Investigating the Distribution Dynamics of the Camellia Subgenus Camellia in China and Providing Insights into Camellia Resources Management Under Future Climate Change
Abstract
1. Introduction
2. Results
2.1. Model Accuracy Evaluation
2.2. Climate Effects on Species Distribution
2.3. Current Distribution Patterns
2.4. Effects of Climate Change on the Distribution Patterns of Subgenus Camellia
2.5. Centroid Shift Under Climatic Scenarios
3. Discussion
3.1. Overall Model Evaluation
3.2. Climatic Contributions to Distribution Patterns
3.3. Species Distribution Dynamics
3.4. Resources Management and Study Limitation
4. Materials and Methods
4.1. Study Area
4.2. Occurrence Data Collection
4.3. Environmental Variable Selection
4.4. Species Distribution Model Construction and Evaluation
4.5. Species Distribution Patterns and Centroid Migration Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Wang, T.; Zhang, X.; Wang, J.; Yang, Y.; Sun, Y.; Guo, X.; Wu, Q.; Nepovimova, E.; Watson, A.E.; et al. Biodiversity conservation in the context of climate change: Facing challenges and management strategies. Sci. Total Environ. 2024, 937, 173377. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.M.B.; Beaumont, L.J.; Vance, T.R.; Tozer, C.R.; Remenyi, T.A.; Perkins-Kirkpatrick, S.E.; Mitchell, P.J.; Nicotra, A.B.; McGregor, S.; Andrew, N.R.; et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 2018, 8, 579–587. [Google Scholar] [CrossRef]
- Huang, C.M.; Liu, H.L. How Will the Weather Change Along with Global Warming? J. Shanghai Jiao Tong Univ. 2021, 55, 72–73. [Google Scholar] [CrossRef]
- Kelly, A.E.; Goulden, M.L. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. USA 2008, 105, 11823–11826. [Google Scholar] [CrossRef]
- Hou, Y.Z.; Zhao, W.W.; Liu, Y.X. Natural declines are “unprecedented” and extinction rates are “accelerating,” according to the IPBES Global Assessment. Acta Ecol. Sin. 2019, 39, 6943–6949. [Google Scholar] [CrossRef]
- Pongen, R. Keystone species: Ecological architects of biodiversity and stability: Review. Int. J. Sci. Res. Arch. 2024, 11, 1137–1152. [Google Scholar] [CrossRef]
- Zhu, H. Vegetation geography of evergreen broad-leaved forests in Yunnan, southwestern China. Chin. J. Plant Ecol. 2021, 45, 224–241. [Google Scholar] [CrossRef]
- Hua, F.Y.; Bruijnzeel, L.A.; Meli, P.; Martin, P.A.; Zhang, J.; Nakagawa, S.; Miao, X.R.; Wang, W.Y.; McEvoy, C.; Peña-Arancibia, J.L.; et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 2022, 376, 839–844. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Franklin, J. Species distribution modelling supports the study of past, present and future biogeographies. J. Biogeogr. 2023, 50, 1533–1545. [Google Scholar] [CrossRef]
- Pulliam, H.R. On the relationship between niche and distribution. Ecol. Lett. 2002, 3, 349–361. [Google Scholar] [CrossRef]
- Liu, X.T.; Yuan, Q.; Ni, J. Research advances in modelling plant species distribution in China. Chin. J. Plant Ecol. 2019, 43, 273–283. [Google Scholar] [CrossRef]
- Austin, M.P. Spatial prediction of species distribution: An interface between ecological theory and statistical modelling. Ecol. Model. 2002, 157, 101–118. [Google Scholar] [CrossRef]
- Valavi, R.; Guillera-Arroita, G.; Lahoz-Monfort, J.J.; Elith, J. Predictive performance of presence-only species distribution models: A benchmark study with reproducible code. Ecol. Monogr. 2022, 92, e01486. [Google Scholar] [CrossRef]
- Thuiller, W. Biodiversity: Climate change and the ecologist. Nature 2007, 448, 550–552. [Google Scholar] [CrossRef]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 2010, 32, 369–373. [Google Scholar] [CrossRef]
- Araujo, M.; New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 2007, 22, 42–47. [Google Scholar] [CrossRef]
- Min, T.L.; Zhang, W.J. The evolution and distribution of genus Camellia. Plant Divers. 1996, 18, 1–13. [Google Scholar]
- Luo, C.Q.; Tan, X.F.; Qi, L.L. A Classification Summary on Plant of Genus Camellia. J. Cent. South For. Univ. 1999, 19, 78–81. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Peng, H.; Li, D.Z. Flora of China; Science Press: Beijing, China, 1998; Volume 49. [Google Scholar]
- Qin, S.Y.; Rong, J.; Zhang, W.J.; Chen, J.K. Cultivation history of Camellia oleifera and genetic resources in the Yangtze River Basin. Biodivers. Sci. 2018, 26, 384–395. [Google Scholar] [CrossRef]
- Min, T.L. The Classification, Differentiation and Distribution of the Genus Camellia Sect. Camellia. Acta Bot. Yunnanica 1998, 20, 2–23. [Google Scholar]
- Cui, Y.; Men, Y.Y.; Chen, H.H.; Lu, Y.T.; Mao, Z.J.; Liang, R.F.; Liu, Y.H. Analysis on Resources of Sect. Furfuracea Plants of Camellia and Their Application in the Garden in China. J. Anhui Agric. Sci. 2011, 39, 14329–14330. [Google Scholar] [CrossRef]
- Chen, S.S.; Liu, X.; Tong, X.Y.; Guan, B.C. Prediction of Camellia edithae species distribution based on multi-model combination. Ecol. Sci. 2020, 39, 58–66. [Google Scholar] [CrossRef]
- Gao, C.; Fan, Z.F.; Ma, C.L.; Yang, J.X.; Guo, S.L. Prediction of suitable area of Camellia reticulata under climate change based on the Biomod2 ensemble model. Chin. J. Ecol. 2024, 43, 3526–3536. [Google Scholar] [CrossRef]
- Zhu, G.P.; Qiao, H.J. Effect of the Maxent model’s complexity on the prediction of species potential distributions. Biodivers. Sci. 2016, 24, 1189–1196. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, Y.; Li, M. Review of Development and Application of Artificial Neural Network Models. Comput. Eng. Appl. 2021, 57, 57–69. [Google Scholar] [CrossRef]
- Yang, Q.P.; Wu, W.; Liu, H.B. Prediction of spatial distribution of soil available iron in a typical hilly farmland using terrain attributes and random forest model. Chin. J. Eco-Agric. 2018, 26, 422–431. [Google Scholar] [CrossRef]
- Kuemmerlen, M.; Schmalz, B.; Guse, B.; Cai, Q.; Fohrer, N.; Jähnig, S.C. Integrating catchment properties in small scale species distribution models of stream macroinvertebrates. Ecol. Model. 2014, 277, 77–86. [Google Scholar] [CrossRef]
- Araújo, M.B.; Peterson, A.T. Uses and misuses of bioclimatic envelope modeling. Ecology 2012, 93, 1527–1539. [Google Scholar] [CrossRef]
- Qiao, H.J.; Soberón, J.; Peterson, A.T. No silver bullets in correlative ecological niche modelling: Insights from testing among many potential algorithms for niche estimation. Methods Ecol. Evol. 2015, 6, 1126–1136. [Google Scholar] [CrossRef]
- Qiao, H.J.; Hu, J.H.; Huang, J.H. Theoretical Basis, Future Directions, and Challenges for Ecological Niche Models. Sci. Sin. 2013, 43, 915–927. [Google Scholar] [CrossRef]
- Buisson, L.; Thuiller, W.; Casajus, N.; Lek, S.; Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 2010, 16, 1145–1157. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, S.M.; Wei, B.; Wang, C.C.; Zhang, L.; Yan, H. Historical distribution pattern and driving mechanism of Haloxylon in China. Biodivers. Sci. 2022, 30, 21192. [Google Scholar] [CrossRef]
- Bi, Y.F.; Xu, J.C.; Li, Q.H.; Guisan, A.; Thuiller, W.; Zimmermann, N.E. Applying BioMod for Model-Ensemble in Species Distributions:a Case Study for Tsuga chinensis in China. Plant Divers. 2013, 35, 647–655. [Google Scholar] [CrossRef]
- Xian, X.Q.; Zhao, H.X.; Wang, R.; Huang, H.K.; Chen, B.X.; Zhang, G.F.; Liu, W.X.; Wan, F.H. Climate change has increased the global threats posed by three ragweeds (Ambrosia L.) in the Anthropocene. Sci. Total Environ. 2023, 859, 160252. [Google Scholar] [CrossRef]
- Lv, J.J.; Wu, J.G. Advances in the Effects of Climate Change on the Distribution of Plant Species and Vegetation in China. Environ. Sci. Technol. 2009, 32, 85–95. [Google Scholar] [CrossRef]
- Xiao, J.H.; Ding, X.; Cai, C.N.; Zhang, C.Y.; Zhang, X.Y.; Li, L.; Li, J. Simulation of the potential distribution of Phoebe bournei with climate changes using the maximum-entropy(MaxEnt)model. Acta Ecol. Sin. 2021, 41, 5703–5712. [Google Scholar] [CrossRef]
- Zou, W.; Wang, L.; Lai, T.; Zhu, X.F.; Chen, F.S.; Zeng, J.P. Distribution, influencing factors and gaps analysis of Manglietia fordiana: Implications of conservation to mountain broad-leaved forests. Acta Ecol. Sin. 2022, 42, 1889–1900. [Google Scholar] [CrossRef]
- Ying, J.S. Species diversity and distribution pattern of seed plants in China. Biodivers. Sci. 2001, 9, 393–398. [Google Scholar] [CrossRef]
- Peng, W.F.; Zhang, D.M.; Luo, Y.M.; Tao, S.; Xu, X.L. Influence of natural factors on vegetation NDVI using geographical detection in Sichuan Province. Acta Geogr. Sin. 2019, 74, 1758–1776. [Google Scholar] [CrossRef]
- Stevens, G.C. The Latitudinal Gradient in Geographical Range: How so Many Species Coexist in the Tropics. Am. Nat. 1989, 133, 240–256. [Google Scholar] [CrossRef]
- Feng, J.M. Spatial patterns of species diversity of seed plants in China and their climatic explanation. Biodivers. Sci. 2008, 16, 470–476. [Google Scholar] [CrossRef]
- Simberloff, D.; Rapoport, E.; Drausal, B. Areography: Geographical Strategies of Species. J. Biogeogr. 1983, 10, 161. [Google Scholar] [CrossRef]
- Cui, X.Y.; Wang, W.J.; Yang, X.Q.; Li, S.; Qin, S.Y.; Rong, J. Potential distribution of wild Camellia oleifera based on ecological niche modeling. Biodivers. Sci. 2016, 24, 1117–1128. [Google Scholar] [CrossRef]
- Yan, S.X.; Li, Y.H.; Wei, F.Y. Geographical Distribution of Magnoliaceae Plants in China. Plant Sci. J. 2008, 26, 379–384. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Liao, Z.Y.; Pan, K.W.; Zhang, M.; Zhao, Y.L.; Zhang, L. Species richness and endemism pattern of Fagaceae in Southwest China and their environmental interpretation. J. Appl. Ecol. 2021, 32, 2290–2300. [Google Scholar] [CrossRef]
- Zha, F.S.; He, L.X.; Yang, F.; Yang, W.; Yang, J.; Feng, J.M. Spatial Patterns of Species Diversity of Lauraceae Plants in Yunnan, China. J. Chuxiong Norm. Univ. 2008, 23, 90–94. [Google Scholar] [CrossRef]
- Duan, H.L.; Cao, F.X. Characteristics and trends of climate change of Chinese subtropical Nanling Mountain. J. Cent. South Univ. For. Technol. 2012, 32, 110–113. [Google Scholar] [CrossRef]
- Chen, D.M.; Kang, H.Z.; Liu, C.J. An Overview on the Potential Quaternary Glacial Refugia of Plants in China Mainland. Bull. Bot. Res. 2011, 31, 623–632. [Google Scholar] [CrossRef]
- Huang, Y.X.; Zha, X. Characteristics and the issues of bio-safety for the plant biodiversity in Fujian. Chin. J. Ecol. 2003, 22, 85–90. [Google Scholar]
- Huang, B.; Wang, Z.W.; Huang, J.J.; Li, X.H.; Zhu, H.; Wen, Q.; Xu, L.A. Population Genetic Structure Analysis Reveals Significant Genetic Differentiation of the Endemic Species Camellia chekiangoleosa Hu. with a Narrow Geographic Range. Forests 2022, 13, 234. [Google Scholar] [CrossRef]
- Zhou, T.J.; Chen, Z.M.; Chen, X.L.; Zuo, M.; Jiang, J.; Hu, S. Interpreting IPCC AR6: Future global climate based on projection under scenarios and on near-term information. Clim. Change Res. 2021, 17, 652–663. [Google Scholar] [CrossRef]
- Zhang, M.G.; Zhou, Z.K.; Chen, W.Y.; Cannon, C.H.; Raes, N.; Slik, J.W.F. Major declines of woody plant species ranges under climate change in Yunnan, China. Divers. Distrib. 2013, 20, 405–415. [Google Scholar] [CrossRef]
- Salgotra, R.K.; Chauhan, B.S. Genetic Diversity, Conservation, and Utilization of Plant Genetic Resources. Genes 2023, 14, 174. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Velez, V.H.; Wiese, D. Sampling bias mitigation for species occurrence modeling using machine learning methods. Ecol. Inform. 2020, 58, 101091. [Google Scholar] [CrossRef]
- Merkenschlager, C.; Bangelesa, F.; Paeth, H.; Hertig, E. Blessing and curse of bioclimatic variables: A comparison of different calculation schemes and datasets for species distribution modeling within the extended Mediterranean area. Ecol. Evol. 2023, 13, e10553. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Liguori, J.A.; Ramírez-Barahona, S.; Gaut, B.S. The evolutionary genomics of species’ responses to climate change. Nat. Ecol. Evol. 2021, 5, 1350–1360. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Phillips, S.; Leathwick, J.; Elith, J. dismo: Species Distribution Modeling, R package version 1.3-9; The Comprehensive R Archive Network: Vienna, Austria, 2022. [Google Scholar]
- Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 2014, 275, 73–77. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2010, 25, 1965–1978. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Weng, Y.W.; Cai, W.J.; Wang, C. The application and future directions of the Shared Socioeconomic Pathways(SSPs). Clim. Change Res. 2020, 16, 215–222. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Lovato, T.; Peano, D.; Butenschn, M.; Materia, S.; Iovino, D.; Scoccimarro, E.; Fogli, P.G.; Cherchi, A.; Bellucci, A.; Gualdi, S. CMIP6 Simulations with the CMCC Earth System Model (CMCC-ESM2). J. Adv. Model. Earth Syst. 2022, 14, e2021MS002814. [Google Scholar] [CrossRef]
- Chollet Ramampiandra, E.; Scheidegger, A.; Wydler, J.; Schuwirth, N. A comparison of machine learning and statistical species distribution models: Quantifying overfitting supports model interpretation. Ecol. Model. 2023, 481, 110353. [Google Scholar] [CrossRef]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Fielding, A. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2010, 43, 1223–1232. [Google Scholar] [CrossRef]
- Jiménez-Valverde, A.; Lobo, J.M. Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecologica 2007, 31, 361–369. [Google Scholar] [CrossRef]
- Xu, Z.L.; Peng, H.H.; Peng, S.Z. The development and evaluation of species distribution models. Acta Ecol. Sin. 2015, 35, 557–567. [Google Scholar] [CrossRef]
- Hijmans, R.J. geosphere: Spherical Trigonometry, R package version 1.5-18; The Comprehensive R Archive Network: Vienna, Austria, 2022. [Google Scholar]
- Hijmans, R.J. raster: Geographic Data Analysis and Modeling, R package version 3.6-20; The Comprehensive R Archive Network: Vienna, Austria, 2023. [Google Scholar]
Species | Bio15 | Bio18 | Bio19 | Bio2 | Bio3 | Bio4 | Bio5 |
---|---|---|---|---|---|---|---|
C. brevistyla | 9.80 | 9.22 | 36.11 | 16.90 | 7.74 | 14.43 | 5.80 |
C. grijsii | 9.57 | 22.19 | 12.93 | 16.52 | 10.69 | 20.60 | 7.49 |
C. kissi | 9.91 | 16.36 | 18.83 | 10.82 | 11.47 | 25.26 | 7.35 |
C. furfuracea | 9.84 | 15.12 | 26.96 | 12.68 | 8.34 | 18.70 | 8.35 |
C. polyodonta | 11.27 | 14.11 | 31.77 | 17.11 | 7.50 | 12.52 | 5.73 |
C. pitardii | 7.63 | 23.34 | 12.05 | 13.25 | 8.28 | 26.71 | 8.74 |
C. reticulata | 8.62 | 11.20 | 12.45 | 10.78 | 20.45 | 27.41 | 9.09 |
C. saluenensis | 8.35 | 17.39 | 13.97 | 8.51 | 13.49 | 31.20 | 7.10 |
C. semiserrata | 12.29 | 17.72 | 23.19 | 9.52 | 7.82 | 16.66 | 12.80 |
C. edithae | 15.38 | 10.04 | 24.01 | 10.61 | 13.18 | 18.77 | 8.02 |
C. japonica | 6.39 | 12.40 | 26.65 | 23.78 | 5.48 | 15.36 | 9.94 |
C. chekiangoleosa | 17.17 | 12.02 | 35.85 | 10.96 | 6.05 | 10.72 | 7.23 |
C. sasanqua | 10.47 | 10.70 | 22.37 | 23.11 | 9.31 | 14.43 | 9.61 |
C. vietnamensis | 7.89 | 20.74 | 16.14 | 15.20 | 8.05 | 17.73 | 14.25 |
C. oleifera | 8.98 | 16.98 | 15.28 | 17.93 | 5.93 | 24.81 | 10.09 |
Species Richness | Low (1–3) | Medium (3–6) | High (6–9) | Hotspot (>9) |
---|---|---|---|---|
Current | 7.9 × 105 | 9.4 × 105 | 3.8 × 105 | 1.4 × 105 |
2081–2100 SSP126 | 7.5 × 105 | 9.0 × 105 | 4.4 × 105 | 2.1 × 105 |
2081–2100 SSP585 | 1.06 × 106 | 9.3 × 105 | 4.2 × 105 | 1.2 × 105 |
No. | Species | Number of Records |
---|---|---|
1 | Camellia brevistyla | 121 |
2 | Camellia grijsii | 27 |
3 | Camellia kissi | 47 |
4 | Camellia furfuracea | 49 |
5 | Camellia polyodonta | 27 |
6 | Camellia pitardii | 178 |
7 | Camellia reticulata | 79 |
8 | Camellia saluenensis | 74 |
9 | Camellia semiserrata | 29 |
10 | Camellia edithae | 26 |
11 | Camellia japonica | 147 |
12 | Camellia chekiangoleosa | 54 |
13 | Camellia sasanqua | 38 |
14 | Camellia vietnamensis | 27 |
15 | Camellia oleifera | 532 |
Total | 1455 |
Code | Environmental Variables | Unit |
---|---|---|
Bio2 | Mean Diurnal Range | °C |
Bio3 | Isothermality (BIO2/BIO7) (×100) | - |
Bio4 | Temperature Seasonality | °C × 100 |
Bio5 | Max Temperature of Warmest Month | °C |
Bio15 | Precipitation Seasonality | mm |
Bio18 | Precipitation of Warmest Quarter | mm |
Bio19 | Precipitation of Coldest Quarter | mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Guan, B.-Q.; Chen, R.; Yi, R.; Jiang, X.-L.; Xie, K.-Q. Investigating the Distribution Dynamics of the Camellia Subgenus Camellia in China and Providing Insights into Camellia Resources Management Under Future Climate Change. Plants 2025, 14, 1137. https://doi.org/10.3390/plants14071137
Xu Y, Guan B-Q, Chen R, Yi R, Jiang X-L, Xie K-Q. Investigating the Distribution Dynamics of the Camellia Subgenus Camellia in China and Providing Insights into Camellia Resources Management Under Future Climate Change. Plants. 2025; 14(7):1137. https://doi.org/10.3390/plants14071137
Chicago/Turabian StyleXu, Yue, Bing-Qian Guan, Ran Chen, Rong Yi, Xiao-Long Jiang, and Kai-Qing Xie. 2025. "Investigating the Distribution Dynamics of the Camellia Subgenus Camellia in China and Providing Insights into Camellia Resources Management Under Future Climate Change" Plants 14, no. 7: 1137. https://doi.org/10.3390/plants14071137
APA StyleXu, Y., Guan, B.-Q., Chen, R., Yi, R., Jiang, X.-L., & Xie, K.-Q. (2025). Investigating the Distribution Dynamics of the Camellia Subgenus Camellia in China and Providing Insights into Camellia Resources Management Under Future Climate Change. Plants, 14(7), 1137. https://doi.org/10.3390/plants14071137