Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,502)

Search Parameters:
Keywords = woody plant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2857 KiB  
Article
Identification of the MADS-Box Gene Family and Development of Simple Sequence Repeat Markers in Chimonanthus praecox
by Huafeng Wu, Bin Liu, Yinzhu Cao, Guanpeng Ma, Xiaowen Zheng, Ximeng Yang, Qianli Dai, Hengxing Zhu, Haoxiang Zhu, Xingrong Song and Shunzhao Sui
Plants 2025, 14(15), 2450; https://doi.org/10.3390/plants14152450 - 7 Aug 2025
Abstract
Chimonanthus praecox, a traditional ornamental plant in China, is admired for its ability to bloom during the cold winter season and is recognized as an outstanding woody cut flower. MADS-box genes encode transcription factors essential for plant growth and development, with key [...] Read more.
Chimonanthus praecox, a traditional ornamental plant in China, is admired for its ability to bloom during the cold winter season and is recognized as an outstanding woody cut flower. MADS-box genes encode transcription factors essential for plant growth and development, with key functions in regulating flowering time and the formation of floral organs. In this study, 74 MADS-box genes (CpMADS1–CpMADS74) were identified and mapped across 11 chromosomes, with chromosome 1 harboring the highest number (13 genes) and chromosome 3 the fewest (3 genes). Physicochemical property analysis revealed that all CpMADS proteins are hydrophilic and predominantly nuclear-localized. Phylogenetic analysis classified these genes into Type I and Type II subfamilies, highlighting a clear divergence in domain structure. Eighty simple sequence repeat (SSR) loci were detected, with dinucleotide repeats being the most abundant, and the majority located in Type II MADS genes. From 23 C. praecox samples, 10 polymorphic SSR markers were successfully developed and PCR-validated, enabling a cluster analysis that grouped these cultivars into three distinct clusters. This study offers significant insights into the regulation of flowering, floral organ development, genetic linkage map construction, and the application of marker-assisted selection in C. praecox. Full article
Show Figures

Figure 1

18 pages, 1270 KiB  
Article
Litter Decomposition in Pacific Northwest Prairies Depends on Fire, with Differential Responses of Saprotrophic and Pyrophilous Fungi
by Haley M. Burrill, Ellen B. Ralston, Heather A. Dawson and Bitty A. Roy
Microorganisms 2025, 13(8), 1834; https://doi.org/10.3390/microorganisms13081834 - 6 Aug 2025
Abstract
Fungi contribute to ecosystem function through nutrient cycling and decomposition but may be affected by major disturbances such as fire. Some ecosystems are fire-adapted, such as prairies which require cyclical burning to mitigate woody plant encroachment and reduce litter. While fire suppresses fire-sensitive [...] Read more.
Fungi contribute to ecosystem function through nutrient cycling and decomposition but may be affected by major disturbances such as fire. Some ecosystems are fire-adapted, such as prairies which require cyclical burning to mitigate woody plant encroachment and reduce litter. While fire suppresses fire-sensitive fungi, pyrophilous fungi may continue providing ecosystem functions. Using litter bags, we measured the litter decomposition at three prairies with unburned and burned sections, and we used Illumina sequencing to examine litter communities. We hypothesized that (H1) decomposition would be higher at unburned sites than burned, (H2) increased decomposition at unburned sites would be correlated with higher overall saprotroph diversity, with a lower diversity in autoclaved samples, and (H3) pyrophilous fungal diversity would be higher at burned sites and overall higher in autoclaved samples. H1 was not supported; decomposition was unaffected by burn treatments. H2 and H3 were somewhat supported; saprotroph diversity was lowest in autoclaved litter at burned sites, but pyrophilous fungal diversity was the highest. Pyrophilous fungal diversity significantly contributed to litter decomposition rates, while saprotroph diversity did not. Our findings indicate that fire-adapted prairies host a suite of pyrophilous saprotrophic fungi, and that these fungi play a primary role in litter decomposition post-fire when other fire-sensitive fungal saprotrophs are less abundant. Full article
(This article belongs to the Special Issue Fungal Ecology on a Changing Planet)
Show Figures

Figure 1

20 pages, 8071 KiB  
Article
Analysis of the Differences Among Camellia oleifera Grafting Combinations in Its Healing Process
by Zhilong He, Ying Zhang, Chengfeng Xun, Zhen Zhang, Yushen Ma, Xin Wei, Zhentao Wan and Rui Wang
Plants 2025, 14(15), 2432; https://doi.org/10.3390/plants14152432 - 6 Aug 2025
Abstract
Grafting serves as a crucial propagation technique for superior Camellia oleifera varieties, where rootstock–scion compatibility significantly determines survival and growth performance. To systematically evaluate grafting compatibility in this economically important woody oil crop, we examined 15 rootstock–scion combinations using ‘Xianglin 210’ as the [...] Read more.
Grafting serves as a crucial propagation technique for superior Camellia oleifera varieties, where rootstock–scion compatibility significantly determines survival and growth performance. To systematically evaluate grafting compatibility in this economically important woody oil crop, we examined 15 rootstock–scion combinations using ‘Xianglin 210’ as the scion, assessing growth traits and conducting physiological assays (enzymatic activities of SOD and POD and levels of ROS and IAA) at multiple timepoints (0–32 days post-grafting). The results demonstrated that Comb. 4 (Xianglin 27 rootstock) exhibited superior compatibility, characterized by systemic antioxidant activation (peaking at 4–8 DPG), rapid auxin accumulation (4 DPG), and efficient sugar allocation. Transcriptome sequencing and WGCNA analysis identified 3781 differentially expressed genes, with notable enrichment in stress response pathways (Hsp70, DnaJ) and auxin biosynthesis (YUCCA), while also revealing key hub genes (FKBP19) associated with graft-healing efficiency. These findings establish that successful grafting in C. oleifera depends on coordinated rapid redox regulation, auxin-mediated cell proliferation, and metabolic reprogramming, with Comb. 4 emerging as the optimal rootstock choice. The identified molecular markers not only advance our understanding of grafting mechanisms in woody plants but also provide valuable targets for future breeding programs aimed at improving grafting success rates in this important oil crop. Full article
(This article belongs to the Special Issue Advances in Planting Techniques and Production of Horticultural Crops)
Show Figures

Figure 1

16 pages, 5546 KiB  
Article
Modification of Vegetation Structure and Composition to Reduce Wildfire Risk on a High Voltage Transmission Line
by Tom Lewis, Stephen Martin and Joel James
Fire 2025, 8(8), 309; https://doi.org/10.3390/fire8080309 - 5 Aug 2025
Abstract
The Mapleton Falls National Park transmission line corridor in Queensland, Australia, has received a number of vegetation management treatments over the last decade to maintain and protect the infrastructure and to ensure continuous electricity supply. Recent treatments have included ‘mega-mulching’ (mechanical mastication of [...] Read more.
The Mapleton Falls National Park transmission line corridor in Queensland, Australia, has received a number of vegetation management treatments over the last decade to maintain and protect the infrastructure and to ensure continuous electricity supply. Recent treatments have included ‘mega-mulching’ (mechanical mastication of vegetation to a mulch layer) in 2020 and targeted herbicide treatment of woody vegetation, with the aim of reducing vegetation height by encouraging a native herbaceous groundcover beneath the transmission lines. We measured vegetation structure (cover and height) and composition (species presence in 15 × 2 m plots), at 12 transects, 90 m in length on the transmission line corridor, to determine if management goals were being achieved and to determine how the vegetation and fire hazard (based on the overall fuel hazard assessment method) varied among the treated corridor, the forest edge environment, and the natural forest. The results showed that vegetation structure and composition in the treated zones had been modified to a state where herbaceous plant species were dominant; there was a significantly (p < 0.05) higher native grass cover and cover of herbs, sedges, and ferns in the treated zones, and a lower cover of trees and tall woody plants (>1 m in height) in these areas. For example, mean native grass cover and the cover of herbs and sedges in the treated areas was 10.2 and 2.8 times higher, respectively, than in the natural forest. The changes in the vegetation structure (particularly removal of tall woody vegetation) resulted in a lower overall fuel hazard in the treated zones, relative to the edge zones and natural forest. The overall fuel hazard was classified as ‘high’ in 83% of the transects in the treated areas, but it was classified as ‘extreme’ in 75% of the transects in the adjacent forest zone. Importantly, there were few introduced species recorded. The results suggest that fuel management has been successful in reducing wildfire risk in the transmission corridor. Temporal monitoring is recommended to determine the frequency of ongoing fuel management. Full article
Show Figures

Figure 1

17 pages, 4695 KiB  
Article
Living Root-Mediated Soil Temperature Amplifies the Effects of Experimental Warming on Soil Microarthropod Communities in a Quercus mongolica Forest in Northeast China
by Chenglin Chi, Jiannan Wang, Rong Cui, Qianxue Wang and Jili Zhang
Insects 2025, 16(8), 809; https://doi.org/10.3390/insects16080809 - 5 Aug 2025
Viewed by 68
Abstract
The living roots of woody plants in forests play a crucial role in sustaining the soil temperature equilibrium. However, there is limited research investigating the effects of soil temperature balance disruption, influenced by living roots, on soil microarthropods, especially in the context of [...] Read more.
The living roots of woody plants in forests play a crucial role in sustaining the soil temperature equilibrium. However, there is limited research investigating the effects of soil temperature balance disruption, influenced by living roots, on soil microarthropods, especially in the context of global climate change. To address this knowledge gap, we conducted a three-year in situ simulation experiment involving either experimental warming or root trenching treatments to mimic environmental changes and their impacts on soil microarthropod communities in a temperate forest ecosystem in Northeast China. Statistical analysis focused on assessing the abundance and family richness of Collembola and Acari. Warming increased soil temperature, while root trenching had contrasting effects. In the absence of root trenching, warming positively influenced Collembola but negatively affected Acari. Conversely, when combined with root trenching, warming had a diminished impact on both Collembola and Acari. Our findings demonstrate that the interactive effects of warming on soil microarthropod communities vary depending on the presence or absence of root trenching. Specifically, within the context of root trenching treatment compared to no-root trenching treatment, warming exhibited a comparatively attenuated influence on soil microarthropod communities. Overall, living roots play a pivotal role in mediating soil temperature conditions, which significantly impact soil microarthropod communities in the context of global climate change. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

30 pages, 9116 KiB  
Article
Habitat Loss and Other Threats to the Survival of Parnassius apollo (Linnaeus, 1758) in Serbia
by Dejan V. Stojanović, Vladimir Višacki, Dragana Ranđelović, Jelena Ivetić and Saša Orlović
Insects 2025, 16(8), 805; https://doi.org/10.3390/insects16080805 - 4 Aug 2025
Viewed by 219
Abstract
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive [...] Read more.
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive livestock grazing has triggered vegetation succession, the disappearance of the larval host plant (Sedum album), and a reduction in microhabitat heterogeneity—conditions essential for the persistence of this stenophagous butterfly species. Through satellite-based analysis of vegetation dynamics (2015–2024), we identified clear structural differences between habitats that currently support populations and those where the species is no longer present. Occupied sites were characterized by low levels of exposed soil, moderate grass coverage, and consistently high shrub and tree density, whereas unoccupied sites exhibited dense encroachment of grasses and woody vegetation, leading to structural instability. Furthermore, MODIS-derived indices (2010–2024) revealed a consistent decline in vegetation productivity (GPP, FPAR, LAI) in succession-affected areas, alongside significant correlations between elevated land surface temperatures (LST), thermal stress (TCI), and reduced photosynthetic capacity. A wildfire event on Mount Stol in 2024 further exacerbated habitat degradation, as confirmed by remote sensing indices (BAI, NBR, NBR2), which documented extensive burn scars and post-fire vegetation loss. Collectively, these findings indicate that the decline of P. apollo is driven not only by ecological succession and climatic stressors, but also by the abandonment of land-use practices that historically maintained suitable habitat conditions. Our results underscore the necessity of restoring traditional grazing regimes and integrating ecological, climatic, and landscape management approaches to prevent further biodiversity loss in montane environments. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

21 pages, 1488 KiB  
Article
Comparative Evaluation and Optimization of Auxin Type and Concentration on Rooting Efficiency of Photinia × fraseri Dress: Stem Cuttings Using Response Surface Methodology
by Gülcay Ercan Oğuztürk, Müberra Pulatkan, Cem Alparslan and Türker Oğuztürk
Plants 2025, 14(15), 2420; https://doi.org/10.3390/plants14152420 - 4 Aug 2025
Viewed by 187
Abstract
This study aimed to evaluate and optimize the effects of three auxin types—indole-3-butyric acid (IBA), naphthaleneacetic acid (NAA), and indole-3-acetic acid (IAA)—applied at four concentrations (1000, 3000, 5000, and 8000 ppm) on the rooting performance of Photinia × fraseri Dress. stem cuttings. The [...] Read more.
This study aimed to evaluate and optimize the effects of three auxin types—indole-3-butyric acid (IBA), naphthaleneacetic acid (NAA), and indole-3-acetic acid (IAA)—applied at four concentrations (1000, 3000, 5000, and 8000 ppm) on the rooting performance of Photinia × fraseri Dress. stem cuttings. The experiment was conducted under controlled greenhouse conditions using a sterile perlite medium. Rooting trays were placed on bottom-heated propagation benches maintained at a set temperature of 25 ± 2 °C to stimulate root formation. However, the actual rooting medium temperature—measured manually every four days from the perlite zone using a calibrated thermometer—ranged between 18 °C and 22 °C, with an overall average of approximately 20 ± 2 °C. The average values of these root-zone temperatures were used in the statistical analyses. Rooting percentage, root number, root length, callus formation, and mortality rate were recorded after 120 days. In addition to classical one-way ANOVA, response surface methodology (RSM) was employed to model and optimize the interactions between auxin type, concentration, and temperature. The results revealed that 5000 ppm IBA significantly enhanced rooting performance, yielding the highest rooting percentage (85%), average root number (5.80), and root length (6.30 cm). RSM-based regression models demonstrated strong predictive power, with the model for rooting percentage explaining up to 92.79% of the total variance. Temperature and auxin concentration were identified as the most influential linear factors, while second-order and interaction terms—particularly T·ppm—contributed substantially to root length variation. These findings validate IBA as the most effective exogenous auxin for the vegetative propagation of Photinia × fraseri Dress. and provide practical recommendations for optimizing hormone treatments. Moreover, the study offers a robust statistical modeling framework that can be applied to similar propagation systems in woody ornamental plants. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

12 pages, 2259 KiB  
Article
Soil C:N:P Stoichiometry in Two Contrasting Urban Forests in the Guangzhou Metropolis: Differences and Related Dominates
by Yongmei Xiong, Zhiqi Li, Shiyuan Meng and Jianmin Xu
Forests 2025, 16(8), 1268; https://doi.org/10.3390/f16081268 - 3 Aug 2025
Viewed by 169
Abstract
Carbon (C) sequestration and nitrogen (N) and phosphorus (P) accumulation in urban forest green spaces are significant for global climate regulation and alleviating nutrient pollution. However, the effects of management and conservation practices across different urban forest vegetation types on soil C, N, [...] Read more.
Carbon (C) sequestration and nitrogen (N) and phosphorus (P) accumulation in urban forest green spaces are significant for global climate regulation and alleviating nutrient pollution. However, the effects of management and conservation practices across different urban forest vegetation types on soil C, N, and P contents and stoichiometric ratios remain largely unexplored. We selected forest soils from Guangzhou, a major Metropolis in China, as our study area. Soil samples were collected from two urban secondary forests that naturally regenerated after disturbance (108 samples) and six urban forest parks primarily composed of artificially planted woody plant communities (72 samples). We employed mixed linear models and variance partitioning to analyze and compare soil C, N, and P contents and their stoichiometry and its main driving factors beneath suburban forests and urban park vegetation. These results exhibited that soil pH and bulk density in urban parks were higher than those in suburban forests, whereas soil water content, maximum storage capacity, and capillary porosity were higher in urban forests than in urban parks. Soil C, N, and P contents and their stoichiometry (except for N:P ratio) were significantly higher in suburban forests than in urban parks. Multiple analyzes showed that soil pH had the most pronounced negative influence on soil C, N, C:N, C:P, and N:P, but the strongest positive influence on soil P in urban parks. Soil water content had the strongest positive effect on soil C, N, P, C:N, and C:P, while soil N:P was primarily influenced by the positive effect of soil non-capillary porosity in suburban forests. Overall, our study emphasizes that suburban forests outperform urban parks in terms of carbon and nutrient accumulation, and urban green space management should focus particularly on the impact of soil pH and moisture content on soil C, N, and P contents and their stoichiometry. Full article
(This article belongs to the Special Issue Carbon, Nitrogen, and Phosphorus Storage and Cycling in Forest Soil)
Show Figures

Figure 1

15 pages, 428 KiB  
Article
Biodiversity Patterns and Community Construction in Subtropical Forests Driven by Species Phylogenetic Environments
by Pengcheng Liu, Jiejie Jiao, Chuping Wu, Weizhong Shao, Xuesong Liu and Liangjin Yao
Plants 2025, 14(15), 2397; https://doi.org/10.3390/plants14152397 - 2 Aug 2025
Viewed by 487
Abstract
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns [...] Read more.
To explore the characteristics of species diversity and phylogenetic diversity, as well as the dominant processes of community construction, in different forest types (deciduous broad-leaved forest, mixed coniferous and broad-leaved forest, and Chinese fir plantation) in subtropical regions, analyze the specific driving patterns of soil nutrients and other environmental factors on the formation of forest diversity in different forest types, and clarify the differences in response to environmental heterogeneity between natural forests and plantation forests. Based on 48 fixed monitoring plots of 50 m × 50 m in Shouchang Forest Farm, Jiande City, Zhejiang Province, woody plants with a diameter at breast height ≥5 cm were investigated. Species diversity indices (Margalef index, Shannon–Wiener index, Simpson index, and Pielou index), phylogenetic structure index (PD), and environmental factors were used to analyze the relationship between diversity characteristics and environmental factors through variance analysis, correlation analysis, and generalized linear models. Phylogenetic structural indices (NRI and NTI) were used, combined with a random zero model, to explore the mechanisms of community construction in different forest types. Research has found that (1) the deciduous broad-leaved forest had the highest species diversity (Margalef index of 4.121 ± 1.425) and phylogenetic diversity (PD index of 21.265 ± 7.796), significantly higher than the mixed coniferous and broad-leaved forest and the Chinese fir plantation (p < 0.05); (2) there is a significant positive correlation between species richness and phylogenetic diversity, with the best fit being AIC = 70.5636 and R2 = 0.9419 in broad-leaved forests; however, the contribution of evenness is limited; (3) the specific effects of soil factors on different forest types: available phosphorus (AP) is negatively correlated with the diversity of deciduous broad-leaved forests (p < 0.05), total phosphorus (TP) promotes the diversity of coniferous and broad-leaved mixed forests, while the diversity of Chinese fir plantations is significantly negatively correlated with total nitrogen (TN); (4) the phylogenetic structure of three different forest types shows a divergent pattern in deciduous broad-leaved forests, indicating that competition and exclusion dominate the construction of deciduous broad-leaved forests; the aggregation mode of Chinese fir plantation indicates that environmental filtering dominates the construction of Chinese fir plantation; the mixed coniferous and broad-leaved forest is a transitional model, indicating that the mixed coniferous and broad-leaved forest is influenced by both stochastic processes and ecological niche processes. In different forest types in subtropical regions, the species and phylogenetic diversity of broad-leaved forests is significantly higher than in other forest types. The impact of soil nutrients on the diversity of different forest types varies, and the characteristics of community construction in different forest types are also different. This indicates the importance of protecting the original vegetation and provides a scientific basis for improving the ecological function of artificial forest ecosystems through structural adjustment. The research results have important practical guidance value for sustainable forest management and biodiversity conservation in the region. Full article
Show Figures

Figure 1

20 pages, 1205 KiB  
Review
Patterns in Root Phenology of Woody Plants Across Climate Regions: Drivers, Constraints, and Ecosystem Implications
by Qiwen Guo, Boris Rewald, Hans Sandén and Douglas L. Godbold
Forests 2025, 16(8), 1257; https://doi.org/10.3390/f16081257 - 1 Aug 2025
Viewed by 186
Abstract
Root phenology significantly influences ecosystem processes yet remains poorly characterized across biomes. This study synthesized data from 59 studies spanning Arctic to tropical ecosystems to identify woody plants root phenological patterns and their environmental drivers. The analysis revealed distinct climate-specific patterns. Arctic regions [...] Read more.
Root phenology significantly influences ecosystem processes yet remains poorly characterized across biomes. This study synthesized data from 59 studies spanning Arctic to tropical ecosystems to identify woody plants root phenological patterns and their environmental drivers. The analysis revealed distinct climate-specific patterns. Arctic regions had a short growing season with remarkably low temperature threshold for initiation of root growth (0.5–1 °C). Temperate forests displayed pronounced spring-summer growth patterns with root growth initiation occurring at 1–9 °C. Mediterranean ecosystems showed bimodal patterns optimized around moisture availability, and tropical regions demonstrate seasonality primarily driven by precipitation. Root-shoot coordination varies predictably across biomes, with humid continental ecosystems showing the highest synchronous above- and belowground activity (57%), temperate regions exhibiting leaf-before-root emergence (55%), and Mediterranean regions consistently showing root-before-leaf patterns (100%). Winter root growth is more widespread than previously recognized (35% of studies), primarily in tropical and Mediterranean regions. Temperature thresholds for phenological transitions vary with climate region, suggesting adaptations to environmental conditions. These findings provide a critical, region-specific framework for improving models of terrestrial ecosystem responses to climate change. While our synthesis clarifies distinct phenological strategies, its conclusions are drawn from data focused primarily on Northern Hemisphere woody plants, highlighting significant geographic gaps in our current understanding. Bridging these knowledge gaps is essential for accurately forecasting how belowground dynamics will influence global carbon sequestration, nutrient cycling, and ecosystem resilience under changing climatic regimes. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

21 pages, 6231 KiB  
Article
Integrating In Vitro Propagation and Machine Learning Modeling for Efficient Shoot and Root Development in Aronia melanocarpa
by Mehmet Yaman, Esra Bulunuz Palaz, Musab A. Isak, Serap Demirel, Tolga İzgü, Sümeyye Adalı, Fatih Demirel, Özhan Şimşek, Gheorghe Cristian Popescu and Monica Popescu
Horticulturae 2025, 11(8), 886; https://doi.org/10.3390/horticulturae11080886 - 1 Aug 2025
Viewed by 224
Abstract
Aronia melanocarpa (black chokeberry) is a medicinally valuable small fruit species, yet its commercial propagation remains limited by low rooting and genotype-specific responses. This study developed an efficient, callus-free micropropagation and rooting protocol using a Shrub Plant Medium (SPM) supplemented with 5 mg/L [...] Read more.
Aronia melanocarpa (black chokeberry) is a medicinally valuable small fruit species, yet its commercial propagation remains limited by low rooting and genotype-specific responses. This study developed an efficient, callus-free micropropagation and rooting protocol using a Shrub Plant Medium (SPM) supplemented with 5 mg/L BAP in large 660 mL jars, which yielded up to 27 shoots per explant. Optimal rooting (100%) was achieved with 0.5 mg/L NAA + 0.25 mg/L IBA in half-strength SPM. In the second phase, supervised machine learning models, including Random Forest (RF), XGBoost, Gaussian Process (GP), and Multilayer Perceptron (MLP), were employed to predict morphogenic traits based on culture conditions. XGBoost and RF outperformed other models, achieving R2 values exceeding 0.95 for key variables such as shoot number and root length. These results demonstrate that data-driven modeling can enhance protocol precision and reduce experimental workload in plant tissue culture. The study also highlights the potential for combining physiological understanding with artificial intelligence to streamline future in vitro applications in woody species. Full article
(This article belongs to the Special Issue Tissue Culture and Micropropagation Techniques of Horticultural Crops)
Show Figures

Figure 1

27 pages, 5548 KiB  
Article
Woody Vegetation Characteristics of Selected Rangelands Along an Aridity Gradient in Namibia: Implications for Rangeland Management
by Emilia N. Inman, Igshaan Samuels, Zivanai Tsvuura, Margaret Angula and Jesaya Nakanyala
Diversity 2025, 17(8), 530; https://doi.org/10.3390/d17080530 - 29 Jul 2025
Viewed by 271
Abstract
Rangelands form the ecological and economic backbone of Namibia, yet the woody plant dynamics that sustain these landscapes remain sporadically quantified across the semi-arid interior. We investigated the characteristics (stand structure, regeneration, richness, diversity, composition, ecological importance, and indicator species) of woody communities [...] Read more.
Rangelands form the ecological and economic backbone of Namibia, yet the woody plant dynamics that sustain these landscapes remain sporadically quantified across the semi-arid interior. We investigated the characteristics (stand structure, regeneration, richness, diversity, composition, ecological importance, and indicator species) of woody communities along a pronounced south-to-north rainfall gradient (85–346 mm yr−1) at five representative sites: Warmbad, Gibeon, Otjimbingwe, Ovitoto, and Sesfontein. Field sampling combined point-centered quarter surveys (10 points site−1) and belt transects (15 plots site−1). The basal area increased almost ten-fold along the gradient (0.4–3.4 m2 ha−1). Principal Coordinates Analysis (PCoA) arranged plots in near-perfect rainfall order, and Permutational Multivariate Analysis of Variance (PERMANOVA) confirmed significant site differences (F3,56 = 9.1, p < 0.001). Nanophanerophytes dominated hyper-arid zones, while microphanerophytes appeared progressively with increasing rainfall. Mean annual precipitation explained 45% of the variance in mean height and 34% of Shannon diversity but only 5% of stem density. Indicator value analysis highlighted Montinia caryophyllacea for Warmbad (IndVal = 100), Rhigozum trichotomum (75.8) for Gibeon, Senegalia senegal (72.6) for Otjimbingwe, and Senegalia mellifera (97.3) for Ovitoto. Rainfall significantly influences woody structure and diversity; however, other factors also modulate density and regeneration dynamics. This quantitative baseline can serve as a practical toolkit for designing site-specific management strategies across Namibia’s aridity gradient. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

24 pages, 5292 KiB  
Article
Assessment of Drought–Heat Dual Stress Tolerance in Woody Plants and Selection of Stress-Tolerant Species
by Dong-Jin Park, Seong-Hyeon Yong, Do-Hyun Kim, Kwan-Been Park, Seung-A Cha, Ji-Hyeon Lee, Seon-A Kim and Myung-Suk Choi
Life 2025, 15(8), 1207; https://doi.org/10.3390/life15081207 - 29 Jul 2025
Viewed by 247
Abstract
Sequential drought and heat stress pose a growing threat to forest ecosystems in the context of climate change, yet systematic evaluation methods for woody plants remain limited. This study aimed to develop a comprehensive screening platform for identifying woody plant species tolerant to [...] Read more.
Sequential drought and heat stress pose a growing threat to forest ecosystems in the context of climate change, yet systematic evaluation methods for woody plants remain limited. This study aimed to develop a comprehensive screening platform for identifying woody plant species tolerant to sequential drought and heat stress among 27 native species growing in Korea. A sequential stress protocol was applied: drought stress for 2 weeks, followed by high-temperature exposure at 45 °C. Physiological indicators, including relative water content (RWC) and electrolyte leakage index (ELI), were used for preliminary screening, supported by phenotypic observations, Evans blue staining for cell death, and DAB staining to assess oxidative stress and recovery ability. The results revealed clear differences among species. Chamaecyparis obtusa, Quercus glauca, and Q. myrsinaefolia exhibited strong tolerance, maintaining high RWC and low ELI values, while Albizia julibrissin was highly susceptible, showing severe membrane damage and low survival. DAB staining successfully distinguished tolerance levels based on oxidative recovery. Additional species such as Camellia sinensis, Q. acuta, Q. phillyraeoides, Q. salicina, and Ternstroemia japonica showed varied responses: Q. phillyraeoides demonstrated high tolerance, T. japonica showed moderate tolerance, and Q. salicina was relatively sensitive. The integrated screening system effectively differentiated tolerant species through multiscale analysis—physiological, cellular, and morphological—demonstrating its robustness and applicability. This study provides a practical and reproducible framework for evaluating sequential drought and heat stress in trees and offers valuable resources for urban forestry, reforestation, and climate-resilient species selection. Full article
(This article belongs to the Special Issue Plant Biotic and Abiotic Stresses 2024)
Show Figures

Figure 1

24 pages, 5270 KiB  
Article
Ecophysiological Keys to the Success of a Native-Expansive Mediterranean Species in Threatened Coastal Dune Habitats
by Mario Fernández-Martínez, Carmen Jiménez-Carrasco, Mari Cruz Díaz Barradas, Juan B. Gallego-Fernández and María Zunzunegui
Plants 2025, 14(15), 2342; https://doi.org/10.3390/plants14152342 - 29 Jul 2025
Viewed by 215
Abstract
Range-expanding species, or neonatives, are native plants that spread beyond their original range due to recent climate or human-induced environmental changes. Retama monosperma was initially planted near the Guadalquivir estuary for dune stabilisation. However, changes in the sedimentary regime and animal-mediated dispersal have [...] Read more.
Range-expanding species, or neonatives, are native plants that spread beyond their original range due to recent climate or human-induced environmental changes. Retama monosperma was initially planted near the Guadalquivir estuary for dune stabilisation. However, changes in the sedimentary regime and animal-mediated dispersal have facilitated its exponential expansion, threatening endemic species and critical dune habitats. The main objective of this study was to identify the key functional traits that may explain the competitive advantage and rapid spread of R. monosperma in coastal dune ecosystems. We compared its seasonal responses with those of three co-occurring woody species, two native (Juniperus phoenicea and J. macrocarpa) and one naturalised (Pinus pinea), at two sites differing in groundwater availability within a coastal dune area (Doñana National Park, Spain). We measured water relations, leaf traits, stomatal conductance, photochemical efficiency, stable isotopes, and shoot elongation in 12 individuals per species. Repeated-measures ANOVA showed significant effects of species and species × season interaction for relative water content, shoot elongation, effective photochemical efficiency, and stable isotopes. R. monosperma showed significantly higher shoot elongation, relative water content, and photochemical efficiency in summer compared with the other species. Stable isotope data confirmed its nitrogen-fixing capacity. This characteristic, along with the higher seasonal plasticity, contributes to its competitive advantage. Given the ecological fragility of coastal dunes, understanding the functional traits favouring the success of neonatives such as R. monosperma is essential for biodiversity conservation and ecosystem management. Full article
Show Figures

Figure 1

12 pages, 432 KiB  
Review
Adventitious Root Formation in Cuttings: Insights from Arabidopsis and Prospects for Woody Plants
by Peipei Liu, Shili Zhang, Xinying Wang, Yuxuan Du, Qizhouhong He, Yingying Zhang, Lisha Shen, Hongfei Hu, Guifang Zhang and Xiaojuan Li
Biomolecules 2025, 15(8), 1089; https://doi.org/10.3390/biom15081089 - 28 Jul 2025
Viewed by 376
Abstract
Cutting propagation is a commonly employed technology for vegetative reproduction in agricultural, forestry, and horticultural practice. The success of cutting propagation depends on adventitious root (AR) formation—a process whereby roots regenerate from stem cuttings or leaf cuttings. In this review, we summarize the [...] Read more.
Cutting propagation is a commonly employed technology for vegetative reproduction in agricultural, forestry, and horticultural practice. The success of cutting propagation depends on adventitious root (AR) formation—a process whereby roots regenerate from stem cuttings or leaf cuttings. In this review, we summarize the distinct stages of cutting-induced AR formation and highlight the pivotal roles of plant hormones and age in this process. Jasmonic acid (JA) acts as a master trigger for promoting AR formation, while auxin serves as the core regulator, driving AR formation. Furthermore, plant age is a crucial factor determining the regenerative competence of cuttings. Notably, age and JA collaboratively modulate auxin synthesis in cutting-induced AR formation. Overall, this review not only elucidates the molecular mechanisms underlying AR formation but also provides valuable insights for improving efficiency of cutting propagation in various plant species. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

Back to TopTop