer optical fibres (POFs) offer certain technological advantages and show first-series applications in cars. In the future, car interior illumination will become even more important in the wake of megatrends such as autonomous driving. Since the increase in deployment of these technologies facilitates a need for an economical comparison, this paper aims to deliver a cost-driven approach to fulfil the aforementioned objective. Therefore, the cost structures of the supply chains for an IM-based and a POF-based illumination module are analysed. The employed research methodologies include an activity-based costing approach for which the data is collected via document analysis and guideline-based expert interviews. To account for data uncertainty, Monte Carlo simulations are conducted. POF-based lighting modules have lower initial costs due to continuous fibre production and weaving processes, but are associated with higher unit costs. This is caused by the discontinuous assembly of the rolled woven fabric which allows postponement strategies. The development costs of the mould generate high initial costs for IM light guides, which makes them beneficial only for high quantities of produced light guides. For the selected scenario, the POF-based module’s self-costs are 11.05 EUR/unit whereas the IM module’s self-costs are 14,19 EUR/unit. While the cost structures are relatively independent from the selected scenario, the actual self-costs are highly dependent on boundary conditions such as production volume. Full article
Show Figures

Figure 1

17 pages, 2815 KiB  
Article
Research on the Structural Design and Mechanical Properties of T800 Carbon Fiber Composite Materials in Flapping Wings
by Ruojun Wang, Zengyan Jiang, Yuan Zhang, Luyao Fan and Weilong Yin
Materials 2025, 18(15), 3474; https://doi.org/10.3390/ma18153474 - 24 Jul 2025
Viewed by 259
Abstract
Due to its superior maneuverability and concealment, the micro flapping-wing aircraft has great application prospects in both military and civilian fields. However, the development and optimization of lightweight materials have always been the key factors limiting performance enhancement. This paper designs the flapping [...] Read more.
Due to its superior maneuverability and concealment, the micro flapping-wing aircraft has great application prospects in both military and civilian fields. However, the development and optimization of lightweight materials have always been the key factors limiting performance enhancement. This paper designs the flapping mechanism of a single-degree-of-freedom miniature flapping wing aircraft. In this study, T800 carbon fiber composite material was used as the frame material. Three typical wing membrane materials, namely polyethylene terephthalate (PET), polyimide (PI), and non-woven kite fabric, were selected for comparative analysis. Three flapping wing configurations with different stiffness were proposed. These wings adopted carbon fiber composite material frames. The wing membrane material is bonded to the frame through a coating. Inspired by bionics, a flapping wing that mimics the membrane vein structure of insect wings is designed. By changing the type of membrane material and the distribution of carbon fiber composite materials on the wing, the stiffness of the flapping wing can be controlled, thereby affecting the mechanical properties of the flapping wing aircraft. The modal analysis of the flapping-wing structure was conducted using the finite element analysis method, and the experimental prototype was fabricated by using 3D printing technology. To evaluate the influence of different wing membrane materials on lift performance, a high-precision force measurement experimental platform was built, systematic tests were carried out, and the lift characteristics under different flapping frequencies were analyzed. Through computational modeling and experiments, it has been proven that under the same flapping wing frequency, the T800 carbon fiber composite material frame can significantly improve the stiffness and durability of the flapping wing. In addition, the selection of wing membrane materials has a significant impact on lift performance. Among the test materials, the PET wing film demonstrated excellent stability and lift performance under high-frequency conditions. This research provides crucial experimental evidence for the optimal selection of wing membrane materials for micro flapping-wing aircraft, verifies the application potential of T800 carbon fiber composite materials in micro flapping-wing aircraft, and opens up new avenues for the application of advanced composite materials in high-performance micro flapping-wing aircraft. Full article
Show Figures

Figure 1

21 pages, 7007 KiB  
Article
Analysis of Woven Fabric Mechanical Properties in the Context of Sustainable Clothing Development Process
by Maja Mahnić Naglić, Slavenka Petrak and Antoneta Tomljenović
Polymers 2025, 17(15), 2013; https://doi.org/10.3390/polym17152013 - 23 Jul 2025
Viewed by 250
Abstract
This paper presents research in the field of computer-aided 3D clothing design, focusing on an investigation of three methods for determining the mechanical properties of woven fabrics and their impact on 3D clothing simulations in the context of sustainable apparel development. Five mechanical [...] Read more.
This paper presents research in the field of computer-aided 3D clothing design, focusing on an investigation of three methods for determining the mechanical properties of woven fabrics and their impact on 3D clothing simulations in the context of sustainable apparel development. Five mechanical parameters were analyzed: tensile elongation in the warp and weft directions, shear stiffness, bending stiffness, specific weight, and fabric thickness. These parameters were integrated into the CLO3D CAD software v.2025.0.408, using data obtained via the KES-FB system, the Fabric Kit protocol, and the AI-based tool, SEDDI Textura 2024. Simulations of women’s blouse and trousers were evaluated using dynamic tests and validated by real prototypes measured with the ARAMIS optical 3D system. Results show average differences between digital and real prototype deformation data up to 6% with an 8% standard deviation, confirming the high accuracy of 3D simulations based on the determined mechanical parameters of the real fabric sample. Notably, the AI-based method demonstrated excellent simulation results compared with real garments, highlighting its potential for accessible, sustainable, and scalable fabric digitization. Presented research is entirely in line with the current trends of digitization and sustainability in the textile industry. It contributes to the advancement of efficient digital prototyping workflows and emphasizes the importance of reliable mechanical characterization for predictive garment modeling. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Figure 1

18 pages, 617 KiB  
Article
From Perceived to Measurable: A Fuzzy Logic Index of Authenticity in Rural Tourism
by Carina Dobre, Elena Toma, Andreea-Cristiana Linca, Adina Magdalena Iorga, Iuliana Zaharia, Gina Fintineru, Paula Stoicea and Irina Chiurciu
Sustainability 2025, 17(15), 6667; https://doi.org/10.3390/su17156667 - 22 Jul 2025
Viewed by 374
Abstract
Choosing a rural destination today often comes down to one thing: how authentic it feels. In countries like Romania, where tradition is still woven into daily life, travelers are looking for something real and sustainable—but what exactly does that mean? And how can [...] Read more.
Choosing a rural destination today often comes down to one thing: how authentic it feels. In countries like Romania, where tradition is still woven into daily life, travelers are looking for something real and sustainable—but what exactly does that mean? And how can we measure it? This study takes a different approach. We created an Authenticity Index using fuzzy logic, a method that makes space for in-between answers and soft boundaries. It helped us capture how people actually perceive things like local food, architecture, and natural scenery—without forcing their opinions into rigid categories. We tested the index with real guest feedback from rural accommodation. The results showed that guests consistently valued sensory experiences—like nature and food—more than activities that required deeper cultural involvement, such as workshops or folk demonstrations. Instead of just producing a number, the index turned out to be a guide. It gives hosts a better idea of what really matters to their guests—even when those preferences are not always easy to define. More than that, it brings together what theory says with what visitors actually feel, supporting more sustainable tourism practices. And in rural tourism, that connection can make all the difference. Full article
(This article belongs to the Special Issue Sustainable Heritage Tourism)
Show Figures

Figure 1

15 pages, 3980 KiB  
Article
Four-Dimensional-Printed Woven Metamaterials for Vibration Reduction and Energy Absorption in Aircraft Landing Gear
by Xiong Wang, Changliang Lin, Liang Li, Yang Lu, Xizhe Zhu and Wenjie Wang
Materials 2025, 18(14), 3371; https://doi.org/10.3390/ma18143371 - 18 Jul 2025
Viewed by 332
Abstract
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent [...] Read more.
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent to traditional textile preforms. Six distinct braided structural units (types 1–6) were devised based on periodic trigonometric functions (Y = A sin(12πX)), and integrated with shape memory polylactic acid (SMP-PLA), thereby achieving a synergistic combination of topological architecture and adaptive response characteristics. Compression tests reveal that reducing strip density to 50–25% (as in types 1–3) markedly enhances energy absorption performance, achieving a maximum specific energy absorption of 3.3 J/g. Three-point bending tests further demonstrate that the yarn amplitude parameter A is inversely correlated with load-bearing capacity; for instance, the type 1 structure (A = 3) withstands a maximum load stress of 8 MPa, representing a 100% increase compared to the type 2 structure (A = 4.5). A multi-branch viscoelastic constitutive model elucidates the temperature-dependent stress relaxation behavior during the glass–rubber phase transition and clarifies the relaxation time conversion mechanism governed by the Williams–Landel–Ferry (WLF) and Arrhenius equations. Experimental results further confirm the shape memory effect, with the type 3 structure fully recovering its original shape within 3 s under thermal stimulation at 80 °C, thus addressing the non-reusability issue of conventional energy-absorbing structures. This work establishes a new paradigm for the design of impact-resistant aviation components, particularly in the context of anti-collision structures and reusable energy absorption systems for eVTOL aircraft. Future research should further investigate the regulation of multi-stimulus response behaviors and microstructural optimization to advance the engineering application of smart textile metamaterials in aviation protection systems. Full article
Show Figures

Figure 1

13 pages, 2213 KiB  
Article
Tracing the Threads: Comparing Red Garments in Forensic Investigations
by Jolanta Wąs-Gubała and Bartłomiej Feigel
Appl. Sci. 2025, 15(14), 7945; https://doi.org/10.3390/app15147945 - 17 Jul 2025
Viewed by 321
Abstract
The aim of this study was to compare the types, textile structures, labels, and fiber compositions of 64 red garments submitted as evidence in selected criminal cases between 2022 and 2024. The research enhanced the current knowledge of the characteristics of red clothing [...] Read more.
The aim of this study was to compare the types, textile structures, labels, and fiber compositions of 64 red garments submitted as evidence in selected criminal cases between 2022 and 2024. The research enhanced the current knowledge of the characteristics of red clothing available to consumers and demonstrated the relevance of textile analysis in forensic science. Knitted fabrics were the most commonly used in the garments, followed by woven fabrics, nonwovens, and felts. Fiber identification focused on color and shade, generic classification, morphological structure, and chemical composition, revealing both similarities and distinctions among the samples. In a small percentage of cases, label information was found to be inaccurate. The study also examined the fiber content of threads, patches, logos, prints, and embroidery, underscoring the forensic potential of these often-overlooked elements. The identification of over 300 individual fibers enabled a critical evaluation of the analytical procedures and confirmed their effectiveness in forensic contexts. Full article
Show Figures

Figure 1

41 pages, 6695 KiB  
Review
Design Innovation and Thermal Management Applications of Low-Dimensional Carbon-Based Smart Textiles
by Yating Pan, Shuyuan Lin, Yang Xue, Bingxian Ou, Zhen Li, Junhua Zhao and Ning Wei
Textiles 2025, 5(3), 27; https://doi.org/10.3390/textiles5030027 - 9 Jul 2025
Viewed by 431
Abstract
With the rapid development of wearable electronics, traditional rigid thermal management materials face limitations in flexibility, conformability, and multi-physics adaptability. Low-dimensional carbon materials such as graphene and carbon nanotubes combine ultrahigh thermal conductivity with outstanding mechanical compliance, making them promising building blocks for [...] Read more.
With the rapid development of wearable electronics, traditional rigid thermal management materials face limitations in flexibility, conformability, and multi-physics adaptability. Low-dimensional carbon materials such as graphene and carbon nanotubes combine ultrahigh thermal conductivity with outstanding mechanical compliance, making them promising building blocks for flexible thermal regulation. This review summarizes recent advances in integrating these materials into textile architectures, mapping the evolution of this emerging field. Key topics include phonon-dominated heat transfer mechanisms, strategies for modulating interfacial thermal resistance, and dimensional effects across scales; beyond these intrinsic factors, hierarchical textile configurations further tailor macroscopic performance. We highlight how one-dimensional fiber bundles, two-dimensional woven fabrics, and three-dimensional porous networks construct multi-directional thermal pathways while enhancing porosity and stress tolerance. As for practical applications, the performance of carbon-based textiles in wearable systems, flexible electronic packaging, and thermal coatings is also critically assessed. Current obstacles—namely limited manufacturing scalability, interfacial mismatches, and thermal performance degradation under repeated deformation—are analyzed. To overcome these challenges, future studies should prioritize the co-design of structural and thermo-mechanical properties, the integration of multiple functionalities, and optimization guided by data-driven approaches. This review thus lays a solid foundation for advancing carbon-based smart textiles toward next-generation flexible thermal management technologies. Full article
Show Figures

Figure 1

Back to TopTop