Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (229)

Search Parameters:
Keywords = woody plant families

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4695 KiB  
Article
Living Root-Mediated Soil Temperature Amplifies the Effects of Experimental Warming on Soil Microarthropod Communities in a Quercus mongolica Forest in Northeast China
by Chenglin Chi, Jiannan Wang, Rong Cui, Qianxue Wang and Jili Zhang
Insects 2025, 16(8), 809; https://doi.org/10.3390/insects16080809 - 5 Aug 2025
Viewed by 68
Abstract
The living roots of woody plants in forests play a crucial role in sustaining the soil temperature equilibrium. However, there is limited research investigating the effects of soil temperature balance disruption, influenced by living roots, on soil microarthropods, especially in the context of [...] Read more.
The living roots of woody plants in forests play a crucial role in sustaining the soil temperature equilibrium. However, there is limited research investigating the effects of soil temperature balance disruption, influenced by living roots, on soil microarthropods, especially in the context of global climate change. To address this knowledge gap, we conducted a three-year in situ simulation experiment involving either experimental warming or root trenching treatments to mimic environmental changes and their impacts on soil microarthropod communities in a temperate forest ecosystem in Northeast China. Statistical analysis focused on assessing the abundance and family richness of Collembola and Acari. Warming increased soil temperature, while root trenching had contrasting effects. In the absence of root trenching, warming positively influenced Collembola but negatively affected Acari. Conversely, when combined with root trenching, warming had a diminished impact on both Collembola and Acari. Our findings demonstrate that the interactive effects of warming on soil microarthropod communities vary depending on the presence or absence of root trenching. Specifically, within the context of root trenching treatment compared to no-root trenching treatment, warming exhibited a comparatively attenuated influence on soil microarthropod communities. Overall, living roots play a pivotal role in mediating soil temperature conditions, which significantly impact soil microarthropod communities in the context of global climate change. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

24 pages, 5977 KiB  
Article
An Investigation into the Evolutionary Characteristics and Expression Patterns of the Basic Leucine Zipper Gene Family in the Endangered Species Phoebe bournei Under Abiotic Stress Through Bioinformatics
by Yizhuo Feng, Almas Bakari, Hengfeng Guan, Jingyan Wang, Linping Zhang, Menglan Xu, Michael Nyoni, Shijiang Cao and Zhenzhen Zhang
Plants 2025, 14(15), 2292; https://doi.org/10.3390/plants14152292 - 25 Jul 2025
Viewed by 322
Abstract
The bZIP gene family play a crucial role in plant growth, development, and stress responses, functioning as transcription factors. While this gene family has been studied in several plant species, its roles in the endangered woody plant Phoebe bournei remain largely unclear. This [...] Read more.
The bZIP gene family play a crucial role in plant growth, development, and stress responses, functioning as transcription factors. While this gene family has been studied in several plant species, its roles in the endangered woody plant Phoebe bournei remain largely unclear. This study comprehensively analyzed the PbbZIP gene family in P. bournei, identifying 71 PbbZIP genes distributed across all 12 chromosomes. The amino acid count in these genes ranged from 74 to 839, with molecular weights varying from 8813.28 Da to 88,864.94 Da. Phylogenetic analysis categorized the PbbZIP genes into 12 subfamilies (A-K, S). Interspecific collinearity analysis revealed homologous PbbZIP genes between P. bournei and Arabidopsis thaliana. A promoter cis-acting element analysis indicated that PbbZIP genes contain various elements responsive to plant hormones, stress signals, and light. Additionally, expression analysis of public RNA-seq data showed that PbbZIP genes are distributed across multiple tissues, exhibiting distinct expression patterns specific to root bark, root xylem, stem bark, stem xylem, and leaves. We also performed qRT-PCR analysis on five representative PbbZIP genes (PbbZIP14, PbbZIP26, PbbZIP32, PbbZIP67, and PbbZIP69). The results demonstrated significant differences in the expression of PbbZIP genes under various abiotic stress conditions, including salt stress, heat, and drought. Notably, PbbZIP67 and PbbZIP69 exhibited robust responses under salt or heat stress conditions. This study confirmed the roles of the PbbZIP gene family in responding to various abiotic stresses, thereby providing insights into its functions in plant growth, development, and stress adaptation. The findings lay a foundation for future research on breeding and enhancing stress resistance in P. bournei. Full article
(This article belongs to the Special Issue Advances in Forest Tree Genetics and Breeding)
Show Figures

Figure 1

14 pages, 1157 KiB  
Article
Phenolic Exudation Control and Indirect Somatic Embryogenesis of Garlic-Fruit Tree (Malania oleifera Chun & S.K. Lee)—An Endangered Woody Tree Species of Southeastern Yunnan Province, China
by Rengasamy Anbazhakan, Xin-Meng Zhu, Neng-Qi Li, Brihaspati Poudel and Jiang-Yun Gao
Plants 2025, 14(14), 2186; https://doi.org/10.3390/plants14142186 - 15 Jul 2025
Viewed by 322
Abstract
Malania oleifera Chun & S.K. Lee, an endemic monotypic species that belongs to the family Olacaceae, is under continuous pressure of decline owing to several ecological and physiological factors. The present study aimed to establish an efficient in vitro protocol for callus-mediated indirect [...] Read more.
Malania oleifera Chun & S.K. Lee, an endemic monotypic species that belongs to the family Olacaceae, is under continuous pressure of decline owing to several ecological and physiological factors. The present study aimed to establish an efficient in vitro protocol for callus-mediated indirect somatic embryogenesis in M. oleifera by alleviating tissue browning. Internodes and leaves obtained from seedlings were used as explants. Antioxidant pre-treatment (ascorbic acid, AA) followed by different carbon sources (sucrose, maltose, glucose, and fructose) and plant growth regulators in various concentrations and combinations were employed in Woody Plant Medium (WPM) to alleviate explant browning and induce callus formation from the explants. AA pre-treatment and subsequent culture on maltose at a concentration of 116.8 mM were optimal for controlling phenolic exudation on >90% of both explants. The highest responses of 53.77% and 57.43% for embryogenic calli were induced from internode and leaf explants, respectively. The highest responses, 85.22% and 93.80%, were observed for somatic embryos that matured into the globular, heart-shaped and torpedo stages at different percentages on NAA 2.5 mg/L in combination with BA 1.0 mg/L for both explants. The matured somatic embryos were finally germinated at a maximum concentration of GA3, 2.0 mg/L. All plantlets were successfully hardened and acclimatized under culture room conditions and then transferred to the greenhouse. The current study suggests an efficient protocol for indirect somatic embryogenesis by alleviating phenolic exudation from the explants of M. oleifera. This first successful report of in vitro culture establishment in M. oleifera may offer an effective alternative measure to conserve this species and provide a system for analyzing bioactive chemicals and for use in the oil industry. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

15 pages, 5226 KiB  
Article
Enhancing Conservation Efforts of Stephanopodium engleri Through Vegetative Propagation: Effects of IBA and Cutting Types
by Giselly Mota da Silva, Evandro Alves Vieira, Luiz Palhares Neto, Silvio Ramos, Markus Gastauer and Cecílio Frois Caldeira
Plants 2025, 14(14), 2116; https://doi.org/10.3390/plants14142116 - 9 Jul 2025
Cited by 1 | Viewed by 394
Abstract
Stephanopodium engleri Baill. is an endangered tree species from the Dichapetalaceae family and endemic to the Iron Quadrangle region of Brazil. Recalcitrance and low seed viability limit conventional seedling production, making vegetative propagation a crucial alternative for conservation efforts. This study evaluated the [...] Read more.
Stephanopodium engleri Baill. is an endangered tree species from the Dichapetalaceae family and endemic to the Iron Quadrangle region of Brazil. Recalcitrance and low seed viability limit conventional seedling production, making vegetative propagation a crucial alternative for conservation efforts. This study evaluated the rooting and sprouting potential of different cutting types (apical, middle, and basal segments from the main stem, as well as the tip and the herbaceous and woody segments from the lateral branches) treated with Indole-3-Butyric Acid (IBA) at varying concentrations (0, 1, 2, 3, and 4 g L−1) and immersion durations (5 s to 10 min). Cuttings were collected from 12-month-old plants grown under controlled conditions and planted in Carolina Soil® substrate after treatment. Sprouting and rooting rates varied significantly between cutting types, with basal main stem cuttings showing the highest rooting success, particularly at 3 g L−1 of IBA. These cuttings also exhibited more and longer roots and enhanced sprouting-related biometric traits. Shorter immersion times (15 s and 1 min) were the most effective, promoting root formation while avoiding the potential inhibitory effects of prolonged exposure. Our findings provide a practical protocol for large-scale seedling production of S. engleri while minimizing impacts on wild populations. The effective use of vegetative propagation could facilitate the expansion of S. engleri populations in their natural habitats, enhancing conservation efforts and ensuring sustainable species management. Full article
(This article belongs to the Special Issue Physiology and Seedling Production of Plants)
Show Figures

Figure 1

17 pages, 3161 KiB  
Article
Genome-Wide Identification of the ABF/AREB/ABI5 Gene Family in Ziziphus jujuba cv. Dongzao and Analysis of Its Response to Drought Stress
by Zhikai Zhang, Xiaoming Liu, Yu Wang, Jun Zhou, Zhongwu Wan, Xin Zhang, Jing Wang, Binbin Si, Lan Luo and Wendi Xu
Genes 2025, 16(7), 785; https://doi.org/10.3390/genes16070785 - 30 Jun 2025
Viewed by 403
Abstract
Abscisic acid (ABA), a pivotal phytohormone regulating plant growth and stress adaptation, orchestrates abiotic stress responses through the ABA-responsive element-binding factors ABF/AREB/ABI5. Nevertheless, the functional characterization of ABF/AREB/ABI5 homologs in Z. jujuba cv. Dongzao remains unexplored. In this study, we identified seven ZjABF [...] Read more.
Abscisic acid (ABA), a pivotal phytohormone regulating plant growth and stress adaptation, orchestrates abiotic stress responses through the ABA-responsive element-binding factors ABF/AREB/ABI5. Nevertheless, the functional characterization of ABF/AREB/ABI5 homologs in Z. jujuba cv. Dongzao remains unexplored. In this study, we identified seven ZjABF genes distributed across five chromosomes. Domain analyses revealed high structural conservation, particularly within the basic leucine zipper (bZIP) DNA-binding domain. Subcellular localization confirmed nuclear targeting of all seven ZjABF proteins. Phylogenetic classification resolved these factors into three clades (A–C). Cis-regulatory element profiling implicated the involvement of the ZjABFs in hormone signaling, abiotic stress transduction, and photoregulatory pathways. Synteny analyses identified three segmental duplication events within the gene family. Tissue-specific expression patterns indicated critical roles for ZjABF2 and ZjABF3 in fruit maturation, and most of the ABF/AREB/ABI5 genes were highly expressed in the root. Under drought stress, four ZjABF genes exhibited differential expression, with ZjABF2 demonstrating pronounced sensitivity. These findings establish a molecular framework for understanding ZjABF-mediated abiotic stress responses in non-model woody perennials. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

21 pages, 10268 KiB  
Article
Identification and Bioinformatics Analysis of the HSP20 Family in the Peony
by Haoran Ma, Heling Yuan, Wenxuan Bu, Minhuan Zhang, Yu Huang, Jian Hu and Jiwu Cao
Genes 2025, 16(7), 742; https://doi.org/10.3390/genes16070742 - 26 Jun 2025
Viewed by 370
Abstract
Background: The peony (Paeonia suffruticosa Andr.), a globally valued woody ornamental species, suffers severe heat-induced floral damage that compromises its horticultural value. While the HSP20 proteins are critical for plant thermotolerance, their genomic organization and regulatory dynamics remain uncharacterized in the peony. [...] Read more.
Background: The peony (Paeonia suffruticosa Andr.), a globally valued woody ornamental species, suffers severe heat-induced floral damage that compromises its horticultural value. While the HSP20 proteins are critical for plant thermotolerance, their genomic organization and regulatory dynamics remain uncharacterized in the peony. This study aims to systematically identify the PsHSP20 genes, resolve their molecular features, and elucidate their heat-responsive expression patterns to enable targeted thermotolerance breeding. Methods: The genome-wide identification employed HMMER and BLASTP searches against the peony genome. The physicochemical properties and protein structures of the gene family were analyzed using online websites, such as Expasy, Plant-mPLoc, and SOPMA. The cis-regulatory elements were predicted using PlantCARE. Expression profiles under different times of 40 °C heat stress were validated by qRT-PCR (p < 0.05). Results: We identified 58 PsHSP20 genes, classified into 11 subfamilies. All members retain the conserved α-crystallin domain, and exhibit predominant nuclear/cytoplasmic localization. Chromosomal mapping revealed uneven distribution without lineage-specific duplications. The promoters were enriched in stress-responsive elements (e.g., HSE, ABRE) and in 24 TF families. The protein networks linked 13 PsHSP20s to co-expressed partners in heat response (GO:0009408) and ER protein processing (KEGG:04141). Transcriptomics demonstrated rapid upregulation of 48 PsHSP20s within 2 h of heat exposure, with PsHSP20-12, -34, and -51 showing the highest induction (>15-fold) at 6 h/24 h. Conclusions: This first genome-wide study resolves the architecture and heat-responsive dynamics of the PsHSP20 family. The discovery of early-induced genes (PsHSP20-12/-34/-51) provides candidates for thermotolerance enhancement. These findings establish a foundation for molecular breeding in the peony. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

21 pages, 3937 KiB  
Article
Identification, Cloning, and Functional Characterization of Carotenoid Cleavage Dioxygenase (CCD) from Olea europaea and Ipomoea nil
by Kaixuan Ke, Yufeng Zhang, Xinyi Wang, Zhaoyan Luo, Yangyang Chen, Xianying Fang and Linguo Zhao
Biology 2025, 14(7), 752; https://doi.org/10.3390/biology14070752 - 24 Jun 2025
Viewed by 398
Abstract
The aromatic C13 apocarotenoid β-ionone is a high-value natural-flavor and -fragrance compound derived from the oxidative cleavage of carotenoids. Carotenoid cleavage dioxygenases (CCDs) play a pivotal role in the biosynthesis of volatile apocarotenoids, particularly β-ionone. In this study, we report the identification, [...] Read more.
The aromatic C13 apocarotenoid β-ionone is a high-value natural-flavor and -fragrance compound derived from the oxidative cleavage of carotenoids. Carotenoid cleavage dioxygenases (CCDs) play a pivotal role in the biosynthesis of volatile apocarotenoids, particularly β-ionone. In this study, we report the identification, cloning, and functional characterization of two CCD1 homologs: OeCCD1 from Olea europaea and InCCD1 from Ipomoea nil. These two species, which, respectively, represent a woody perennial and a herbaceous annual, were selected to explore the potential functional divergence of CCD1 enzymes across different plant growth forms. These CCD1 genes were synthesized using codon optimization for Escherichia coli expression, followed by heterologous expression and purification using a GST-fusion system. In vitro assays confirmed that both enzymes cleave β-carotene at the 9,10 (9′,10′) double bond to yield β-ionone, but only OeCCD1 exhibits detectable activity on zeaxanthin; InCCD1 shows no in vitro cleavage of zeaxanthin. Kinetic characterization using β-apo-8′-carotenal as substrate revealed, for OeCCD1, a Km of 0.82 mM, Vmax of 2.30 U/mg (kcat = 3.35 s−1), and kcat/Km of 4.09 mM−1·s−1, whereas InCCD1 displayed Km = 0.69 mM, Vmax = 1.22 U/mg (kcat = 1.82 s−1), and kcat/Km = 2.64 mM−1·s−1. The optimization of expression parameters, as well as the systematic evaluation of temperature, pH, solvent, and metal ion effects, provided further insights into the stability and functional diversity within the plant CCD1 family. Overall, these findings offer promising enzymatic tools for the sustainable production of β-ionone and related apocarotenoids in engineered microbial cell factories. Full article
(This article belongs to the Section Biotechnology)
Show Figures

Graphical abstract

14 pages, 7398 KiB  
Article
Genome-Wide Identification and Expression Analysis of Aspartic proteases in Populus euphratica Reveals Candidates Involved in Salt Tolerance
by Peiyang He, Lifan Huang and Hanyang Cai
Plants 2025, 14(13), 1930; https://doi.org/10.3390/plants14131930 - 23 Jun 2025
Viewed by 436
Abstract
Aspartic proteases (APs) are among the four primary families of proteolytic enzymes found in plants, and they are essential for both stress response mechanisms and developmental activities. While the AP gene family has been studied in model plants like Arabidopsis, its characterization [...] Read more.
Aspartic proteases (APs) are among the four primary families of proteolytic enzymes found in plants, and they are essential for both stress response mechanisms and developmental activities. While the AP gene family has been studied in model plants like Arabidopsis, its characterization in woody species-particularly in extremophytes like Populus euphratica, remains limited. Moreover, the potential involvement of APs in salt tolerance mechanisms in trees is yet to be explored. In this research, 55 PeAPs were discovered and categorized into three distinct classes based on their conserved protein structures. The phylogenetic analysis revealed potential functions of AP genes derived from Arabidopsis thaliana, V. vinifera, and P. euphratica. Our findings indicate that PeAP possesses a well-conserved evolutionary background and contains numerous highly variable regions, making it an excellent candidate for the identification and systematic examination of woody trees. Additionally, motifs frequently found in aspartic proteases within the genome of P. euphratica may be linked to functional PeAPs. It appears that PeAPs are associated with specific gene functions. These genes are influenced by cis-elements, which may play a role in their responsiveness to phytohormone, stress adaptation maybe changed to these genes are regulated by cis-elements that may mediate their responsiveness to phytohormones, abiotic stress, and developmental cues. Our research offers the initial comprehensive analysis of the AP family in P. euphratica, emphasizing its potential functions in adapting to salt conditions. The findings uncover candidate PeAPs for genetic engineering to enhance salinity tolerance in woody crops. Full article
Show Figures

Figure 1

17 pages, 7981 KiB  
Article
Genome-Wide Identification and Pollen-Specific Promoter Analysis of the DIR Gene Family in Rosa chinensis
by Qijing Dong, Qian Yang, Zitong Wang, Yuan Zhao, Sixu Guo, Yifang Peng, Qi Li and Yu Han
Horticulturae 2025, 11(7), 717; https://doi.org/10.3390/horticulturae11070717 - 20 Jun 2025
Viewed by 345
Abstract
Dirigent proteins (DIRs) are pivotal regulators of lignin/lignan biosynthesis and play multifaceted roles in plant development and stress adaptation. Despite their functional significance, DIR genes remain unexplored in Rosa chinensis, a globally important woody ornamental species. This study identified 33 RcDIRs through [...] Read more.
Dirigent proteins (DIRs) are pivotal regulators of lignin/lignan biosynthesis and play multifaceted roles in plant development and stress adaptation. Despite their functional significance, DIR genes remain unexplored in Rosa chinensis, a globally important woody ornamental species. This study identified 33 RcDIRs through whole-genome analysis, including their chromosomal distribution, phylogenetic relationships, collinearity, protein and gene structure, conserved motifs, and cis-acting element distribution, and classified them into three phylogenetically independent subgroups (DIR-a, DIR-b/d, and DIR-e). Notably, the DIR-e subgroup includes an exclusive tandem cluster comprising RcDIR7-RcDIR12, representing the largest lineage-specific RcDIR expansion in R. chinensis. Structural characterization revealed that most RcDIRs exhibit a conserved single-exon architecture. Promoter cis-element analysis uncovered abundant stress-/hormone-responsive elements and three pollen-specific motifs (AAATGA, POLLEN1LELAT52, GTGANTG10), with RcDIR12 from the DIR-e cluster showing high pollen-specific regulatory potential. Experimental validation included cloning the RcDIR12 promoter from R. chinensis ‘Old Blush’, constructing proRcDIR12::GUS vectors, and conducting histochemical GUS assays with pollen viability/DAPI staining in transgenic Arabidopsis. Histochemical assays demonstrated GUS activity localization in mature trinucleate pollen grains, marking the first experimental evidence of pollen-specific DIRs in rose. Our findings not only elucidate the DIR family’s genomic organization and evolutionary innovations in R. chinensis but also establish proRcDIR12 as a molecular tool for manipulating pollen development in plants. Full article
Show Figures

Figure 1

18 pages, 4708 KiB  
Article
An Investigation of Plant Species Diversity, Above-Ground Biomass, and Carbon Stock: Insights from a Dry Dipterocarp Forest Case Study
by Chaiphat Plybour, Teerawong Laosuwan, Yannawut Uttaruk, Piyatida Awichin, Tanutdech Rotjanakusol, Jumpol Itsarawisut and Mehsa Singharath
Diversity 2025, 17(6), 428; https://doi.org/10.3390/d17060428 - 17 Jun 2025
Viewed by 1617
Abstract
Carbon dioxide (CO2) is a predominant greenhouse gas significantly contributing to atmospheric heat retention, primarily driven by anthropogenic activities intensifying the greenhouse effect. This study aims to evaluate the diversity of plant species, above-ground biomass (AGB), and carbon stock within a [...] Read more.
Carbon dioxide (CO2) is a predominant greenhouse gas significantly contributing to atmospheric heat retention, primarily driven by anthropogenic activities intensifying the greenhouse effect. This study aims to evaluate the diversity of plant species, above-ground biomass (AGB), and carbon stock within a dry dipterocarp forest, which is a vital local natural resource. This study presents a comprehensive evaluation of plant species diversity, AGB, and carbon stock capacity within a dry dipterocarp forest at the Nature Study Center, Mahasarakham University, located in the Kham Riang Subdistrict of Kantharawichai District, Maha Sarakham Province, spanning an area of 20.80 hectares. Ten sample plots, each measuring 40 × 40 m, were established and distributed across the study area. The diameter at breast height (DBH) and the height of the trees were meticulously recorded for all trees within these plots. Advanced statistical techniques were employed to calculate the relative dominance (RD), relative frequency (RF), and Importance Value Index (IVI), alongside a comprehensive assessment of plant species diversity. The AGB was assessed using precise allometric equations, with a focus on analyzing carbon storage within woody biomass. The findings revealed the presence of 52 tree species across 26 families within the forest. The total AGB was measured at 144.510 tons, with carbon stock reaching 67.920 tCO2. These results offer critical insights into enhancing land management strategies to optimize carbon stock, thereby playing a vital role in mitigating greenhouse gas emissions, a significant factor in climate change dynamics. Full article
Show Figures

Figure 1

21 pages, 2365 KiB  
Article
Hormonal and Storage Metabolic Regulation of Germination in Toona sinensis
by Linyue Liu, Zhiyuan Wang, Yu Wu and Yongbao Shen
Horticulturae 2025, 11(6), 685; https://doi.org/10.3390/horticulturae11060685 - 15 Jun 2025
Viewed by 852
Abstract
Toona sinensis (A. Juss.) Roem, classified under the Toona genus of the Meliaceae family, is a fast-growing, woody species endemic to China, valued as both a vegetable crop and medicinal plant. Its seeds achieve rapid germination through a cascade of interconnected physiological, metabolic, [...] Read more.
Toona sinensis (A. Juss.) Roem, classified under the Toona genus of the Meliaceae family, is a fast-growing, woody species endemic to China, valued as both a vegetable crop and medicinal plant. Its seeds achieve rapid germination through a cascade of interconnected physiological, metabolic, and hormonal adaptations. Initially, physiological hydration is driven and accelerated by only two distinct phases of water imbibition. This hydration surge triggers storage reserve mobilization, with soluble sugars, proteins, and lipids undergoing rapid degradation during imbibition, while starch catabolism proceeds gradually—a pattern mirrored by progressive increases in enzymatic activities (amylase, protease, and acid phosphodiesterase (ACP)) that correlate with reserve reallocation. Concurrently, a metabolic shift from glycolysis to the pentose phosphate pathway (PPP) optimizes energy utilization, supporting germination acceleration. These biochemical changes are orchestrated by hormonal coordination: elevated gibberellin A3 (GA3), zeatin riboside (ZR), and indole-3-acetic acid (IAA) levels, coupled with rising GA3/ABA, IAA/ABA, and ZR/ABA ratios, temporally aligned with germination progression. Finally, structural evidence confirms successful germination completion, as cotyledon lipid droplet breakdown and starch granule synthesis directly correlate with embryonic elongation. Together, these mechanisms underscore T. sinensis’ adaptive strategy, integrating physiological plasticity, metabolic flexibility, and endocrine precision to ensure efficient germination. Full article
(This article belongs to the Collection Seed Dormancy and Germination of Horticultural Plants)
Show Figures

Figure 1

21 pages, 14751 KiB  
Article
Identification and Expression Analysis of the bHLH Gene Family in Rhododendron × pulchrum Sweet with Different Flower Colors
by Jiaran Sheng, Jianshang Shen, Yingying Shan, Xia Chen, Xueqin Li, Huasen Wang and Songheng Jin
Plants 2025, 14(11), 1713; https://doi.org/10.3390/plants14111713 - 4 Jun 2025
Viewed by 472
Abstract
Basic helix–loop–helix (bHLH) transcription factors play significant roles in plant growth and organ development and diverse biochemical processes. However, the function of bHLH transcription factors in woody plants is not fully understood. In this study, the bHLH gene family in Rhododendron [...] Read more.
Basic helix–loop–helix (bHLH) transcription factors play significant roles in plant growth and organ development and diverse biochemical processes. However, the function of bHLH transcription factors in woody plants is not fully understood. In this study, the bHLH gene family in Rhododendron × pulchrum Sweet was identified and characterized using whole-genome data. A total of 109 bHLH family genes (RpbHLHs) were identified in R. pulchrum, and their expression levels were analyzed in flowers of different colors and developmental stages. The results showed that the RpbHLH family is divided into 24 subfamilies. Chromosomal localization and collinearity analyses revealed numerous duplication events during evolution, which is one of the main reasons for the diversification of gene functions. The bHLH domains showed relative conservation of RpbHLH proteins. In the promoter regions of the RpbHLHs, various cis-regulatory elements involved in light response, gibberellic acid (GA) response, and abscisic acid (ABA) response were identified. These elements may regulate flower development and pigment synthesis. A Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis of the target RpbHLHs revealed that 25 genes are enriched in the flavonoid biosynthetic pathway. Potential RpbHLHs related to flower development and pigment synthesis were identified through a transcriptome analysis and validated through quantitative reverse transcription PCR (qRT-PCR). This study will enhance our understanding of RpbHLH functions and provide a reference for the study of flower development and coloration in R. pulchrum. Full article
(This article belongs to the Special Issue Horticultural Plant Physiology and Molecular Biology)
Show Figures

Figure 1

13 pages, 1770 KiB  
Article
Postfire Alterations of the Resin Secretory System in Protium heptaphyllum (Aubl.) Marchand (Burseraceae)
by Thalissa Cagnin Pereira, Aline Redondo Martins, Adriana da Silva Santos de Oliveira, Adilson Sartoratto and Tatiane Maria Rodrigues
Forests 2025, 16(6), 923; https://doi.org/10.3390/f16060923 - 31 May 2025
Viewed by 486
Abstract
Fire is a natural disturbance in the Brazilian Cerrado that modulates the vegetation structure. Protium heptaphyllum, a woody species of the family Burseraceae, is common in this biome. The resin produced in secretory canals immersed in the phloem of the stem and [...] Read more.
Fire is a natural disturbance in the Brazilian Cerrado that modulates the vegetation structure. Protium heptaphyllum, a woody species of the family Burseraceae, is common in this biome. The resin produced in secretory canals immersed in the phloem of the stem and leaves of this species plays important ecological and industrial roles. The aim of this study was to investigate the influence of fire on the development of resin canals in the leaves and stem of P. heptaphyllum and on the chemical profile of substances produced in the leaves. Young plants were subjected to controlled fire experiments. Leaf and stem portions were analyzed using light microscopy; the chemical compounds in the leaves were identified through gas chromatography–mass spectrometry. The percentage area occupied by secretory canals in the leaf midrib was higher in fire-treated plants than in control plants. Similarly, the density of secretory canals and their lumen area were higher in young stems (primary growth) of fire-treated plants. By contrast, although the canal density in the secondary phloem was lower in older stem portions (secondary growth) in fire-treated plants, their lumens were larger, resulting in similar data regarding the total lumen area of the secretory canals in fire-treated and control plants. The main chemical compounds identified in the leaves were vitamin E, sitosterol, α-amyrin, squalene, and β-amyrin. Three compounds showed significant increases in fire-treated plants, with vitamin E being the only one reduced by fire. Our findings reveal the plasticity of the secretory system and of the biochemical properties of the leaves of P. heptaphyllum in response to fire. These results are important when considering the current increase in fires caused by climate change and human activity in different ecosystems around the world. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

20 pages, 5390 KiB  
Article
A Genome-Wide Characterization of the Xyloglucan Endotransglucosylase/Hydrolase Family Genes and Their Functions in the Shell Formation of Pecan
by Mengyun Wen, Zekun Zhou, Jing Sun, Fanqing Meng, Xueliang Xi, Aizhong Liu and Anmin Yu
Horticulturae 2025, 11(6), 609; https://doi.org/10.3390/horticulturae11060609 - 29 May 2025
Viewed by 456
Abstract
Xyloglucan endotransglucosylases/hydrolases (XTHs) are key enzymes involved in cell wall remodeling by modifying xyloglucan–cellulose networks, thereby influencing plant growth, development, and secondary cell wall formation. While the roles of XTHs have been extensively studied in primary and secondary growth, their functions in the [...] Read more.
Xyloglucan endotransglucosylases/hydrolases (XTHs) are key enzymes involved in cell wall remodeling by modifying xyloglucan–cellulose networks, thereby influencing plant growth, development, and secondary cell wall formation. While the roles of XTHs have been extensively studied in primary and secondary growth, their functions in the formation and thickening of lignified nut shells remain largely unknown. Pecan (Carya illinoinensis), an economically important nut crop, develops a hard, lignified shell that protects the seed during fruit maturation. In this study, we performed a comprehensive genome-wide characterization of the XTH gene family in pecan and identified 38 XTH genes, which were categorized into four distinct phylogenetic groups. Structural analyses of the deduced proteins revealed conserved catalytic residues alongside divergent loop regions, suggesting functional diversification. Expression profiling across various tissues and among pecan cultivars with contrasting shell phenotypes indicated that specific XTH genes may play critical roles in shell structure formation. Moreover, gene regulatory networks in thin- and thick-shelled pecans provided new insights into the molecular mechanisms underlying shell development and thickness regulation. These findings lay a foundation for future genetic improvement strategies targeting nut shell traits in woody perennials. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

17 pages, 4956 KiB  
Article
Genome-Wide Identification and Heat Stress-Induced Expression Profiling of the Hsp70 Gene Family in Phoebe bournei
by Yiming Lin, Yan Jiang, Zhuoqun Li, Yuewang Niu, Chenyu Gong, Xin He, Shipin Chen and Shijiang Cao
Biology 2025, 14(6), 602; https://doi.org/10.3390/biology14060602 - 25 May 2025
Viewed by 589
Abstract
Phoebe bournei, a rare tree species native to China, holds considerable economic importance. The heat shock protein 70 (Hsp70) family is a group of molecular chaperones that is broadly distributed across living organisms and play a critical role in processes like growth, [...] Read more.
Phoebe bournei, a rare tree species native to China, holds considerable economic importance. The heat shock protein 70 (Hsp70) family is a group of molecular chaperones that is broadly distributed across living organisms and play a critical role in processes like growth, development, and stress response. While Hsp70 genes have been identified and studied in various plant species, their specific functions in the growth and development of P. bournei remain unexplored. We performed a comprehensive analysis of the Hsp70 gene family in P. bournei, identifying a total of 45 Hsp70 genes, which were classified into four groups (I–IV) through phylogenetic analysis. All Hsp70 proteins possessed conserved structural domains, including motif 7, and introns were present in 77.8% of the genes. Chromosomal localization and collinearity analyses of the Hsp70 genes revealed their evolutionary relationships and potential gene duplication events. Examination of the cis-acting elements within the Hsp70 promoter regions revealed that the predominant elements were associated with growth and development, followed by those responsive to hormones, and then elements linked to abiotic stress. Nine genes with high expression were selected for RT-qPCR analysis. Under high-temperature stress, all nine genes were differentially upregulated, and most of these genes belonged to subfamilies II and III, indicating that these two subfamilies have strong potential for heat resistance. In this study, we have elucidated the molecular characteristics and heat response properties of the Hsp70 gene family in P. bournei, revealing the mechanisms behind its heat stress response. Our work provides a reference for stress breeding in P. bournei and a theoretical basis for the exploration of heat tolerance in woody plants. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

Back to TopTop