Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (127)

Search Parameters:
Keywords = woody plant richness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4695 KiB  
Article
Living Root-Mediated Soil Temperature Amplifies the Effects of Experimental Warming on Soil Microarthropod Communities in a Quercus mongolica Forest in Northeast China
by Chenglin Chi, Jiannan Wang, Rong Cui, Qianxue Wang and Jili Zhang
Insects 2025, 16(8), 809; https://doi.org/10.3390/insects16080809 - 5 Aug 2025
Viewed by 68
Abstract
The living roots of woody plants in forests play a crucial role in sustaining the soil temperature equilibrium. However, there is limited research investigating the effects of soil temperature balance disruption, influenced by living roots, on soil microarthropods, especially in the context of [...] Read more.
The living roots of woody plants in forests play a crucial role in sustaining the soil temperature equilibrium. However, there is limited research investigating the effects of soil temperature balance disruption, influenced by living roots, on soil microarthropods, especially in the context of global climate change. To address this knowledge gap, we conducted a three-year in situ simulation experiment involving either experimental warming or root trenching treatments to mimic environmental changes and their impacts on soil microarthropod communities in a temperate forest ecosystem in Northeast China. Statistical analysis focused on assessing the abundance and family richness of Collembola and Acari. Warming increased soil temperature, while root trenching had contrasting effects. In the absence of root trenching, warming positively influenced Collembola but negatively affected Acari. Conversely, when combined with root trenching, warming had a diminished impact on both Collembola and Acari. Our findings demonstrate that the interactive effects of warming on soil microarthropod communities vary depending on the presence or absence of root trenching. Specifically, within the context of root trenching treatment compared to no-root trenching treatment, warming exhibited a comparatively attenuated influence on soil microarthropod communities. Overall, living roots play a pivotal role in mediating soil temperature conditions, which significantly impact soil microarthropod communities in the context of global climate change. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

15 pages, 428 KiB  
Article
Biodiversity Patterns and Community Construction in Subtropical Forests Driven by Species Phylogenetic Environments
by Pengcheng Liu, Jiejie Jiao, Chuping Wu, Weizhong Shao, Xuesong Liu and Liangjin Yao
Plants 2025, 14(15), 2397; https://doi.org/10.3390/plants14152397 - 2 Aug 2025
Viewed by 487
Abstract
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns [...] Read more.
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns of soil nutrients and other environmental factors on the formation of forest diversity in different forest types, and clarify the differences in response to environmental heterogeneity between natural forests and plantation forests. Based on 48 fixed monitoring plots of 50 m × 50 m in Shouchang Forest Farm, Jiande City, Zhejiang Province, woody plants with a diameter at breast height ≥5 cm were investigated. Species diversity indices (Margalef index, Shannon–Wiener index, Simpson index, and Pielou index), phylogenetic structure index (PD), and environmental factors were used to analyze the relationship between diversity characteristics and environmental factors through variance analysis, correlation analysis, and generalized linear models. Phylogenetic structural indices (NRI and NTI) were used, combined with a random zero model, to explore the mechanisms of community construction in different forest types. Research has found that (1) the deciduous broad-leaved forest had the highest species diversity (Margalef index of 4.121 ± 1.425) and phylogenetic diversity (PD index of 21.265 ± 7.796), significantly higher than the mixed coniferous and broad-leaved forest and the Chinese fir plantation (p < 0.05); (2) there is a significant positive correlation between species richness and phylogenetic diversity, with the best fit being AIC = 70.5636 and R2 = 0.9419 in broad-leaved forests; however, the contribution of evenness is limited; (3) the specific effects of soil factors on different forest types: available phosphorus (AP) is negatively correlated with the diversity of deciduous broad-leaved forests (p < 0.05), total phosphorus (TP) promotes the diversity of coniferous and broad-leaved mixed forests, while the diversity of Chinese fir plantations is significantly negatively correlated with total nitrogen (TN); (4) the phylogenetic structure of three different forest types shows a divergent pattern in deciduous broad-leaved forests, indicating that competition and exclusion dominate the construction of deciduous broad-leaved forests; the aggregation mode of Chinese fir plantation indicates that environmental filtering dominates the construction of Chinese fir plantation; the mixed coniferous and broad-leaved forest is a transitional model, indicating that the mixed coniferous and broad-leaved forest is influenced by both stochastic processes and ecological niche processes. In different forest types in subtropical regions, the species and phylogenetic diversity of broad-leaved forests is significantly higher than in other forest types. The impact of soil nutrients on the diversity of different forest types varies, and the characteristics of community construction in different forest types are also different. This indicates the importance of protecting the original vegetation and provides a scientific basis for improving the ecological function of artificial forest ecosystems through structural adjustment. The research results have important practical guidance value for sustainable forest management and biodiversity conservation in the region. Full article
Show Figures

Figure 1

27 pages, 5548 KiB  
Article
Woody Vegetation Characteristics of Selected Rangelands Along an Aridity Gradient in Namibia: Implications for Rangeland Management
by Emilia N. Inman, Igshaan Samuels, Zivanai Tsvuura, Margaret Angula and Jesaya Nakanyala
Diversity 2025, 17(8), 530; https://doi.org/10.3390/d17080530 - 29 Jul 2025
Viewed by 271
Abstract
Rangelands form the ecological and economic backbone of Namibia, yet the woody plant dynamics that sustain these landscapes remain sporadically quantified across the semi-arid interior. We investigated the characteristics (stand structure, regeneration, richness, diversity, composition, ecological importance, and indicator species) of woody communities [...] Read more.
Rangelands form the ecological and economic backbone of Namibia, yet the woody plant dynamics that sustain these landscapes remain sporadically quantified across the semi-arid interior. We investigated the characteristics (stand structure, regeneration, richness, diversity, composition, ecological importance, and indicator species) of woody communities along a pronounced south-to-north rainfall gradient (85–346 mm yr−1) at five representative sites: Warmbad, Gibeon, Otjimbingwe, Ovitoto, and Sesfontein. Field sampling combined point-centered quarter surveys (10 points site−1) and belt transects (15 plots site−1). The basal area increased almost ten-fold along the gradient (0.4–3.4 m2 ha−1). Principal Coordinates Analysis (PCoA) arranged plots in near-perfect rainfall order, and Permutational Multivariate Analysis of Variance (PERMANOVA) confirmed significant site differences (F3,56 = 9.1, p < 0.001). Nanophanerophytes dominated hyper-arid zones, while microphanerophytes appeared progressively with increasing rainfall. Mean annual precipitation explained 45% of the variance in mean height and 34% of Shannon diversity but only 5% of stem density. Indicator value analysis highlighted Montinia caryophyllacea for Warmbad (IndVal = 100), Rhigozum trichotomum (75.8) for Gibeon, Senegalia senegal (72.6) for Otjimbingwe, and Senegalia mellifera (97.3) for Ovitoto. Rainfall significantly influences woody structure and diversity; however, other factors also modulate density and regeneration dynamics. This quantitative baseline can serve as a practical toolkit for designing site-specific management strategies across Namibia’s aridity gradient. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

13 pages, 1834 KiB  
Article
Ancient Lineages of the Western and Central Palearctic: Mapping Indicates High Endemism in Mediterranean and Arid Regions
by Şerban Procheş, Syd Ramdhani and Tamilarasan Kuppusamy
Diversity 2025, 17(7), 444; https://doi.org/10.3390/d17070444 - 23 Jun 2025
Viewed by 350
Abstract
The Palearctic region is characterised by high endemism in the west and east, and a low endemism centre. The endemic lineages occurring at the two ends are largely distinct, and eastern endemics are typically associated with humid climates and forests, representing the start [...] Read more.
The Palearctic region is characterised by high endemism in the west and east, and a low endemism centre. The endemic lineages occurring at the two ends are largely distinct, and eastern endemics are typically associated with humid climates and forests, representing the start of a continuum from temperate to tropical forest groups and leading to Indo-Malay endemics. In contrast, western Palearctic endemics are typically associated with arid or seasonally dry (Mediterranean) climates and vegetation. Those lineages occurring in the central Palearctic are typically of western origin. Here, we use phylogenetic age (older than 34 million years (My)) to define a list of tetrapod and vascular plant lineages endemic to the western and central Palearctic, map their distributions at the ecoregion scale, and combine these maps to illustrate and understand lineage richness and endemism patterns. Sixty-three ancient lineages were recovered, approximately half of them reptiles, with several herbaceous and shrubby angiosperms, amphibians, and rodents, and single lineages of woody conifers, insectivores, and birds. Overall, we show high lineage richness in the western Mediterranean, eastern Mediterranean, and Iran, with the highest endemism values recorded in the western Mediterranean (southern Iberian Peninsula, southern France). This paints a picture of ancient lineage survival in areas of consistently dry climate since the Eocene, but also in association with persistent water availability (amphibians in the western Mediterranean). The almost complete absence of ancient endemic bird lineages is unusual and perhaps unique among the world’s biogeographic regions. The factors accounting for these patterns include climate since the end of the Eocene, micro-habitats and micro-climates (of mountain terrain), refugia, and patchiness and isolation (of forests). Despite their aridity adaptations, some of the lineages listed here may be tested under anthropogenic climatic change, although some may extend into the eastern Palearctic. We recommend using these lineages as flagships for conservation in the study region, where their uniqueness and antiquity deserve greater recognition. Full article
Show Figures

Figure 1

25 pages, 1223 KiB  
Review
The Impact of Cattle Grazing on Shrub Biomass: A Review on Temperate Ecosystems
by Dimitrios Oikonomou, Maria Yiakoulaki, Yannis Kazoglou, Michael Vrahnakis and Gavriil Xanthopoulos
Land 2025, 14(6), 1277; https://doi.org/10.3390/land14061277 - 14 Jun 2025
Viewed by 735
Abstract
Cattle grazing is particularly important to natural and semi-natural ecosystems, having often replaced grazing by smaller domestic ruminants such as goats and sheep. While cattle are mainly considered grazers rather than browsers, the pressures, direct or indirect, they exert on shrub encroachment are [...] Read more.
Cattle grazing is particularly important to natural and semi-natural ecosystems, having often replaced grazing by smaller domestic ruminants such as goats and sheep. While cattle are mainly considered grazers rather than browsers, the pressures, direct or indirect, they exert on shrub encroachment are significant. Thus, their grazing and browsing activities can often be considered complementary to ecosystem management, especially in landscapes characterized by shrub presence and frequent wildfires. Several factors may influence the impact of cattle browsing, including the stocking rate, the specific breed of cattle, and their adaptation to the respective ecosystem, as well as the particular type of ecosystem. This review examines the impact of cattle browsing on shrubs across various temperate ecosystems. Findings indicate that cattle usually consume only 5–10% of woody forage, but exceptional browsers like Highland cattle can consume up to 45%, making them promising for controlling shrub encroachment. Nevertheless, grazing often negatively impacts shrub richness, especially when combined with management interventions or wildfires, thereby raising concerns about plant regeneration. Future research should prioritize the ecological value of indigenous browsing cattle breeds over productivity-focused goals; however, several studies fail to specify the breeds examined, thereby limiting the ability to draw breed-specific conclusions. Full article
Show Figures

Figure 1

15 pages, 4535 KiB  
Article
Population Size and Microhabitat Characteristics of the Endangered Endemic Plant Pedicularis hallaisanensis
by Chang Woo Lee, Hwan-Joon Park, Jung Eun Hwang, Hyeong Bin Park, Young-Joong Kim and Seongjun Kim
Diversity 2025, 17(6), 377; https://doi.org/10.3390/d17060377 - 27 May 2025
Viewed by 378
Abstract
Pedicularis hallaisanensis is a strictly biennial, hemiparasitic herb endemic to Republic of Korea and listed as an endangered species. Its populations are limited to high-altitude habitats, with recent surveys confirming survival only in Gayasan. This study aimed to assess the population size and [...] Read more.
Pedicularis hallaisanensis is a strictly biennial, hemiparasitic herb endemic to Republic of Korea and listed as an endangered species. Its populations are limited to high-altitude habitats, with recent surveys confirming survival only in Gayasan. This study aimed to assess the population size and ecological traits of P. hallaisanensis to inform conservation strategies. We established 23 quadrats at 1400–1410 m above sea level and collected microhabitat data (air temperature, soil moisture, electroconductivity, vegetation cover, and species richness) from 2022 to 2024. Flora composition and pollinator species were surveyed, with bumblebees (Bombus ignitus, B. hypocrita sapporoensis) identified as the most frequent pollinators. General linear mixed models and Pearson’s correlation analysis showed a strong positive relationship between species richness and population size and between vegetation cover and stem height. The study area’s average temperature was 6.3 °C below Republic of Korea’s national average, suggesting that climate change could disrupt the microclimatic conditions necessary for this species’ survival. The findings highlight the importance of maintaining plant diversity and controlling invasive woody species to sustain P. hallaisanensis populations. Targeted conservation measures, including habitat management and ex situ propagation, are recommended to safeguard this vulnerable species. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

16 pages, 1878 KiB  
Article
Deterministic Processes Dominantly Shape Ectomycorrhizal Fungi Community Associated with Pinus tabuliformis, an Endemic Tree Species in China
by Yongjun Fan, Zhimin Yu, Jinyan Li, Xinyu Li, Lu Wang, Jiani Lu, Jianjun Ma and Yonglong Wang
Horticulturae 2025, 11(5), 545; https://doi.org/10.3390/horticulturae11050545 - 18 May 2025
Viewed by 395
Abstract
Pinus tabuliformis is a well-recognized woody mycorrhizae host plant growing in North China. EM fungi contribute to the host health and the stability of the forest ecosystem. However, ectomycorrhiae (EM) fungal community associated with this species is less documented. In this study, we [...] Read more.
Pinus tabuliformis is a well-recognized woody mycorrhizae host plant growing in North China. EM fungi contribute to the host health and the stability of the forest ecosystem. However, ectomycorrhiae (EM) fungal community associated with this species is less documented. In this study, we examined EM fungal diversity and composition of P. tabuliformis from three sites in Inner Mongolia, China by using Illumina MiSeq sequencing on the rDNA ITS2 region. Our results showed that a total of 105 EM fungal operational taxonomic units (OTUs) were identified from 15 composite root samples, and the dominant lineages were /suillus-rhizopogon, /tomentella-thelephora, /tricholoma, /amphinema-tylospora, /wilcoxina, /inocybe, and /Sebacina. A high proportion of unique EM fungal OTUs (33, 31.4% of total OTUs) were detected, and some abundant OTUs preferred to exist in specific sites. The composition of EM fungal communities was significantly different among the sites, with soil, climatic, and spatial variables being related to the community variations. The EM fungal community assembly was mainly driven by environmental factors in deterministic processes. These findings suggest that this endemic Pinaceae species in China also harbored a rich and distinctive EM fungal community and deterministic processes played more important roles than stochastic in shaping the symbiotic fungal community. Our study improves our understanding of EM fungal diversity and community structure from the perspective of a single host plant that has not been investigated exclusively before. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

19 pages, 14137 KiB  
Article
Morphology and Phylogeny Reveal New Species and Records of Diplodia, Dothiorella, and Phaeobotryon Associated with Tree Cankers in Xizang, China
by Jia Zhou, Aining Li and Ning Jiang
J. Fungi 2025, 11(5), 331; https://doi.org/10.3390/jof11050331 - 22 Apr 2025
Viewed by 731
Abstract
The fungal family Botryosphaeriaceae, which includes genera such as Diplodia, Dothiorella, and Phaeobotryon, comprises species commonly associated with woody plants such as endophytes, pathogens, and saprophytes. The Xizang Autonomous Region of China, known for its rich forest resources, harbors significant [...] Read more.
The fungal family Botryosphaeriaceae, which includes genera such as Diplodia, Dothiorella, and Phaeobotryon, comprises species commonly associated with woody plants such as endophytes, pathogens, and saprophytes. The Xizang Autonomous Region of China, known for its rich forest resources, harbors significant fungal diversity. However, limited research has been conducted on plant-disease-associated fungi in this region. In this study, we employed morphological characteristics and molecular phylogenetic analyses of the internal transcribed spacer region of rDNA (ITS), the ribosomal large subunit (LSU), the translation elongation factor 1-alpha (tef1) gene, and the partial beta-tubulin (tub2) gene to identify fungal species. As a result, two new species, Diplodia salicicola sp. nov. and Phaeobotryon xizangense sp. nov., are proposed and described herein. Additionally, Di. corticola, Di. mutila, Do. acericola, Do. magnoliae, Do. vidmadera, Do. yunnana comb. nov., and Do. zanthoxyli are reported for the first time in Xizang. Our findings contribute to advancing the knowledge of fungal biodiversity in Xizang’s high-altitude ecosystems. Full article
(This article belongs to the Special Issue Advanced Research of Ascomycota)
Show Figures

Figure 1

17 pages, 9707 KiB  
Article
Investigating the Distribution Dynamics of the Camellia Subgenus Camellia in China and Providing Insights into Camellia Resources Management Under Future Climate Change
by Yue Xu, Bing-Qian Guan, Ran Chen, Rong Yi, Xiao-Long Jiang and Kai-Qing Xie
Plants 2025, 14(7), 1137; https://doi.org/10.3390/plants14071137 - 6 Apr 2025
Cited by 1 | Viewed by 758
Abstract
Rapid climate change has significantly impacted species distribution patterns, necessitating a comprehensive understanding of dominant tree dynamics for effective forest resource management and utilization. The Camellia subgenus Camellia, a widely distributed taxon in subtropical China, represents an ecologically and economically important group [...] Read more.
Rapid climate change has significantly impacted species distribution patterns, necessitating a comprehensive understanding of dominant tree dynamics for effective forest resource management and utilization. The Camellia subgenus Camellia, a widely distributed taxon in subtropical China, represents an ecologically and economically important group of woody plants valued for both oil production and ornamental purposes. In this study, we employed the BIOMOD2 ensemble modeling framework to investigate the spatial distribution patterns and range dynamics of the subgenus Camellia under projected climate change scenarios. Our analysis incorporated 1455 georeferenced occurrence records from 15 species, following the filtering of duplicate points, along with seven bioclimatic variables selected after highly correlated factors were eliminated. The ensemble model, which integrates six single species distribution models, demonstrated robust predictive performance, with mean true skil l statistic (TSS) and area under curve (AUC) values exceeding 0.8. Our results identified precipitation of the coldest quarter (Bio19) and temperature seasonality (Bio4) as the primary determinants influencing species distribution patterns. The center of species richness for the subgenus Camellia was located in the Nanling Mountains and eastern Guangxi Zhuang Autonomous Region. The projections indicate an overall expansion of suitable habitats for the subgenus under future climate conditions, with notable scenario-dependent variations: distribution hotspots are predicted to increase by 8.86% under the SSP126 scenario but experience a 2.53% reduction under the SSP585 scenario. Furthermore, a westward shift in the distribution centroid is anticipated. To ensure long-term conservation of Camellia genetic resources, we recommend establishing a germplasm conservation center in the Nanling Mountains region, which represents a critical biodiversity hotspot for this taxon. Full article
(This article belongs to the Special Issue Plant Conservation Science and Practice)
Show Figures

Figure 1

19 pages, 2217 KiB  
Article
Importance of Traditional Vanilla Cultivation in the Conservation of Plant Diversity in Tropical Forests in Northern Veracruz, Mexico
by Noé Velázquez-Rosas, Santiago Sinaca Colin, Guillermo Vázquez-Domínguez, Abril Velasco-Murguía, Evodia Silva Rivera, Betsabé Ruiz-Guerra, Fabio Levi Friedrich, Rosenda Cortés Galindo, Samaria Armenta-Montero and Rodolfo Martínez-Mota
Sustainability 2025, 17(6), 2598; https://doi.org/10.3390/su17062598 - 15 Mar 2025
Viewed by 713
Abstract
The significance of traditional agroforestry systems in preserving and enhancing tropical forest biodiversity in landscapes dominated by human activities has recently been recognized. We assessed the role of traditional vanilla cultivation on sustaining plant diversity in the tropical forests of northern Veracruz, Mexico. [...] Read more.
The significance of traditional agroforestry systems in preserving and enhancing tropical forest biodiversity in landscapes dominated by human activities has recently been recognized. We assessed the role of traditional vanilla cultivation on sustaining plant diversity in the tropical forests of northern Veracruz, Mexico. We analyzed the composition, alpha (Shannon and Simpson exponential) and beta diversity, the structure (stem density and basal area) and types of regeneration of woody plants across different vanilla production systems, including traditional vanilla plots, the agroforestry production of vanilla, the citrus–vanilla system, and fragments of tropical rain forest. Our findings revealed that traditional vanilla plots preserve 67% of the woody plants’ richness, with an alpha diversity similar to that of the forest fragments. The similarity between vanilla production systems and vegetation fragments was less than 30%. Traditional vanilla plots accounted for 34% of the basal area and had a stem density similar to that of the forest, while retaining 25% of shade-tolerant species. These results suggest that traditional vanilla plots are key landscape elements for conserving plant diversity and supporting the ecological functions of tropical forests. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

21 pages, 5209 KiB  
Article
Agrobacterium rhizogenes-Mediated Hairy Root Genetic Transformation Using Agrobacterium Gel Inoculation and RUBY Reporter Enables Efficient Gene Function Analysis in Sacha Inchi (Plukenetia volubilis)
by Kai Lin, Li-Xin Lu, Bang-Zhen Pan, Xia Chai, Qian-Tang Fu, Xian-Chen Geng, Yi Mo, Yu-Chong Fei, Jia-Jing Xu, Meng Li, Jun Ni and Zeng-Fu Xu
Int. J. Mol. Sci. 2025, 26(6), 2496; https://doi.org/10.3390/ijms26062496 - 11 Mar 2025
Viewed by 1499
Abstract
Plukenetia volubilis L., a woody oilseed plant rich in α-linolenic acid, represents a promising source of polyunsaturated fatty acids. However, the lack of an efficient genetic transformation system has significantly hindered gene function research and molecular breeding in P. volubilis. In this [...] Read more.
Plukenetia volubilis L., a woody oilseed plant rich in α-linolenic acid, represents a promising source of polyunsaturated fatty acids. However, the lack of an efficient genetic transformation system has significantly hindered gene function research and molecular breeding in P. volubilis. In this study, we developed a highly efficient Agrobacterium rhizogenes-mediated hairy root transformation system for P. volubilis via the use of Agrobacterium gel in combination with the visually detectable RUBY reporter for gene function analysis in roots. The results indicate that the optimal transformation method involves infecting P. volubilis seedlings with Agrobacterium gel containing acetosyringone and inducing hairy root formation in perlite. This approach resulted in more than 18.97% of the seedlings producing positive hairy roots overexpressing the RUBY gene. Using this genetic transformation system, we successfully overexpressed the antimicrobial peptide-encoding gene CEMA in hairy roots, which enhanced the resistance of P. volubilis to Fusarium oxysporum. Furthermore, by combining this transformation system with the CRISPR-Cas9 tool, we validated the regulatory role of PvoSHR in the development of root epidermal cells in P. volubilis. Unexpectedly, a 123-bp DNA fragment from the T-DNA region of the A. rhizogenes Ri plasmid was found to be knocked in to the P. volubilis genome, replacing a 110-bp fragment of PvoSHR at CRISPR-Cas9 induced double-strand DNA breaks. Conclusively, this system provides a powerful tool for gene function research in P. volubilis and provides novel insights into the development of transformation and gene editing systems for other woody plants. Full article
Show Figures

Figure 1

19 pages, 5786 KiB  
Article
Ecological Relationships Between Woody Species Diversity and Propagation Strategies of Aulonemia queko
by Hugo Cedillo, Luis G. García-Montero, Fernando Bermúdez, Andrés Arciniegas, Mélida Rocano and Oswaldo Jadán
Plants 2025, 14(5), 744; https://doi.org/10.3390/plants14050744 - 1 Mar 2025
Viewed by 669
Abstract
This study explores how floristic composition, diversity, and woody vegetation structure vary across floristic zones in Andean montane forests under the dominance of Aulonemia queko Goudot (Poaceae, Bambusoideae) dominance. As a culturally and ecologically significant non-timber forest product, A. queko plays a key [...] Read more.
This study explores how floristic composition, diversity, and woody vegetation structure vary across floristic zones in Andean montane forests under the dominance of Aulonemia queko Goudot (Poaceae, Bambusoideae) dominance. As a culturally and ecologically significant non-timber forest product, A. queko plays a key role in shaping plant communities and requires effective propagation strategies for sustainable management. Significant differences in floristic composition were observed among zones, with indicator species identified in the lower and upper zones. However, despite environmental variability, species richness and structural attributes remained stable across the elevation gradient, suggesting resilience in woody plant communities. A. queko density was highest in the upper zone, while its basal area peaked in the lower and middle zones, probably shaping floristic composition through competitive interactions and habitat modification. Propagation experiments revealed that shoots with rhizomes exhibited higher survival and growth, particularly in mulch substrates with 1000 ppm indole-3-butyric acid (IBA), highlighting the importance of shoot type, substrate, and hormone dose. These findings suggest that A. queko is a structuring species and a potential restoration target. However, its dominance may alter forest composition, requiring adaptive management strategies that balance its ecological role with conservation and sustainable use, ensuring biodiversity and ecosystem resilience. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

18 pages, 4751 KiB  
Article
Genome-Wide Identification of the WD40 Gene Family in Walnut (Juglans regia L.) and Its Expression Profile in Different Colored Varieties
by Ruimin Xi, Jiayu Ma, Xinyi Qiao, Xinhao Wang, Hang Ye, Huijuan Zhou, Ming Yue and Peng Zhao
Int. J. Mol. Sci. 2025, 26(3), 1071; https://doi.org/10.3390/ijms26031071 - 26 Jan 2025
Cited by 1 | Viewed by 912
Abstract
The walnut (Juglans regia) is a woody oilseed crop with high economic and food value as its kernels are edible and its hulls can be widely used in oil extraction and plugging, chemical raw materials, and water purification. Currently, red walnut [...] Read more.
The walnut (Juglans regia) is a woody oilseed crop with high economic and food value as its kernels are edible and its hulls can be widely used in oil extraction and plugging, chemical raw materials, and water purification. Currently, red walnut varieties have emerged, attracting consumer interest due to their high nutritional values as they are rich in anthocyanins. WD40 is a widespread superfamily in eukaryotes that play roles in plant color regulation and resistance to stresses. In order to screen for JrWD40 associated with walnut color, we identified 265 JrWD40s in walnuts by genome-wide identification, which were unevenly distributed on 16 chromosomes. According to the phylogenetic tree, all JrWD40s were classified into six clades. WGD (Whole genome duplication) is the main reason for the expansion of the JrWD40 gene family. JrWD40s were relatively conserved during evolution, but their gene structures were highly varied; lower sequence similarity may be the main reason for the functional diversity of JrWD40s. Some JrWD40s were highly expressed only in red or green walnuts. In addition, we screened 16 unique JrWD40s to walnuts based on collinearity analysis. By qRT-PCR, we found that JrWD40-133, JrWD40-150, JrWD40-155, and JrWD40-206 may regulate anthocyanin synthesis through positive regulation, whereas JrWD40-65, JrWD40-172, JrWD40-191, JrWD40-224, and JrWD40-254 may inhibit anthocyanin synthesis, suggesting that these JrWD40s are key genes affecting walnut color variation. Full article
(This article belongs to the Special Issue Advances in Genetics and Phylogenomics of Tree)
Show Figures

Figure 1

16 pages, 2622 KiB  
Article
The Influence of Basal Medium on Polyphenol Accumulation in Shoot Cultures of Clerodendrum trichotomum and Clerodendrum colebrookianum
by Jan Gomulski, Marta Krzemińska, Magdalena Jochymek, Anna K. Kiss and Izabela Grzegorczyk-Karolak
Molecules 2024, 29(24), 5983; https://doi.org/10.3390/molecules29245983 - 19 Dec 2024
Viewed by 969
Abstract
Plants of the Clerodendrum genus, known for their rich phytochemical profiles, are used in traditional Chinese, Korean, Japanese, and Indian medicine to treat various ailments, including inflammation, hypertension, diabetes, hyperlipidemia, and cancer. Due to the limited natural availability of these plants, there is [...] Read more.
Plants of the Clerodendrum genus, known for their rich phytochemical profiles, are used in traditional Chinese, Korean, Japanese, and Indian medicine to treat various ailments, including inflammation, hypertension, diabetes, hyperlipidemia, and cancer. Due to the limited natural availability of these plants, there is a growing interest in utilizing in vitro culture techniques to produce their bioactive compounds sustainably. In this study, the effects are compared of Murashige and Skoog (MS), Woody Plant medium (WP), Gamborg B5 (B5), and Schenk and Hildebrandt (SH) basal media on growth, biomass accumulation, and polyphenolic compound production in shoot cultures of Clerodendrum colebrookianum and Clerodendrum trichotomum. The composition of the culture medium significantly influenced the growth and metabolic profiles of both species. C. trichotomum exhibited the highest proliferation potential on WP and SH media, while C. colebrookianum was similar on WP, SH, and B5 media (multiplication factor of about 20). Dry weight accumulation was highest in C. trichotomum grown on SH medium (0.292 g/culture), while C. colebrookianum achieved a comparable biomass on SH and WP media (0.240 g/culture and 0.228 g/culture, respectively). The chemical analysis showed similar secondary metabolite profiles between the two Clerodendrum species with phenylethanoids such as acteoside being the predominant bioactive compounds in hydromethanolic extracts. WP medium was the most favorable for polyphenol accumulation in C. colebrookianum (64.5 mg/g DW), while the SH medium yielded the highest total polyphenol content in C. trichotomum (36.6 mg/g DW). In this study, the importance is underscored of basal medium selection in optimizing the in vitro production of bioactive polyphenolic compounds in Clerodendrum species, providing a foundation for the sustainable and scalable production of these pharmacologically significant metabolites. Full article
(This article belongs to the Special Issue Bioactive Phenolic and Polyphenolic Compounds, 3rd Edition)
Show Figures

Figure 1

15 pages, 4595 KiB  
Article
Anthropogenic Drivers of Small-Island Effects in Urban Remnant Woody Plants
by Di Kong, Kai Wang, Lin Dong, Jinming Yang, Zhiwen Gao and Hong Liang
Plants 2024, 13(24), 3522; https://doi.org/10.3390/plants13243522 - 17 Dec 2024
Cited by 1 | Viewed by 1841
Abstract
The positive relationship between species richness and area is a fundamental principle in ecology. However, this pattern deviates on small islands, where species richness either changes independently of area or increases at a slower rate—a phenomenon known as the Small-Island Effect (SIE). While [...] Read more.
The positive relationship between species richness and area is a fundamental principle in ecology. However, this pattern deviates on small islands, where species richness either changes independently of area or increases at a slower rate—a phenomenon known as the Small-Island Effect (SIE). While the SIE has been well documented in natural ecosystem, its presence in highly fragmented and disturbed urban ecosystem remains unexplored, posing challenges for urban vegetation conservation. Urban remnant vegetation, isolated by surrounding infrastructures, preserves intact zonal vegetation characteristics, serves as a benchmark for restoring near-natural habitats and offers ideal conditions to test the existence of the SIE in urban area landscapes. In this study, we surveyed 17 remnant vegetation patches in Qingdao City, China. A total of 331 plants attributed to 255 genera in 81 families have been recorded. Firstly, by using six species–area relationship regression models testing the SIE for remnant vegetation with different plant life forms, we found the SIE in only woody plants, with the land surface area threshold ranging from 6.38 ha (tree) to 11.91 ha (shrub). Our finding revealed that the drivers of the SIE in shrubs were landscape shape index, perimeter–area ratio, and the proportion of sealed surfaces within the patch. For trees, the SIE was influenced by the distance to the source of species, GDP, night light intensity, and perimeter–area ratio. This finding justifies that conservation in urban planning, construction, and development should focus not only on protecting large areas but also on maintaining and promoting diverse habitats within these areas. At the same time, reducing anthropogenic disturbance and enhancing the connectivity of green spaces are important for the persistence of metacommunities and can contribute to the local species pool, thus potentially improving the ecological resilience of urban environments. Full article
Show Figures

Figure 1

Back to TopTop