Autoregulation of Woven Fabric Structure: Image-Based and Regression Analysis of Structural Homogeneity Under Varying Weaving Parameters
Abstract
1. Introduction
2. Materials and Methods
2.1. Yarns Used in the Experimental Fabrics
2.2. Fabric Weaving Parameters
- Xp1 Shed closure timing (388.8–331.2): open, closed, or crossed shed,
- Xp2 Lease rod position (43–73 cm) from the geometric center of the harness,
- Xp3 Backrest roller position (82–90 cm) from the center position,
- Xp4 Warp pre-tension (5.93–31.91 cN/thread).
- Xt1 Backrest roller position (100–108 cm) from the center position,
- Xt2 Shed closure timing (360.0–303.0): closed or crossed shed,
- Xt3 Warp yarn twist direction (S/S, S/Z, Z/Z),
- Xt4 Weft yarn twist direction (S/S, S/Z, Z/Z).
Fabric | Parameter xk | Range (xkmin–xkmax) | Actual Value for Coded Level (−2, −1, 0, 1, + 2) | ||||
---|---|---|---|---|---|---|---|
Plain | Xp1 Shed closure timing | 388.8–331.2 | 388.8 | 374.4 | 360 | 345.6 | 331.2 |
Xp2 Lease rod position | 95–125 cm | 95 | 102.5 | 110 | 117.5 | 125 | |
Xp3 Backrest roller position | 82–90 cm | 82 | 84 | 86 | 88 | 90 | |
Xp4 Warp pre-tension | 5.93–31.91 cN/thread | 5.93 | 12.76 | 19.15 | 25.53 | 31.91 | |
Twill | Xt1 Backrest roller position | 100–108 cm | 100 | 102 | 104 | 106 | 108 |
Xt2 Shed closure timing | 360.0–303.0 | 360 | 330 | 320 | 310 | 303 | |
Xt3 Warp yarn twist direction | S, S/Z, Z | S/S | S/S | S/Z | Z/Z | Z/Z | |
Xt4 Weft yarn twist direction | S, S/Z, Z | S/S | S/S | S/Z | Z/Z | Z/Z |
2.3. Experimental Design for Fabric Production
- α = 2—tabulated value,
- xkmax—maximum value in the range,
- xkmin—minimum value in the range,
- —the midpoint of the range,
- —normalized value (coded level),
- —target (actual) value.
- Core design points: nk = 2i = 24 = 16,
- Star points: nα = 2i = 2 × 4 = 8,
- Center points: n0 > 1; n0 = 7,
- Total number of trials: n = nk + nα + n0 = 31.
2.4. Procedure for Sample Selection, Image Acquisition, Preprocessing, and ITP Identification
2.5. Method for Assessing the Homogeneity of the Fabric Structure
- Intra-repeat inhomogeneity (),
- Inter-repeat inhomogeneity (),
- Global inhomogeneity (.
- , —intra-repeat and inter-repeat inhomogeneity indices [%],
- , inhomogeneity of ITPs area,
- , —inhomogeneity of ITPs shape, calculated as
- −
- Feret = W/H—elongation, (width to height ratio),
- −
- AspectR = DMIN/DMAX—ovality (minor to major diameter ratio),
- −
- FormF = —form factor (edge complexity), where A—area, and L—perimeter,
- , —inhomogeneity of warp and weft thread pitches,
- , —inhomogeneity of the distance from the ITPs center to the nearest intersection of the average grid, calculated as
- , inhomogeneity of relative area, defined as
2.6. Method for Air Permeability Testing
2.7. Multiple Regression Analysis Method
3. Results
3.1. Results from the Experimental Plan
3.2. Structural Changes in Woven Fabrics
3.3. Results of the Regression Analysis
- (Xp1∙Xp2∙Xp4) (Std. BETA = 17.04, t = 16.61, p < 0.0000),
- (Xp2∙Xp4) (Std. BETA = –16.98, t = −16.94, p < 0.0000),
- (Xp32∗Xp2) (Std. BETA = 7.28, t = 13.69, p < 0.0000),
- Xp2 (Std. BETA = −9.54, t = −19.07, p < 0.0000),
- Xp23 (Std. BETA = 4.54, t = 18.48, p < 0.0000),
- Xp33 (Std. BETA = −3.88, t = −12.97, p < 0.0000).
4. Discussion
4.1. Interpretation of Results
4.2. Autoregulation Mechanisms
5. Conclusions
- A significant influence of weaving process parameters and atmospheric conditions on the structural homogeneity of fabrics was demonstrated at the intra-repeat , inter-repeat , and global levels in the regression models developed at F = 10. For plain weave fabrics, all four mechanical loom settings—shed closure timing Xp1, lease rod position Xp2, backrest roller position Xp3, and warp pre-tension Xp4—were correlated with structural homogeneity. For twill weave fabrics, regression models indicated that the warp yarn twist direction Xt3 played a dominant role in autoregulation near Xt1 backrest roller position, Xt2 shed closure timing, and Xt4 weft yarn twist directions. Atmospheric conditions also influenced the outcomes, particularly relative humidity H, which demonstrated significant interactions in both fabric groups.
- Specific configurations of weaving parameters were identified that result in the highest and lowest structural homogeneity in plain- and twill-woven cotton fabrics, providing a foundation for the purposeful design of fabric properties. For plain weave, the highest homogeneity for P5 fabric was achieved with Xp1 = 374.4°, Xp2 = 102.5 cm, Xp3 = 88 cm, and Xp4 = 12.76 cN/thread. In twill weave, the highest homogeneity occurred under conditions for T24 fabric of Xt1 = 104 cm, Xt2 = 360, Xt3 = S; Z, and Xt4 = Z.
- The phenomenon of structural autoregulation was observed under real weaving conditions, confirming the system’s ability to compensate for disturbances. The weaving parameters showing the strongest correlations included, for plain weave: humidity H and the interaction (Xp1·Xp4), Xp2, Xp3; and for twill weave: Xt3 and H.
- The results confirm that structural autoregulation can substantially affect fabric homogeneity and, consequently, its functional properties—such as filtration efficiency. For example, plain weave fabrics with the lowest inhomogeneity ( = 51.66%) exhibited the lowest air flow (AirF = 383.73 mm/s). For twill fabrics, the AirF level does not reflect the level of structural uniformity because yarn geometry is a confounding factor. Therefore, AirF cannot be used to assess uniformity for every type of weave fabric.
- Optimization of the weaving process is a key factor in achieving structural homogeneity and, therefore, reproducible properties in technical textiles, including filtration fabrics, composites, and materials with controlled heterogeneity. Adjusting key parameters—especially warp tension and shed closure timing—allowed global inhomogeneity to be reduced by 41 or 21 across fabric variant groups, e.g., (51.66–92.33%) for plain and (81.74–105.66%) for twill weave.
- The study demonstrates that specific weaving parameters—such as backrest roller position, shed closure timing, warp tension, and yarn twist direction—have a substantial impact on fabric structural homogeneity at intra-repeat, inter-repeat, and global levels. Regression models indicated that as much as 74% of the variance could be explained by these parameters in plain weave, and as much as 35% in twill weave.
- The homogeneity analysis enhances the current understanding of process–structure–property interactions. Autoregulation observed in plain and twill weaves indicates that woven structures are capable of self-regulating disturbances under favorable weaving conditions—an effect that requires further investigation, particularly for other weaves. Further research direction will examine how fabric structural homogeneity influences mechanical properties and the uniformity of stress distribution in textiles. These findings support the predictive design of specialized textiles (e.g., filters, composites) by linking process conditions to fabric properties. Future research should extend this approach to fabrics made from various raw materials, particularly synthetics, which may respond differently to climatic and weaving conditions than cotton due to differing friction coefficients.
6. Patents
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IAR | Intra-repeat uniformity |
IER | Inter-repeat uniformity |
ITP | Inter-thread pore |
Coefficients of the intra-repeat inhomogeneity | |
Coefficients of the inter-repeat inhomogeneity | |
Coefficients of the global inhomogeneity | |
Xp1 | Shed closure timing |
Xp2 | Lease rod position |
Xp3 | Backrest roller position |
Xp4 | Pre-tension of the warp |
Xt1 | Backrest roller position |
Xt2 | Shed closure timing |
Xt3 | Warp yarn twist direction |
Xt4 | Weft yarn twist direction |
References
- Havlova, M. Detection of Fabric Structure Irregularities Using Air Permeability Measurements. J. Eng. Fiber Fabr. 2014, 9, 157–164. [Google Scholar] [CrossRef]
- Havlová, M. Air Permeability and Costructional Parameters of Woven Fabrics. Fibres Text. East. Eur. 2013, 21, 84–89. [Google Scholar]
- Milasius, R.; Milasius, V. Investigation of Unevenness of Some Fabric Cross-Section Parameters. Fibres Text. East. Eur. 2002, 10, 47–49. [Google Scholar]
- Zhu, G.; Fang, Y.; Zhao, L.; Wang, J.; Chen, W. Prediction of Structural Parameters and Air Permeability of Cotton Woven Fabric. Text. Res. J. 2017, 88, 1650–1659. [Google Scholar] [CrossRef]
- Umair, M.; Hussain, T.; Shaker, K.; Nawab, Y.; Maqsood, M.; Jabbar, M. Effect of Woven Fabric Structure on the Air Permeability and Moisture Management Properties. J. Text. Inst. 2016, 107, 596–605. [Google Scholar] [CrossRef]
- Rogina-Car, B.; Kovacevic, S.; Schwarz, I.; Dimitrovski, K. Microbial Barrier Properties of Cotton Fabric-Influence of Weave Architecture. Polymers 2020, 12, 1570. [Google Scholar] [CrossRef]
- Zupin, Z.; Stampfl, V.; Kocevar, T.N.; Tomc, H.G. Comparison of Measured and Calculated Porosity Parameters of Woven Fabrics to Results Obtained with Image Analysis. Materials 2024, 17, 783. [Google Scholar] [CrossRef]
- Kostajnsek, K.; Zupin, Z.; Hladnik, A.; Dimitrovski, K. Optical Assessment of Porosity Parameters in Transparent Woven Fabrics. Polymers 2021, 13, 408. [Google Scholar] [CrossRef]
- Kostajnšek, K.; Urbas, R.; Dimitrovski, K. A New Simplified Model for Predicting the UV-Protective Properties of Monofilament PET Fabrics. Autex Res. J. 2019, 19, 263–270. [Google Scholar] [CrossRef]
- Adanur, S.; Jayswal, A. Filtration Mechanisms and Manufacturing Methods of Face Masks: An Overview. J. Ind. Text. 2022, 51, 3683S–3717S. [Google Scholar] [CrossRef]
- Begum, M.S.; Milašius, R. Factors of Weave Estimation and the Effect of Weave Structure on Fabric Properties: A Review. Fibers 2022, 10, 74. [Google Scholar] [CrossRef]
- Patti, A.; Acierno, D. Materials, Weaving Parameters, and Tensile Responses of Woven Textiles. Macromol 2023, 3, 665–680. [Google Scholar] [CrossRef]
- Asayesh, A.; Farimah, M.; Gholamhosseini, A. An Investigation into the Effect of Fabric Structure on the Compressional Properties of Woven Fabrics. J. Text. Inst. 2018, 109, 32–38. [Google Scholar] [CrossRef]
- Yang, Z.; Jiao, Y.; Xie, J.-B.; Jiao, W.; Chen, L.; Zhu, L.; Du, X. Effect of Weaving Parameters on Fiber Structure of 3D Woven Preforms: A Micro-CT Investigation. J. Compos. Mater. 2022, 56, 2609–2620. [Google Scholar] [CrossRef]
- Hufenbach, W.A.; Gude, M.; Adam, F.; Modler, N.; Heber, T.; Renner, O.; Körner, I.; Weck, D. Experimental Investigation of Composite-Based Compliant Structures. Compos. Theory Pract. 2011, 11, 187–191. [Google Scholar]
- Adomaitienė, A.; Ravinienė, G.; Kumpikaitė, E. Influence of Weaving Loom Setting Parameters on Changes of Woven Fabric Structure and Mechanical Properties. Mater. Sci. 2011, 17, 417–422. [Google Scholar] [CrossRef]
- Mebrate, M.; Gessesse, N.; Zinabu, N. Effect of Loom Tension on Mechanical Properties of Plain Woven Cotton Fabric. J. Nat. Fibers 2020, 19, 1443–1448. [Google Scholar] [CrossRef]
- Ahmed, T.; Sarker, J.; Ashique, S. Loom Settings and Fabric Structure: Two Major Influencing Factors of Warp Tension Variation. Am. Sci. Res. J. Eng. Technol. Sci. 2017, 29, 68–79. [Google Scholar]
- Turhan, Y.; Eren, R. The Effect of Loom Settings on Weavability Limits on Air-Jet Weaving Machines. Text. Res. J. 2011, 82, 172–182. [Google Scholar] [CrossRef]
- Kim, H.-A.; Kim, S.-J. Effects of Loom Characteristics on the Physical Properties of PET Fabrics for Emotional Clothing. Fibers Polym. 2013, 14, 1227–1234. [Google Scholar] [CrossRef]
- Kim, H.A.; Kim, S.J. Mechanical Properties of Worsted Fabrics for Emotional Garment to the Rapier Loom Characteristics. Fibers Polym. 2013, 14, 2163–2168. [Google Scholar] [CrossRef]
- Ying, Z.; Wu, Z.; Hu, X.; Zhou, X. Effect of the Frictional Coefficient and Pre-Tension on Stress Distribution of Fabric during the Weaving Process. Text. Res. J. 2017, 88, 904–912. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, H.A. Effect of Fabric Structural Parameters and Weaving Conditions to Warp Tension of Aramid Fabrics for Protective Garments. Text. Res. J. 2017, 88, 987–1001. [Google Scholar] [CrossRef]
- Nosek, S. Problemy Quasi-Dynamicznego Procesu Tkania; Przegląd Włókienniczy: Łódź, Poland, 1971. [Google Scholar]
- Masajtis, J. Statyka Tworzenia i Autoregulacja Struktury Tkaniny: Wg Teorii S. Noska; SWP: Łódź, Poland, 1978. [Google Scholar]
- Owczarek, M.; Masajtis, J. Evaluation of the Structural Homogeneity of Denim Fabric by Means of Digital Image Analysis. Fibres Text. East. Eur. 2006, 14, 41–45. [Google Scholar]
- Owczarek, M. The Impact and Importance of Fabric Image Preprocessing for the New Method of Individual Inter-Thread Pores Detection. Autex Res. J. 2020, 20, 250–262. [Google Scholar] [CrossRef]
- Owczarek, M. Morphometrical Structural Analysis of Inter-Thread Pores in Woven Fabrics with the Use of Computer Image Analysis. Text. Res. J. 2019, 89, 4858–4874. [Google Scholar] [CrossRef]
- Owczarek, M. A New Method for Evaluating the Homogeneity within and between Weave Repeats in Plain Fabric Structures Using Computer Image Analysis. Materials 2024, 17, 3229. [Google Scholar] [CrossRef] [PubMed]
- Rolich, T.; Domović, D.; Čubrić, G.; Salopek Čubrić, I. Advanced Image Analysis and Machine Learning Models for Accurate Cover Factor and Porosity Prediction in Knitted Fabrics: Tailored Applications in Sportswear, Swimwear, and Casual Wear. Fibers 2024, 12, 45. [Google Scholar] [CrossRef]
- ISO 139:2005; Textiles—Standard Atmospheres for Conditioning and Testing. International Organization for Standardization: Geneva, Switzerland, 2005.
- EN ISO 7231:2024-02; Polymeric Materials, Cellular Flexible—Determination of Air Flow Permeability. European Committee for Standardization: Brussels, Belgium, 2024.
- ASTM D 737-18; Standard Test Method for Air Permeability of Textile Fabrics. ASTM International: West Conshohocken, PA, USA, 2018.
- Raheja, J.L.; Kumar, S.; Chaudhary, A. Fabric Defect Detection Based on GLCM and Gabor Filter: A Comparison. Optik 2013, 124, 6469–6474. [Google Scholar] [CrossRef]
- Jeyaraj, P.R.; Nadar, E.R.S. Computer vision for automatic detection and classification of fabric defect employing deep learning algorithm. Int. J. Cloth. Sci. Technol. 2019, 31, 510–521. [Google Scholar] [CrossRef]
- Yapi, D.; Allili, M.; Baaziz, N. Automatic Fabric Defect Detection Using Learning-Based Local Textural Distributions in the Contourlet Domain. IEEE Trans. Autom. Sci. Eng. 2018, 15, 1014–1026. [Google Scholar] [CrossRef]
- Kočevar, T.N.; Gabrijelčič Tomc, H. Analysis of methods used for texture preparation for 3D visualisation of fabric porosity. J. Text. Inst. 2018, 109, 1270–1281. [Google Scholar] [CrossRef]
- Huang, Y.; Jing, J.; Wang, Z. Fabric Defect Segmentation Method Based on Deep Learning. IEEE Trans. Instrum. Meas. 2021, 70, 1–15. [Google Scholar] [CrossRef]
- Ashiba, H.; Ashiba, M. Novel Proposed Technique for Automatic Fabric Defect Detection. Multimed. Tools Appl. 2023, 1–24. [Google Scholar] [CrossRef]
Yarns Parameter | Plain Fabrics | Twill Fabrics | USTER® 50% Reference * | ||
---|---|---|---|---|---|
Warp (A) | Weft (B) | Warp (C) | Weft (D) | ||
Linear mass, Tex | 45.0 | 36.0 | 40.4 | 44.5 | - |
Twist per 1 m | 646 S | 604 S | 585 S | 582 Z | 600–650 |
English cotton count, Ne | 13.12 | 16.40 | 14.62 | 13.27 | 13–16 |
CVm (%) of linear mass | 11.40 | 13.93 | 12.03 | 10.60 | 12.5–14.0 |
Hairiness (fibers per 1 m) | 6.22 | 7.31 | 8.06 | 6.98 | 6.5–7.0 |
Thin places (−40%)/1000 m | 0 | 60 | 4 | 0 | 0-10 |
Thick (+35%)/1000 m | 80 | 572 | 293 | 99 | 100–600 |
Neps (+140%)/1000 m | 280 | 445 | 419 | 178 | 100–400 |
Breaking force, cN | 705 | 518 | 657 | 512 | - |
Tenacity, cN/Tex | 15.66 | 14.38 | 16.26 | 11.51 | 13–16 |
Breaking elongation, % | 4.41 | 5.38 | 12.88 | 6.5 | 4–10 |
Plain | Input | Output | Twill | Input | Output | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
uP | Xp1 | Xp2 | Xp3 | Xp4 | AirF | uT | Xt1 | Xt2 | Xt3 | Xt4 | AirF | |||||||
- | [o] | [cm] | [cm] | [cN/ Thread] | [%] | [%] | [%] | [mm/s] | - | [cm] | [o] | - | - | [%] | [%] | [%] | [mm/s] | |
The core of the plan | P1 | 374.4 | 102.5 | 84 | 12.76 | 35.49 | 25.18 | 60.67 | 577.36 | T1 | 102 | 330 | S | S | 32.30 | 60.24 | 92.54 | 210.09 |
P2 | 345.6 | 102.5 | 84 | 12.76 | 38.57 | 34.11 | 72.68 | 516.45 | T2 | 106 | 330 | S | S | 34.66 | 55.87 | 90.53 | 408.00 | |
P3 | 374.4 | 117.5 | 84 | 12.76 | 31.39 | 22.77 | 54.16 | 460.09 | T3 | 102 | 310 | S | S | 36.14 | 56.53 | 92.67 | 199.45 | |
P4 | 345.6 | 117.5 | 84 | 12.76 | 38.86 | 28.34 | 67.21 | 541.18 | T4 | 106 | 310 | S | S | 36.00 | 58.71 | 94.71 | 219.18 | |
P5 | 374.4 | 102.5 | 88 | 12.76 | 26.74 | 24.91 | 51.66 | 383.73 | T5 | 102 | 330 | Z | S | 37.09 | 55.37 | 92.46 | 381.55 | |
P6 | 345.6 | 102.5 | 88 | 12.76 | 27.78 | 24.99 | 52.77 | 412.09 | T6 | 106 | 330 | Z | S | 38.02 | 54.29 | 92.30 | 412.36 | |
P7 | 374.4 | 117.5 | 88 | 12.76 | 28.33 | 25.60 | 53.92 | 399.73 | T7 | 102 | 310 | Z | S | 32.72 | 51.06 | 83.77 | 358.82 | |
P8 | 345.6 | 117.5 | 88 | 12.76 | 29.01 | 30.66 | 59.67 | 418.55 | T8 | 106 | 310 | Z | S | 34.98 | 55.69 | 90.66 | 387.09 | |
P9 | 374.4 | 102.5 | 84 | 25.53 | 39.52 | 28.01 | 67.52 | 553.55 | T9 | 102 | 330 | S | Z | 39.69 | 65.96 | 105.66 | 367.00 | |
P10 | 345.6 | 102.5 | 84 | 25.53 | 39.65 | 27.94 | 67.60 | 579.64 | T10 | 106 | 330 | S | Z | 41.13 | 60.93 | 102.06 | 414.55 | |
P11 | 374.4 | 117.5 | 84 | 25.53 | 36.46 | 24.78 | 61.24 | 582.36 | T11 | 102 | 310 | S | Z | 34.44 | 62.12 | 96.56 | 368.91 | |
P12 | 345.6 | 117.5 | 84 | 25.53 | 47.13 | 45.20 | 92.33 | 620.91 | T12 | 106 | 310 | S | Z | 26.20 | 62.26 | 88.46 | 369.73 | |
P13 | 374.4 | 102.5 | 88 | 25.53 | 41.13 | 35.31 | 76.44 | 530.55 | T13 | 102 | 330 | Z | Z | 35.45 | 53.61 | 89.06 | 685.18 | |
P14 | 345.6 | 102.5 | 88 | 25.53 | 33.48 | 26.44 | 59.92 | 485.82 | T14 | 106 | 330 | Z | Z | 29.73 | 52.01 | 81.75 | 753.55 | |
P15 | 374.4 | 117.5 | 88 | 25.53 | 39.81 | 32.81 | 72.63 | 517.64 | T15 | 102 | 310 | Z | Z | 30.24 | 51.11 | 81.35 | 725.55 | |
P16 | 345.6 | 117.5 | 88 | 25.53 | 33.73 | 26.32 | 60.05 | 460.55 | T16 | 106 | 310 | Z | Z | 34.12 | 51.83 | 85.95 | 725.55 | |
Star point | P17 | 388.8 | 110 | 86 | 19.15 | - | - | - | - | T17 | 100 | 320 | S;Z | S;Z | 35.22 | 55.96 | 91.18 | 423.00 |
P18 | 331.2 | 110 | 86 | 19.15 | 30.84 | 26.85 | 71.66 | 444.91 | T18 | 108 | 320 | S;Z | S;Z | 31.20 | 57.21 | 88.41 | 459.27 | |
P19 | 360 | 90 | 86 | 19.15 | 36.27 | 35.39 | 68.74 | 475.09 | T19 | 104 | 360 | S;Z | S;Z | 34.51 | 60.73 | 95.24 | 510.73 | |
P20 | 360 | 125 | 86 | 19.15 | 36.45 | 32.29 | 60.92 | 463.00 | T20 | 104 | 303 | S;Z | S;Z | 37.59 | 60.12 | 97.71 | 428.09 | |
P21 | 360 | 110 | 82 | 19.15 | 36.40 | 24.52 | 53.88 | 510.73 | T21 | 104 | 360 | S | S;Z | 34.09 | 69.69 | 103.78 | 206.91 | |
P22 | 360 | 110 | 90 | 19.15 | 28.96 | 24.92 | 61.02 | 411.64 | T22 | 104 | 360 | Z | S;Z | 30.69 | 51.36 | 82.05 | 601.36 | |
P23 | 360 | 110 | 86 | 5.93 | 32.84 | 28.18 | 67.40 | 471.64 | T23 | 104 | 360 | S;Z | S | 37.42 | 58.34 | 95.76 | 306.36 | |
P24 | 360 | 110 | 86 | 31.91 | 38.34 | 29.06 | 62.64 | 558.91 | T24 | 104 | 360 | S;Z | Z | 33.97 | 47.77 | 81.74 | 528.55 | |
Center of the plan | P25 | 360 | 110 | 86 | 19.15 | 36.24 | 26.40 | 63.28 | 517.64 | T25 | 104 | 320 | S;Z | S;Z | 30.80 | 54.35 | 85.15 | 314.50 |
P26 | 360 | 110 | 86 | 19.15 | 36.74 | 26.54 | 63.59 | 503.73 | T26 | 104 | 320 | S;Z | S;Z | 35.81 | 55.92 | 91.73 | 317.25 | |
P27 | 360 | 110 | 86 | 19.15 | 35.08 | 28.51 | 65.98 | 500.18 | T27 | 104 | 320 | S;Z | S;Z | 31.73 | 56.69 | 88.42 | 314.00 | |
P28 | 360 | 110 | 86 | 19.15 | 38.06 | 27.92 | 66.54 | 511.64 | T28 | 104 | 320 | S;Z | S;Z | 30.62 | 51.55 | 82.17 | 316.75 | |
P29 | 360 | 110 | 86 | 19.15 | 38.25 | 28.29 | 61.12 | 495.27 | T29 | 104 | 320 | S;Z | S;Z | 34.89 | 56.49 | 91.38 | 315.00 | |
P30 | 360 | 110 | 86 | 19.15 | 33.32 | 27.80 | 64.95 | 526.18 | T30 | 104 | 320 | S;Z | S;Z | 34.81 | 52.20 | 87.00 | 314.50 | |
P31 | 360 | 110 | 86 | 19.15 | 35.36 | 29.60 | 60.67 | 543.55 | T31 | 104 | 320 | S;Z | S;Z | 29.17 | 55.60 | 84.77 | 316.25 |
F | Dependent Variable | R2 | R^2 | Most Significant Date(s) (Std. BETA, t, p) | Direction of Influence (Regression coeff. B) | |
---|---|---|---|---|---|---|
Model 1. 117.16 + (Xp12∙Xp4) − (0.001∙Xp33) − (1.026∙H) + (0.001∙H3) | (9) | |||||
10 | 0.27 | 0.26 | Xp12∙Xp4 (0.22, 6.15, 0.0000) Xp33 (−0.42, −13.19, 0.0000) H (−1.03, −6.07, 0.0000) H3 (0.76, 4.48, 0.0000) | ↑ (Xp12·Xp4), H3 ↓ Xp33, H | ||
Model 2. 216.94 + (0.30∙H) − (0.004∙H2) + (0.0001∙(Xp1 Xp2∙Xp4)) − (0.0002∙Xp33) + (0.0038 ∗ T3) − (0.04∙(Xp2∙Xp4)) − (0.11∙T2) − (Xp12∙Xp2) + Xp23 − Xp2 + (0.0002∙(Xp32∙Xp2)) | (10) | |||||
10 | 0.74 | 0.74 | Xp1·Xp2·Xp4 (17.04, 16.61, 0.0000) Xp2·Xp4 (−16.98, −16.94, 0.0000) Xp12·Xp2 (−1.70, −10.75, 0.0000) Xp32·Xp2 (7.28, 13.69, 0.0000) Xp33 (−3.88, −12.97, 0.0000) Xp23 (4.54, 18.48, 0.0000) Xp2 (−9.54, −19.07, 0.0000) H (1.28, 3.60, 0.0003) H2 (−1.85, −5.00, 0.0000) T3 (7.47, 15.95, 0.0000) T2 (−7.20, −14.99, 0.0000) | ↑ (Xp1·Xp2·Xp4), Xp23, (Xp32·Xp2), H, T3 ↓ (Xp12·Xp2), (Xp2·Xp4), Xp3, Xp33, H2, T2 | ||
Model 3. 149.66 + (Xp12∙Xp4) − (1.66∙H) − (0.0001∙Xp33) + (0.0002∙H3) | (11) | |||||
10 | 0.28 | 0.28 | Xp12 Xp4 (0.12, 3.58, 0.0003) Xp33 (−0.37, −11.50, 0.0000) H (−1.64, −9.72, 0.0000) H3 (1.29, 7.65, 0.0000) | ↑ (Xp12·Xp4), H3 ↓ Xp33, H |
F | Dependent Variable | R2 | R^2 | Most Significant Variables (Std. BETA, t, p-Value) | Direction of Influence (Regression coeff. B) | |
---|---|---|---|---|---|---|
Model 4. .44 + (4.25 Xt3) − (0.02 H2) | (12) | |||||
10 | 0.35 | 0.35 | Xt3 (0.57, 19.75, 0.0000) H2 (−0.14, −4.78, 0.0000) | ↑ Xt3 ↓ H2 | ||
Model 5. 28.90 − (2.76 Xt3) | (13) | |||||
10 | 0.03 | 0.03 | Xt3 (−0.17, −4.74, 0.0000) | ↓ Xt3 | ||
Model 6. 90.56 + (4.87 Xt3) | (14) | |||||
10 | 0.34 | 0.33 | Xt3 (0.58, 6.95, 0.0000) | ↑ Xt3 |
uP | P5 | P12 | P21 | uT | T9 | T12 | T24 | ||
Xp1 | 374.4–331.2° | 374.4 | 345.6 | 360 | Xt1 | 100–108 cm | 102 | 106 | 104 |
Xp2 | 95–125 cm | 102.5 | 117.5 | 110 | Xt2 | 360.0–303.0° | 330 | 310 | 360 |
Xp3 | 82–90 cm | 88 | 84 | 82 | Xt3 | S, S/Z, Z | S | S | S; Z |
Xp4 | 5.93–31.91 cN/thread | 12.76 | 25.53 | 19.15 | Xt4 | S, S/Z, Z | Z | Z | Z |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owczarek, M. Autoregulation of Woven Fabric Structure: Image-Based and Regression Analysis of Structural Homogeneity Under Varying Weaving Parameters. Materials 2025, 18, 3554. https://doi.org/10.3390/ma18153554
Owczarek M. Autoregulation of Woven Fabric Structure: Image-Based and Regression Analysis of Structural Homogeneity Under Varying Weaving Parameters. Materials. 2025; 18(15):3554. https://doi.org/10.3390/ma18153554
Chicago/Turabian StyleOwczarek, Magdalena. 2025. "Autoregulation of Woven Fabric Structure: Image-Based and Regression Analysis of Structural Homogeneity Under Varying Weaving Parameters" Materials 18, no. 15: 3554. https://doi.org/10.3390/ma18153554
APA StyleOwczarek, M. (2025). Autoregulation of Woven Fabric Structure: Image-Based and Regression Analysis of Structural Homogeneity Under Varying Weaving Parameters. Materials, 18(15), 3554. https://doi.org/10.3390/ma18153554