Population Size and Microhabitat Characteristics of the Endangered Endemic Plant Pedicularis hallaisanensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Environmental Data Collection
2.3. Flora and Pollinator Survey
2.4. Population Size
2.5. Statistical Analysis
3. Results
3.1. Changes Observed in Aerial Imagery
3.2. Microclimate Conditions
3.3. Flora Composition
3.4. Pollinator Survey
3.5. Influential Factors for Population Size
4. Discussion
4.1. Habitat and Population Size of P. hallaisanensis
4.2. Threatening Factors
4.3. Conservation Implications and Future Research Requirements
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
EC | SMC | VCR | SR | |
---|---|---|---|---|
EC | - | r = 0.51 p < 0.001 | r = 0.25 p = 0.09 | r = 0.02 p = 0.87 |
SMC | r = 0.51 p < 0.001 | - | r = 0.07 p = 0.64 | r = 0.21 p = 0.16 |
VCR | r = 0.25 p = 0.09 | r = 0.07 p = 0.64 | - | r = 0.18 p = 0.23 |
SR | r = 0.02 p = 0.87 | r = 0.21 p = 0.16 | r = 0.18 p = 0.23 | - |
References
- Loreau, M.; Naeem, S.; Inchausti, P.; Bengtsson, J.; Grime, J.P.; Hector, A.; Wardle, D.A. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 2001, 294, 804–808. [Google Scholar] [CrossRef] [PubMed]
- Pimm, S.L.; Russell, G.J.; Gittleman, J.L.; Brooks, T.M. The future of biodiversity. Science 1995, 269, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Soulé, M.E. What is conservation biology? A new synthetic discipline addresses the dynamics and problems of perturbed species, communities, and ecosystems. BioScience 1985, 35, 727–734. [Google Scholar] [CrossRef]
- Cho, W.B.; Choi, B.H. Taxonomic position of Pedicularis hallaisanensis Hurusawa, an endemic plant of Mt. Halla. Korean J. Pl. Taxon. 2011, 41, 130–137. [Google Scholar] [CrossRef]
- Kim, S.; Park, H.-J.; Lee, C.W.; Kim, N.Y.; Hwang, J.E.; Lee, B.-D.; Park, H.B.; An, J.; Baek, J. Endangered plant species under differing anthropogenic interventions: How to preserve Pterygopleurum neurophyllum in Wondong wetland? PeerJ 2022, 10, e14050. [Google Scholar] [CrossRef]
- IUCN. The IUCN Red List of Threatened Species. Version 2024.3. Available online: https://www.iucnredlist.org (accessed on 17 May 2025).
- Heide-Jørgensen, H.S. Parasitic Flowering Plants; Brill: Leiden, The Netherlands, 2008. [Google Scholar]
- Li, Y.; Wang, R.; Han, C.; Zhang, L. Effects of Pedicularis kansuensis on plant community structure and diversity in alpine grasslands. Plants 2022, 11, 1673. [Google Scholar] [CrossRef]
- National Institute of Ecology (NIE). Pedicularis hallaisanensis Species Information. Available online: https://www.nie.re.kr/ (accessed on 4 February 2025).
- National Institute of Biological Resources (NIBR). Pedicularis hallaisanensis Species Information. Available online: https://species.nibr.go.kr/ (accessed on 4 February 2025).
- Kim, H.-H.; Yoon, H.-J.; Kim, J.-W. Distribution characteristics and diversity of alpine and subalpine plants growing naturally in National Parks. J. Environ. Sci. Int. 2024, 33, 367–382. [Google Scholar] [CrossRef]
- Sala, O.E.; Chapin, F.S.; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Wall, D.H. Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef]
- Kim, L.-K.; Choi, S.-D.; Choo, G.-C.; Hwang, B.-Y.; Gang, G.-H.; So, S.-K.; Park, E.-H. Environmental characteristics and floristic study of endangered Pedicularis hallaisanensis habitats. J. Agric. Life Sci. 2018, 52, 163–173. [Google Scholar] [CrossRef]
- Kim, S.; Lee, B.-D.; Lee, C.W.; Park, H.-J.; Hwang, J.E.; Park, H.B.; Kim, Y.-J.; Jeon, D.; Yoon, Y.-J. Strict biennial lifecycle and anthropogenic interventions affect temporal genetic differentiation in the endangered endemic plant, Pedicularis hallaisanensis. Front. Plant Sci. 2024, 15, 1468395. [Google Scholar] [CrossRef]
- Frezza, C.; Venditti, A.; Toniolo, C.; De Vita, D.; Serafini, M.; Nicoletti, M. Pedicularis L. Genus: Systematics, Botany, Phytochemistry, Chemotaxonomy, Ethnopharmacology, and Other. Plants 2019, 8, 306. [Google Scholar] [CrossRef] [PubMed]
- Li, M.X.; He, X.R.; Tao, R.; Cao, X. Phytochemistry and Pharmacology of the Genus Pedicularis Used in Traditional Chinese Medicine. Am. J. Chin. Med. 2014, 42, 1071–1098. [Google Scholar] [CrossRef]
- Park, H.B.; Eun-Hwang, J.; Young-Jeon, D.; Woo-Lee, C.; Joon-Park, H.; Kim, S.; Yoon, Y.J. Classification of seed dormancy in Pedicularis hallaisanensis: An endemic and endangered species native to Korea. Horticulturae 2024, 10, 1188. [Google Scholar] [CrossRef]
- Jang, R.H.; Kim, S.; Jung, J.W.; Tho, J.H.; Cheong, S.; Yoon, Y.J. Development of a habitat suitability index for the habitat restoration of Pedicularis hallaisanensis Hurusawa. J. Ecol. Environ. 2022, 46, 316–323. [Google Scholar] [CrossRef]
- Hill, D.; Fasham, M.; Tucker, G.; Shewry, M.; Shaw, P. Handbook of Biodiversity Methods: Survey, Evaluation and Monitoring; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effect models using lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- De Mendiburu, F.; Simon, R. Agricolae-ten years of an open source statistical tool for experiments in breeding, agriculture and biology. PeerJ Prepr. 2015, 3, e1404v1. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 1 April 2025).
- Liu, X.; Tan, N.; Zhou, G.; Zhang, D.; Zhang, Q.; Liu, S.; Chu, G.; Liu, J. Plant diversity and species turnover co-regulate soil nitrogen and phosphorus availability in Dinghushan forests, southern China. Plant Soil. 2021, 464, 257–272. [Google Scholar] [CrossRef]
- Kim, I.-K.; Park, E.-H.; Gang, G.-H.; Hwang, B.-Y.; Jung, H.-J.; Kim, M.-Y.; Park, J.-G.; Park, S.-B.; Kim, B.-G.; Choo, G.-C. Form and embryonic characteristics of Pedicularis hallaisanensis seeds as endangered wild species II-class using host plants. J. Korean Soc. For. Sci. 2019, 108, 290–295. [Google Scholar] [CrossRef]
- Hedberg, A.M.; Borowicz, V.A.; Armstrong, J.E. Interactions between a hemiparasitic plant, Pedicularis canadensis L. (Orobanchaceae), and members of a tallgrass prairie community. J. Torrey Bot. Soc. 2005, 132, 401–410. [Google Scholar] [CrossRef]
- Lange, M.; Eisenhauer, N.; Sierra, C.A.; Bessler, H.; Engels, C.; Griffiths, R.I.; Mellado-Vázquez, P.G.; Malik, A.A.; Roy, J.; Scheu, S.; et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 2015, 6, 6707. [Google Scholar] [CrossRef]
- Macior, L.W. The Pollination Ecology of Pedicularis (Scrophulariaceae) in the Sierra Nevada of California. Bull. Torrey Bot. Club 1977, 104, 148–154. [Google Scholar] [CrossRef]
- Macior, L.W. A preliminary study of the pollination ecology of Pedicularis in the Chinese Himalaya. Plant Species Biol. 1990, 5, 215–223. [Google Scholar] [CrossRef]
- Kim, H.-C. Ecological Characteristics and Management Methods of Sasa quelpaertensis Nakai. Ph.D. Thesis, Jeju National University, Jeju, Republic of Korea, 2009. Available online: https://dcoll.jejunu.ac.kr/jsp/common/DcLoOrgPer.jsp?sItemId=000000004549 (accessed on 4 March 2025).
- Obeso, J.R. The costs of reproduction in plants. New Phytol. 2002, 155, 321–348. [Google Scholar] [CrossRef]
- Franklin, K.A. Shade avoidance. New Phytol. 2008, 179, 930–944. [Google Scholar] [CrossRef]
- Weiner, J. Allocation, plasticity and allometry in plants. Perspect. Plant Ecol. Evol. Syst. 2004, 6, 207–215. [Google Scholar] [CrossRef]
- Dullinger, S.; Gattringer, A.; Thuiller, W.; Moser, D.; Zimmermann, N.E.; Guisan, A.; Willner, W.; Plutzar, C.; Leitner, M.; Mang, T.; et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2012, 2, 619–622. [Google Scholar] [CrossRef]
- Scherrer, D.; Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 2011, 38, 406–416. [Google Scholar] [CrossRef]
- Salick, J.; Ghimire, S.K.; Fang, Z.; Dema, S.; Konchar, K.M.; Collaborating authors. Himalayan alpine vegetation, climate change and mitigation. J. Ethnobiol. 2014, 34, 276–293. [Google Scholar] [CrossRef]
- Kim, E.S.; Lee, J.S.; Park, G.E.; Lim, J.H. Analysis of 20-year changes in the area of subalpine coniferous forests. J. Korean Soc. For. Sci. 2019, 108, 10–20. [Google Scholar] [CrossRef]
- National Institute of Ecology (NIE). Analysis of Research Trends on Conservation Technologies for Alpine Vulnerable Ecosystems; National Institute of Ecology Report: Seocheon, Republic of Korea, 2024.
- Kidane, Y.O.; Steinbauer, M.J.; Beierkuhnlein, C. Dead end for endemic plant species? A biodiversity hotspot under pressure. Glob. Ecol. Conserv. 2019, 19, e00670. [Google Scholar] [CrossRef]
- You, J.H.; Jeon, S.K.; Seol, J.W. Flora and conservation plan of Gayasan National Park. J. Korean Soc. Environ. Restor. Technol. 2013, 16, 109–130. [Google Scholar] [CrossRef]
- Korea Meteorological Administration (KMA). Automated Synoptic Observing System: Temperature Data from Geochang and Hapcheon Stations (1991–2020). Available online: https://data.kma.go.kr (accessed on 17 May 2025).
- Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems, 3rd ed.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Petitpierre, B.; McDougall, K.; Seipel, T.; Broennimann, O.; Guisan, A.; Kueffer, C. Will climate change increase the risk of plant invasions into mountains? Ecol. Appl. 2016, 26, 530–544. [Google Scholar] [CrossRef] [PubMed]
- Devine, W.D.; Harrington, C.A.; Peter, D.H. Oak woodland restoration: Understory response to removal of encroaching conifers. Ecol. Restor. 2007, 25, 247–255. [Google Scholar] [CrossRef]
- Nagamitsu, T.; Ushirokita, F.; Konno, Y. Foraging habitats and floral resource use by colonies of long- and short-tongued bumble bee species in an agricultural landscape with kabocha squash fields. Appl. Entomol. Zool. 2005, 40, 437–446. [Google Scholar] [CrossRef]
- Kanbe, Y.; Okada, I.; Yoneda, M.; Goka, K.; Tsuchida, K. Interspecific mating of the introduced bumblebee Bombus terrestris and the native Japanese bumblebee Bombus hypocrita sapporoensis results in inviable hybrids. Sci. Rep. 2023, 13, 11506. [Google Scholar] [CrossRef]
- Ministry of Environment, Republic of Korea. The Republic of Korea’s Fifth National Biodiversity Strategy (2024–2028); Ministry of Environment: Sejong, Republic of Korea, 2023. Available online: https://www.cbd.int/doc/world/kr/kr-nbsap-v5-en.pdf (accessed on 18 May 2025).
- Dove, T. The Effect of Increasing Temperature on Germination of Native Plant Species; University of Notre Dame Environmental Research Center: Notre Dame, IN, USA, 2010; Available online: https://underc.nd.edu/assets/156376/fullsize/dove2010.pdf (accessed on 18 May 2025).
- Zhang, Q.; Lu, Z.; Guo, M.; Kang, J.; Li, J.; He, X.; Wu, J.; Liu, R.; Dang, J.; Li, Z. Responses of Three Pedicularis Species to Geological and Climatic Changes in the Qinling Mountains and Adjacent Areas in East Asia. Plants 2024, 13, 765. [Google Scholar] [CrossRef]
- Cui, H.; Töpper, J.P.; Yang, Y.; Vandvik, V.; Wang, G. Plastic Population Effects and Conservative Leaf Traits in a Reciprocal Transplant Experiment Simulating Climate Warming in the Himalayas. Front. Plant Sci. 2018, 9, 1069. [Google Scholar] [CrossRef]
- Huelsman, K. Assessing the Ability to Detect Invasive Plant Species Using Drone-Based Leaf-Scale Visible and Near-Infrared Imaging Spectroscopy; University of Virginia: Charlottesville, VA, USA, 2021; Available online: https://vsgc.odu.edu/wp-content/uploads/2021/11/Huelsman.pdf (accessed on 18 May 2025).
- Barnas, A.F.; Darby, B.J.; Vandeberg, G.S.; Rockwell, R.F.; Ellis-Felege, S.N. A comparison of drone imagery and ground-based methods for estimating the extent of habitat destruction by lesser snow geese (Anser caerulescens caerulescens) in La Pérouse Bay. PLoS ONE 2019, 14, e0217049. [Google Scholar] [CrossRef]
- Osco, L.P.; Marcato Junior, J.; Ramos, A.P.M.; Jorge, L.A.C.; Fatholahi, S.N.; Silva, J.A.; Matsubara, E.T.; Pistori, H.; Gonçalves, W.N.; Li, J. A Review on Deep Learning in UAV Remote Sensing. arXiv 2021, arXiv:2101.10861. [Google Scholar] [CrossRef]
Family | Scientific Name | Frequency (%) |
---|---|---|
Selaginellaceae | Selaginella rossii (Baker) Warb | 8.7 |
Athyriaceae | Athyrium yokoscense (Franch. & Sav.) H. Christ | 21.7 |
Woodsiaceae | Woodsia polystichoides D. C. Eaton | 4.3 |
Pinaceae | Pinus densiflora Siebold & Zucc | 8.7 |
Cyperaceae | Carex humilis var. nana (H. Lév. & Vaniot) Ohwi | 91.3 |
Carex mira Kük | 8.7 | |
Carex siderosticta Hance | 4.3 | |
Cyperus microiria Steud | 8.7 | |
Poaceae | Calamagrostis purpurea (Trin.) Trin | 4.3 |
Digitaria ciliaris (Retz.) Koeler | 4.3 | |
Festuca ovina L. | 73.9 | |
Muhlenbergia japonica Steud | 17.4 | |
Poa sphondylodes Trin | 43.5 | |
Sporobolus piliferus (Trin.) Kunth | 13.0 | |
Eriocaulaceae | Eriocaulon decemflorum Maxim | 13.0 |
Apiaceae | Conioselinum tenuissimum (Nakai) Pimenov& Kljuykov | 26.1 |
Ligusticum tsusimense Y. Yabe | 4.3 | |
Asteraceae | Artemisia indica Willd | 39.1 |
Artemisia stolonifera (Maxim.) Kom | 21.7 | |
Aster hispidus Thunb | 65.2 | |
Cirsium setidens (Dunn) Nakai | 34.8 | |
Dendranthema zawadskii var. latilobum (Maxim.) Kitam | 87.0 | |
Erigeron annuus (L.) Pers | 4.3 | |
Ligularia fischeri (Ledeb.) Turcz | 26.1 | |
Saussurea gracilis Maxim | 17.4 | |
Synurus deltoides (Aiton) Nakai | 39.1 | |
Taraxacum ohwianum Kitam | 4.3 | |
Diervillaceae | Weigela praecox (Lemoe) L. H. Bailey | 47.8 |
Ericaceae | Rhododendron yedoense f. poukhanense (H. Lév.) M. Sugim. | 34.8 |
Fabaceae | Lespedeza melanantha Nakai | 8.7 |
Betulaceae | Betula chinensis Maxim | 13.0 |
Betula costata Trautv | 4.3 | |
Fagaceae | Quercus mongolica Fisch. ex Ledeb | 21.7 |
Gentianaceae | Gentiana wootchuliana W. K. Paik | 8.7 |
Swertia tetrapetala Pall | 26.1 | |
Geraniaceae | Geranium dahuricum DC | 78.3 |
Lamiaceae | Elsholtzia splendens Nakaiex F. Maek | 4.3 |
Salvia chanryoenica Nakai | 4.3 | |
Thymus quinquecostatus Čelak. | 100.0 | |
Liliaceae | Allium thunbergii G. Don | 30.4 |
Hemerocallis hakuunensis Nakai | 43.5 | |
Hosta capitata (Koidz.) Nakai | 4.3 | |
Tofieldia coccinea Richardson | 17.4 | |
Veratrum versicolor Nakai | 4.3 | |
Onagraceae | Epilobium amurense subsp. cephalostigma (Hausskn.) C.J. Chen, Hoch & P.H. Raven | 4.3 |
Plantaginaceae | Plantago asiatica L. | 26.1 |
Polygonaceae | Persicaria nepalensis (Meisn.) H. Gross | 13.0 |
Primulaceae | Primula farinosa subsp. modesta var. koreana T. Yamaz | 13.0 |
Ranunculaceae | Thalictrum uchiyamae Nakai | 52.2 |
Rhamnaceae | Rhamnus yoshinoi Makino | 4.3 |
Crassulaceae | Meterostachys sikokianus (Makino) Nakai | 8.7 |
Sedum kamtschaticum Fisch. & C. A. Mey | 60.9 | |
Sedum polytrichoides Hemsl | 52.2 | |
Parnassiaceae | Parnassia palustris var. multiseta Ledeb | 21.7 |
Rosaceae | Agrimonia pilosa Ledeb | 8.7 |
Geum aleppicum Jacq | 30.4 | |
Potentilla dickinsii Franch. & Sav | 47.8 | |
Rubus crataegifolius Bunge | 56.5 | |
Sanguisorba hakusanensis Makino | 82.6 | |
Sorbus commixta Hedl | 4.3 | |
Oleaceae | Fraxinus rhynchophylla Hance | 8.7 |
Fraxinus sieboldiana Blume | 8.7 | |
Scrophulariaceae | Pseudolysimachion rotundum (Nakai) Holub | 30.4 |
Pedicularis hallaisanensis Hurus | 100.0 | |
Pedicularis resupinata L. | 8.7 | |
Clusiaceae | Hypericum ascyron L. | 8.7 |
Violaceae | Viola mandshurica W. Becker | 4.3 |
Monitoring Year | 2024 | 2023 | 2022 | |
---|---|---|---|---|
First-year seedling | Rosette diameter (cm) | 2.8 ± 0.3 | 4.3 ± 0.3 | 3.1 ± 0.4 |
Second-year adult | Height (cm) | 16.8 ± 1.3 | 14.6 ± 1.8 | 12.2 ± 1.0 |
Canopy width (cm) | 9.0 ± 0.8 | 11.0 ± 2.3 | 7.3 ± 0.9 |
EC | SMC | VCR | SR | Interaction Effects | ||
---|---|---|---|---|---|---|
Total Population Size | F < 0.01 p = 0.96 | F = 0.21 p = 0.65 | F = 1.77 p = 0.19 | F = 17.61 p < 0.001 | VCR×SR: F = 4.80 p < 0.05 | |
First-year seedling | Population size | F = 1.41 p = 0.25 | F = 0.13 p = 0.72 | F = 0.11 p = 0.74 | F = 6.97 p < 0.05 | n.s. |
Rosette diameter (cm) | F = 1.07 p = 0.31 | F = 0.51 p = 0.48 | F = 0.51 p = 0.48 | F = 1.50 p = 0.23 | n.s. | |
Second-year adult | Population size | F = 0.17 p = 0.68 | F = 0.42 p = 0.52 | F = 0.72 p = 0.40 | F = 11.27 p < 0.005 | n.s. |
Height (cm) | F = 0.04 p = 0.85 | F = 4.04 p = 0.06 | F = 15.41 p < 0.001 | F = 0.17 p = 0.68 | n.s. | |
Canopy width (cm) | F = 0.01 p = 0.91 | F = 0.08 p = 0.79 | F = 2.23 p = 0.15 | F = 0.37 p = 0.55 | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.W.; Park, H.-J.; Hwang, J.E.; Park, H.B.; Kim, Y.-J.; Kim, S. Population Size and Microhabitat Characteristics of the Endangered Endemic Plant Pedicularis hallaisanensis. Diversity 2025, 17, 377. https://doi.org/10.3390/d17060377
Lee CW, Park H-J, Hwang JE, Park HB, Kim Y-J, Kim S. Population Size and Microhabitat Characteristics of the Endangered Endemic Plant Pedicularis hallaisanensis. Diversity. 2025; 17(6):377. https://doi.org/10.3390/d17060377
Chicago/Turabian StyleLee, Chang Woo, Hwan-Joon Park, Jung Eun Hwang, Hyeong Bin Park, Young-Joong Kim, and Seongjun Kim. 2025. "Population Size and Microhabitat Characteristics of the Endangered Endemic Plant Pedicularis hallaisanensis" Diversity 17, no. 6: 377. https://doi.org/10.3390/d17060377
APA StyleLee, C. W., Park, H.-J., Hwang, J. E., Park, H. B., Kim, Y.-J., & Kim, S. (2025). Population Size and Microhabitat Characteristics of the Endangered Endemic Plant Pedicularis hallaisanensis. Diversity, 17(6), 377. https://doi.org/10.3390/d17060377