Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = woody cutting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2857 KiB  
Article
Identification of the MADS-Box Gene Family and Development of Simple Sequence Repeat Markers in Chimonanthus praecox
by Huafeng Wu, Bin Liu, Yinzhu Cao, Guanpeng Ma, Xiaowen Zheng, Ximeng Yang, Qianli Dai, Hengxing Zhu, Haoxiang Zhu, Xingrong Song and Shunzhao Sui
Plants 2025, 14(15), 2450; https://doi.org/10.3390/plants14152450 - 7 Aug 2025
Abstract
Chimonanthus praecox, a traditional ornamental plant in China, is admired for its ability to bloom during the cold winter season and is recognized as an outstanding woody cut flower. MADS-box genes encode transcription factors essential for plant growth and development, with key [...] Read more.
Chimonanthus praecox, a traditional ornamental plant in China, is admired for its ability to bloom during the cold winter season and is recognized as an outstanding woody cut flower. MADS-box genes encode transcription factors essential for plant growth and development, with key functions in regulating flowering time and the formation of floral organs. In this study, 74 MADS-box genes (CpMADS1–CpMADS74) were identified and mapped across 11 chromosomes, with chromosome 1 harboring the highest number (13 genes) and chromosome 3 the fewest (3 genes). Physicochemical property analysis revealed that all CpMADS proteins are hydrophilic and predominantly nuclear-localized. Phylogenetic analysis classified these genes into Type I and Type II subfamilies, highlighting a clear divergence in domain structure. Eighty simple sequence repeat (SSR) loci were detected, with dinucleotide repeats being the most abundant, and the majority located in Type II MADS genes. From 23 C. praecox samples, 10 polymorphic SSR markers were successfully developed and PCR-validated, enabling a cluster analysis that grouped these cultivars into three distinct clusters. This study offers significant insights into the regulation of flowering, floral organ development, genetic linkage map construction, and the application of marker-assisted selection in C. praecox. Full article
Show Figures

Figure 1

21 pages, 1488 KiB  
Article
Comparative Evaluation and Optimization of Auxin Type and Concentration on Rooting Efficiency of Photinia × fraseri Dress: Stem Cuttings Using Response Surface Methodology
by Gülcay Ercan Oğuztürk, Müberra Pulatkan, Cem Alparslan and Türker Oğuztürk
Plants 2025, 14(15), 2420; https://doi.org/10.3390/plants14152420 - 4 Aug 2025
Viewed by 187
Abstract
This study aimed to evaluate and optimize the effects of three auxin types—indole-3-butyric acid (IBA), naphthaleneacetic acid (NAA), and indole-3-acetic acid (IAA)—applied at four concentrations (1000, 3000, 5000, and 8000 ppm) on the rooting performance of Photinia × fraseri Dress. stem cuttings. The [...] Read more.
This study aimed to evaluate and optimize the effects of three auxin types—indole-3-butyric acid (IBA), naphthaleneacetic acid (NAA), and indole-3-acetic acid (IAA)—applied at four concentrations (1000, 3000, 5000, and 8000 ppm) on the rooting performance of Photinia × fraseri Dress. stem cuttings. The experiment was conducted under controlled greenhouse conditions using a sterile perlite medium. Rooting trays were placed on bottom-heated propagation benches maintained at a set temperature of 25 ± 2 °C to stimulate root formation. However, the actual rooting medium temperature—measured manually every four days from the perlite zone using a calibrated thermometer—ranged between 18 °C and 22 °C, with an overall average of approximately 20 ± 2 °C. The average values of these root-zone temperatures were used in the statistical analyses. Rooting percentage, root number, root length, callus formation, and mortality rate were recorded after 120 days. In addition to classical one-way ANOVA, response surface methodology (RSM) was employed to model and optimize the interactions between auxin type, concentration, and temperature. The results revealed that 5000 ppm IBA significantly enhanced rooting performance, yielding the highest rooting percentage (85%), average root number (5.80), and root length (6.30 cm). RSM-based regression models demonstrated strong predictive power, with the model for rooting percentage explaining up to 92.79% of the total variance. Temperature and auxin concentration were identified as the most influential linear factors, while second-order and interaction terms—particularly T·ppm—contributed substantially to root length variation. These findings validate IBA as the most effective exogenous auxin for the vegetative propagation of Photinia × fraseri Dress. and provide practical recommendations for optimizing hormone treatments. Moreover, the study offers a robust statistical modeling framework that can be applied to similar propagation systems in woody ornamental plants. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

12 pages, 432 KiB  
Review
Adventitious Root Formation in Cuttings: Insights from Arabidopsis and Prospects for Woody Plants
by Peipei Liu, Shili Zhang, Xinying Wang, Yuxuan Du, Qizhouhong He, Yingying Zhang, Lisha Shen, Hongfei Hu, Guifang Zhang and Xiaojuan Li
Biomolecules 2025, 15(8), 1089; https://doi.org/10.3390/biom15081089 - 28 Jul 2025
Viewed by 376
Abstract
Cutting propagation is a commonly employed technology for vegetative reproduction in agricultural, forestry, and horticultural practice. The success of cutting propagation depends on adventitious root (AR) formation—a process whereby roots regenerate from stem cuttings or leaf cuttings. In this review, we summarize the [...] Read more.
Cutting propagation is a commonly employed technology for vegetative reproduction in agricultural, forestry, and horticultural practice. The success of cutting propagation depends on adventitious root (AR) formation—a process whereby roots regenerate from stem cuttings or leaf cuttings. In this review, we summarize the distinct stages of cutting-induced AR formation and highlight the pivotal roles of plant hormones and age in this process. Jasmonic acid (JA) acts as a master trigger for promoting AR formation, while auxin serves as the core regulator, driving AR formation. Furthermore, plant age is a crucial factor determining the regenerative competence of cuttings. Notably, age and JA collaboratively modulate auxin synthesis in cutting-induced AR formation. Overall, this review not only elucidates the molecular mechanisms underlying AR formation but also provides valuable insights for improving efficiency of cutting propagation in various plant species. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

13 pages, 5309 KiB  
Article
Fungi Associated with Dying Buckthorn in North America
by Ryan D. M. Franke, Nickolas N. Rajtar and Robert A. Blanchette
Forests 2025, 16(7), 1148; https://doi.org/10.3390/f16071148 - 11 Jul 2025
Viewed by 434
Abstract
Common buckthorn (Rhamnus cathartica L.) is a small tree that forms dense stands, displacing native plant species and threatening natural forest habitats in its introduced range in North America. Removal via cutting is labor intensive and often ineffective due to vigorous resprouting. [...] Read more.
Common buckthorn (Rhamnus cathartica L.) is a small tree that forms dense stands, displacing native plant species and threatening natural forest habitats in its introduced range in North America. Removal via cutting is labor intensive and often ineffective due to vigorous resprouting. Although chemical control methods are effective, they can negatively affect sensitive ecosystems. A mycoherbicide that selectively kills buckthorn would provide an additional method for control. In the present study, fungi were collected from dying buckthorn species (Frangula alnus Mill., Rhamnus cathartica, Ventia alnifolia L’Hér) located at 19 sites across Minnesota and Wisconsin for their potential use as mycoherbicides for common buckthorn. A total of 412 fungi were isolated from samples of diseased tissue and identified via DNA extraction and sequencing. These fungi were identified as 120 unique taxa belonging to 81 genera. Of these fungi, 46 species belonging to 26 genera were considered to be canker or root-rot pathogens of woody plants, including species in Cytospora, Diaporthe, Diplodia, Dothiorella, Eutypella, Fusarium, Hymenochaete, Irpex, Phaeoacemonium, and others. A future study testing the pathogenicity of these putative pathogens of buckthorn is now needed to assess their utility as potential mycoherbicide agents for control of common buckthorn. Full article
(This article belongs to the Special Issue Pathogenic Fungi in Forest)
Show Figures

Figure 1

15 pages, 5226 KiB  
Article
Enhancing Conservation Efforts of Stephanopodium engleri Through Vegetative Propagation: Effects of IBA and Cutting Types
by Giselly Mota da Silva, Evandro Alves Vieira, Luiz Palhares Neto, Silvio Ramos, Markus Gastauer and Cecílio Frois Caldeira
Plants 2025, 14(14), 2116; https://doi.org/10.3390/plants14142116 - 9 Jul 2025
Cited by 1 | Viewed by 394
Abstract
Stephanopodium engleri Baill. is an endangered tree species from the Dichapetalaceae family and endemic to the Iron Quadrangle region of Brazil. Recalcitrance and low seed viability limit conventional seedling production, making vegetative propagation a crucial alternative for conservation efforts. This study evaluated the [...] Read more.
Stephanopodium engleri Baill. is an endangered tree species from the Dichapetalaceae family and endemic to the Iron Quadrangle region of Brazil. Recalcitrance and low seed viability limit conventional seedling production, making vegetative propagation a crucial alternative for conservation efforts. This study evaluated the rooting and sprouting potential of different cutting types (apical, middle, and basal segments from the main stem, as well as the tip and the herbaceous and woody segments from the lateral branches) treated with Indole-3-Butyric Acid (IBA) at varying concentrations (0, 1, 2, 3, and 4 g L−1) and immersion durations (5 s to 10 min). Cuttings were collected from 12-month-old plants grown under controlled conditions and planted in Carolina Soil® substrate after treatment. Sprouting and rooting rates varied significantly between cutting types, with basal main stem cuttings showing the highest rooting success, particularly at 3 g L−1 of IBA. These cuttings also exhibited more and longer roots and enhanced sprouting-related biometric traits. Shorter immersion times (15 s and 1 min) were the most effective, promoting root formation while avoiding the potential inhibitory effects of prolonged exposure. Our findings provide a practical protocol for large-scale seedling production of S. engleri while minimizing impacts on wild populations. The effective use of vegetative propagation could facilitate the expansion of S. engleri populations in their natural habitats, enhancing conservation efforts and ensuring sustainable species management. Full article
(This article belongs to the Special Issue Physiology and Seedling Production of Plants)
Show Figures

Figure 1

24 pages, 3225 KiB  
Article
Assessment of Paulownia tomentosa Steud. Regeneration Capacity Through Root Cutting Diameters, Growth Hormone doses and Soil Types
by Afef H. Nasraoui, Yasmin M. Heikal, Mohammed Ali, Chedly Abidi and Youssef Ammari
Int. J. Plant Biol. 2025, 16(3), 73; https://doi.org/10.3390/ijpb16030073 - 1 Jul 2025
Viewed by 273
Abstract
This investigation proposes an effective protocol (cutting) for Paulownia tomentosa production in Tunisia during the 2022–2024 period. The effects of the three interactive parameters: root cutting diameter (L1, 0.5; L2, 0.8; L3, 1.25; and L4, 2 cm), indole-3-butyric acid (IBA) hormone concentrations (C, [...] Read more.
This investigation proposes an effective protocol (cutting) for Paulownia tomentosa production in Tunisia during the 2022–2024 period. The effects of the three interactive parameters: root cutting diameter (L1, 0.5; L2, 0.8; L3, 1.25; and L4, 2 cm), indole-3-butyric acid (IBA) hormone concentrations (C, 0; T1, 0.1%; and T2, 0.3%), and soil type (S1: 50% silt + 50% potting soil, and S2: 43% potting soil + 43% silt + 14% sand), were investigated. The data showed that cutting roots with 0.5 cm dimensions, a cutting treatment with hormone (0.3%), and the S2 soil type corresponded to a growth enhancement in height. These results revealed the broad changes in flowering of P. tomentosa. Also, data revealed that the root cutting diameter had the greatest influence on the biochemical contents of 4-month-old P. tomentosa sprouts. The studied pathway revealed that the auxin precursor IBA contributes toward active auxin [indole-3-acetic acid (IAA)] biosynthesis. Overall, this study found substantial changes in the morphological, biochemical, and floral features of new P. tomentosa sprouts under the interactive factors. To summarize, vegetative propagation of Paulownia, particularly through root cutting, allows for proliferation and plantation development. These findings can be applied to future breeding efforts with Paulownia to improve and protect it as a woody species, forage, and medicinal plant. Full article
Show Figures

Figure 1

25 pages, 10286 KiB  
Article
Plant Community Restoration Efforts in Degraded Blufftop Parkland in Southeastern Minnesota, USA
by Neal D. Mundahl, Austin M. Yantes and John Howard
Land 2025, 14(7), 1326; https://doi.org/10.3390/land14071326 - 22 Jun 2025
Viewed by 556
Abstract
Garvin Heights Park in southeastern Minnesota, USA, is a 12 ha mosaic of bluff prairie, oak savanna, and oak–hickory woodland co-owned by the City of Winona and Winona State University, with a 40+ year history of encroachment by non-native woody invasives, especially buckthorn [...] Read more.
Garvin Heights Park in southeastern Minnesota, USA, is a 12 ha mosaic of bluff prairie, oak savanna, and oak–hickory woodland co-owned by the City of Winona and Winona State University, with a 40+ year history of encroachment by non-native woody invasives, especially buckthorn (Rhamnus cathartica) and honeysuckles (Lonicera spp.). Habitat restoration was initiated in the early 1990s, but management gaps and a seedbank of invasives compromised initial efforts. More consistent and sustainable restoration activities since 2016 have included cutting and chemical treatment of invasives, managed goat browsing, targeted reseeding and plug planting with native species, and more regular prescribed fires. Throughout the restoration process, we assessed changes in buckthorn densities in response to various management practices, assessed the restored savanna tree community, and documented the presence of blooming plants across all park habitats. Manual clearing of woody invasives and repeated goat browsing significantly reduced buckthorn and honeysuckle abundance in prairies and savannas. Park plant communities responded to the combination of management strategies with reduced densities of woody invasives and expanding diversity (currently >220 species present) of forbs and grasses, including a large and growing population of state-threatened Great Indian Plantain (Arnoglossum reniforme). Prescribed fires have benefitted prairies but have done little to improve savanna plant communities, due largely to excessive tree canopy coverage causing a lack of burnable fuels (i.e., dry forbs and grasses). Improved partnerships between landowners and dedicated volunteers are working to expand restoration efforts to include other portions of the park and adjacent woodlands. Full article
Show Figures

Figure 1

21 pages, 5853 KiB  
Article
Regeneration Capability Comparison of Leaves Between Nodal Cuttings from Young Stems and Suckers and Its Histological Analysis in Triadica sebifera
by Yuan Chen, Yumei Xie, Keyuan Zheng, Yanru Fan, Huijing Zhou and Mulan Zhu
Forests 2025, 16(6), 992; https://doi.org/10.3390/f16060992 - 12 Jun 2025
Viewed by 366
Abstract
Triadica sebifera, an economically and medicinally valuable tree species native to China, was investigated for its in vitro regeneration potential using leaf explants from nodal cuttings of young stems and sprouts. This study evaluated the effects of basal media, plant growth regulators [...] Read more.
Triadica sebifera, an economically and medicinally valuable tree species native to China, was investigated for its in vitro regeneration potential using leaf explants from nodal cuttings of young stems and sprouts. This study evaluated the effects of basal media, plant growth regulators (PGRs), explant sources, and incision methods on adventitious shoot induction, supplemented by histological analysis. The highest shoot regeneration frequency (98.89%) and maximum shoot number (72) were achieved via direct organogenesis using sucker-derived nodal cuttings cultured on MS medium with 2 mg/L 6- benzyladenine (6-BA), 0.3 mg/L kinetin (KT), and 0.2 mg/L α-naphthaleneacetic acid (NAA). Under identical conditions, branch-derived explants showed lower regeneration (84.44%, 64 shoots). Transverse midvein incision proved most effective, with sucker-derived leaves exhibiting superior regeneration. Shoots elongated completely (100%) on Murashige and Skoog (MS) medium containing 0.3 mg/L 6-BA, 0.03 mg/L NAA, and activated charcoal. Rooting was optimal on MS medium with 0.3 mg/L indole-3-butyric acid (IBA), yielding a 98% acclimatization survival rate. Histological analysis revealed de novo meristem formation from parenchyma cells, confirming direct organogenesis without callus intermediation, further validating the enhanced regenerative capacity of sprout-derived explants. This efficient in vitro regeneration system provides a foundation for large-scale propagation and germplasm conservation of T. sebifera, while offering insights for woody plant regeneration studies. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

20 pages, 5175 KiB  
Article
Rejuvenation of Mature Ilex paraguariensis Plants Through Serial Rooted Cuttings: Exploring the Roles of miRNAs in Reversing Adult Phase, Promoting Root Formation, and Determining Root Structure
by María J. Duarte, Raúl M. Acevedo, Nicolás L. Ortiz, Mayra Y. Álvarez and Pedro A. Sansberro
Plants 2025, 14(11), 1668; https://doi.org/10.3390/plants14111668 - 30 May 2025
Viewed by 618
Abstract
In plants, the transition from the juvenile to adult stage involves physiological and anatomical changes initiated and partially controlled by evolutionarily conserved microRNAs. This process is of particular significance for the successful propagation of woody plant species that have transitioned to vegetative maturity [...] Read more.
In plants, the transition from the juvenile to adult stage involves physiological and anatomical changes initiated and partially controlled by evolutionarily conserved microRNAs. This process is of particular significance for the successful propagation of woody plant species that have transitioned to vegetative maturity and are recalcitrant to propagation. Conserved miRNAs differentially expressed between rejuvenated and mature Ilex paraguariensis plants were identified using high-throughput sequencing of small RNA libraries. The expression of miR156/miR157/miR528 was high in the leaves of juvenile plants and gradually decreased as the plant transitioned from juvenile to adult stages. In contrast, miR172 was predominantly expressed in adult plants. This variation confirmed that adults transitioned back to a juvenile phase after serial-rooted cuttings, allowing the plants to regain juvenile characteristics. Rejuvenation promotes the formation of adventitious roots and improves root structure, which supports the overall growth of the plant and results in greater vigour. The results will offer insights for further investigation into the molecular mechanisms regulating vegetative phase change in I. paraguariensis and other recalcitrant woody plant species. This knowledge could facilitate the earlier identification of rejuvenated material by analysing a wider range of genotypes and maturation stages, enhancing the efficiency of Ilex paraguariensis mass propagation. Full article
Show Figures

Graphical abstract

17 pages, 2151 KiB  
Article
Clonal Variation in Growth, Physiology and Ultrastructure of Populus alba L. Seedlings Under NaCl Stress
by Mejda Abassi, Mohammed S. Lamhamedi, Ali Albouchi, Damase Khasa and Zoubeir Bejaoui
Forests 2025, 16(5), 721; https://doi.org/10.3390/f16050721 - 23 Apr 2025
Viewed by 312
Abstract
Afforestation and reforestation (A/R) of non-agricultural and marginal saline lands by promoting fast-growing and salinity-tolerant woody species are crucial strategies to overcome land degradation and vegetation cover scarcity. To obtain basic information before using Populus alba clones in such degraded areas, morpho-physiological and [...] Read more.
Afforestation and reforestation (A/R) of non-agricultural and marginal saline lands by promoting fast-growing and salinity-tolerant woody species are crucial strategies to overcome land degradation and vegetation cover scarcity. To obtain basic information before using Populus alba clones in such degraded areas, morpho-physiological and cellular responses to salt stress were investigated. The experiment was conducted in a nursery where cuttings of three P. alba clones (MA-104, MA-195 and OG) were grown for 90 days in 100 mM NaCl versus a non-saline control. A global approach highlighting clonal differences in terms of dry mass production and plant physiological performance was achieved by comparing plant water status, gas exchange, ionic selectivity, osmotic adjustment and chloroplast ultrastructure under the two treatments. Dry mass production and eco-physiological processes were reduced in response to salt stress, with substantial clonal variation. Clone MA-104 exhibited salinity-tolerant behaviour in contrast to clone MA-195 and OG’s medium or sensitive behaviour towards the stress. Tolerance mechanisms may be attributed to enhanced stomatal control and osmotic adjustment, thereby enabling the maintenance of turgor in plants subjected to salt stress. The chloroplast ultrastructure also showed modifications that are often involved in adaptation to salinity stress. Full article
(This article belongs to the Special Issue Physiological Mechanisms of Plant Responses to Environmental Stress)
Show Figures

Figure 1

13 pages, 6578 KiB  
Review
Regulating the Vascular Cambium: Do Not Forget the Vascular Ray Initials and Their Derivatives
by Simcha Lev-Yadun
Plants 2025, 14(6), 971; https://doi.org/10.3390/plants14060971 - 19 Mar 2025
Viewed by 754
Abstract
The secondary lateral meristem—the vascular cambium (hereafter cambium)—is the largest meristem of the plant kingdom. It is almost always composed of two types of stem cells: (1) the axial (fusiform) initials, the most common and better known and studied, and (2) the ray [...] Read more.
The secondary lateral meristem—the vascular cambium (hereafter cambium)—is the largest meristem of the plant kingdom. It is almost always composed of two types of stem cells: (1) the axial (fusiform) initials, the most common and better known and studied, and (2) the ray initials that give rise to the vascular rays (hereafter rays), i.e., the radial component of the secondary xylem and phloem, which are less common and much less studied, and in many studies ignored. There is great flexibility in switching from axial initials to ray initials and vice versa. Ray initials commonly compose ca. 10–40% of the cambium of mature tree trunks, but nothing or very little in typical young model plants used for molecular cambial studies, such as Arabidopsis thaliana and young internodes of Populus spp. cuttings. I suggest paying more attention to the regulation of the differentiation of ray initials and their derivatives, and to the little-known complicated relations between the axial and ray cambial initials when they contact each other, as well as the special development of pits in their derivatives in cambial molecular studies by using mature trunks of various large woody plants rather than studying A. thaliana or young internodes of Populus cuttings. Full article
(This article belongs to the Section Plant Structural Biology)
Show Figures

Figure 1

20 pages, 10970 KiB  
Article
Investigating the Mechanisms of Adventitious Root Formation in Semi-Tender Cuttings of Prunus mume: Phenotypic, Phytohormone, and Transcriptomic Insights
by Xiujun Wang, Yue Li, Zihang Li, Xiaowen Gu, Zixu Wang, Xiaotian Qin and Qingwei Li
Int. J. Mol. Sci. 2025, 26(6), 2416; https://doi.org/10.3390/ijms26062416 - 7 Mar 2025
Viewed by 664
Abstract
Mei (Prunus mume Sieb. et Zucc.) is a rare woody species that flowers in winter, yet its large-scale propagation is limited by the variable ability of cuttings to form adventitious roots (ARs). In this study, two cultivars were compared: P. mume ‘Xiangxue [...] Read more.
Mei (Prunus mume Sieb. et Zucc.) is a rare woody species that flowers in winter, yet its large-scale propagation is limited by the variable ability of cuttings to form adventitious roots (ARs). In this study, two cultivars were compared: P. mume ‘Xiangxue Gongfen’ (GF), which roots readily, and P. mume ‘Zhusha Wanzhaoshui’ (ZS), which is more recalcitrant. Detailed anatomical observations revealed that following cutting, the basal region expanded within 7 days, callus tissues had appeared by 14 days, and AR primordia emerged between 28 and 35 days. Notably, compared to the recalcitrant cultivar ZS, the experimental cultivar GF exhibited significantly enhanced callus tissue formation and AR primordia differentiation. Physiological analyses showed that the initial IAA concentration was highest at day 0, whereas cytokinin (tZR) and gibberellin (GA1) levels peaked at 14 days, with ABA gradually decreasing over time, resulting in increased IAA/tZR and IAA/GA1 ratios during the rooting process. Transcriptomic profiling across these time points identified significant upregulation of key genes (e.g., PmPIN3, PmLOG2, PmCKX5, PmIAA13, PmLAX2, and PmGA2OX1) and transcription factors (PmWOX4, PmSHR, and PmNAC071) in GF compared to ZS. Moreover, correlation analyses revealed that PmSHR expression is closely associated with IAA and tZR levels. Overexpression of PmSHR in tobacco further validated its role in enhancing lateral root formation. Together, these findings provide comprehensive insights into the temporal, hormonal, and genetic regulation of AR formation in P. mume, offering valuable strategies for improving its propagation. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

24 pages, 1143 KiB  
Article
Exploring the Role of Traditional Ecological Knowledge in Restoring and Managing Miombo Woodlands: A Case Study from the Lubumbashi Region, Democratic Republic of the Congo
by Dieu-donné N’tambwe Nghonda, Héritier Khoji Muteya, Médard Mpanda Mukenza, Sylvestre Cabala Kaleba, François Malaisse, Justin Kyale Koy, Wilfried Masengo Kalenga, Jan Bogaert and Yannick Useni Sikuzani
Forests 2025, 16(3), 435; https://doi.org/10.3390/f16030435 - 27 Feb 2025
Cited by 1 | Viewed by 979
Abstract
The overexploitation of forest resources in the Lubumbashi Charcoal Production Basin in the southeastern Democratic Republic of the Congo (DR Congo) leads to deforestation and miombo woodlands degradation, threatening local livelihoods. Current forestry policies are ineffective, partly due to neglecting traditional ecological knowledge [...] Read more.
The overexploitation of forest resources in the Lubumbashi Charcoal Production Basin in the southeastern Democratic Republic of the Congo (DR Congo) leads to deforestation and miombo woodlands degradation, threatening local livelihoods. Current forestry policies are ineffective, partly due to neglecting traditional ecological knowledge (TEK). This study identifies and describes TEK and practices related to biodiversity conservation and sustainable miombo woodlands management. Focus groups and interviews were conducted in four villages (Maksem, Mwawa, Nsela, and Texas), selected based on forest resource availability and population size. Data on sacred sites, conservation practices, knowledge transmission, ceremonies, and socio-demographic factors were analyzed using descriptive statistics, Fisher’s exact test, and Jaccard’s similarity index. The findings revealed that 75% of respondents identified sacred sites where logging activities are strictly prohibited. Thirty sacred tree species were identified, with stronger compliance in villages with a high availability of forest resources. This TEK is predominantly transmitted orally through family councils, as well as traditional ceremonies or rituals. Conservation practices include small-scale farming, intercropping, avoiding tree cutting in sacred sites, and using deadwood. However, only farming and intercropping are still commonly practiced, particularly in resource-scarce villages (64%). Women and elders are primary custodians of TEK, though its application is constrained by population growth and dwindling forest resources. The findings emphasize the crucial role of TEK in strengthening forest restoration initiatives by selecting key woody species and sustainable practices, while fostering community involvement. As such, decision makers should prioritize integrating TEK into DR Congo’s forest policies to support biodiversity conservation and miombo woodlands restoration efforts. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

17 pages, 7439 KiB  
Article
Somatic Embryogenesis from the Leaf-Derived Calli of In Vitro Shoot-Regenerated Plantlets of Rosa hybrida ‘Carola’
by Mingao Duan, Juan Liu, Yining Zhao, Xiaofei Wang, Longzhen Li, Shiyi Wang, Ruidong Jia, Xin Zhao, Yaping Kou, Kairui Su, Hong Ge and Shuhua Yang
Plants 2024, 13(24), 3553; https://doi.org/10.3390/plants13243553 - 19 Dec 2024
Cited by 1 | Viewed by 1674
Abstract
Roses are one of the most important flowers applied to landscape, cut flowers, fragrance and food industries widely. As an effective method for plant reproduction, the regeneration via somatic embryos is the most promising method for breed improvement and genetic transformation of woody [...] Read more.
Roses are one of the most important flowers applied to landscape, cut flowers, fragrance and food industries widely. As an effective method for plant reproduction, the regeneration via somatic embryos is the most promising method for breed improvement and genetic transformation of woody plants. However, lower somatic embryogenesis (SE) induction rates and genotypic constraints impede progress in genetic transformation in rose. This study describes a plant regeneration system for the famous red cut flower cultivar Rosa hybrida ‘Carola’. The stems without petioles cultured on Murashige and Skoog (MS) medium supplemented with 1.0 mg·L−1 6-benzylaminopurine (6-BA), 0.05 mg·L−1 a-naphthalene acetic acid (NAA) and 30 g·L−1 sucrose showed the maximum proliferation coefficient of shoots with 3.41 for the micropropagation system. We evaluated the effects of different plant growth regulators (PGRs) on the induction, proliferation and conversion of somatic embryos. The induction rate of calli reached 100% on MS medium supplemented with 2.0 g·L−1 NAA and 30 g·L−1 glucose. The highest induction rate of somatic embryos achieved a frequency of 13.33% on MS medium supplemented with 2.0 mg·L−1 zeatin (ZT), 0.1 mg·L−1 NAA and 30 g·L−1 glucose. The most suitable carbohydrate with 60 g·L−1 glucose resulted in a proliferation rate of somatic embryos (4.02) on MS medium containing 1.5 mg·L−1 ZT, 0.2 mg·L−1 NAA and 0.1 mg·L−1 gibberellic acid (GA3). The highest somatic embryos germination rate (43.33%) was obtained from the MS medium supplemented with 1.0 mg·L−1 6-BA, 0.01 mg·L−1 IBA and 30 g·L−1 glucose. Finally, the germinated somatic embryos successfully rooted on 1/2 MS medium containing 1.0 mg·L−1 NAA, 30 g·L−1 sucrose, and the vigorous plantlets were obtained after hardening-off culture. This study provided a stable and efficient protocol for plant regeneration via somatic embryos in R. hybrida ‘Carola’, which will be beneficial to the further theoretical study and genetic improvement in roses. Full article
(This article belongs to the Special Issue Molecular Biology of Ornamental Plants, Volume II)
Show Figures

Figure 1

14 pages, 8953 KiB  
Article
Rehabilitation and Continuing Management of an Urban Lake Shoreline in Southeastern Minnesota, USA
by Neal D. Mundahl and John Howard
Land 2024, 13(12), 2224; https://doi.org/10.3390/land13122224 - 19 Dec 2024
Cited by 2 | Viewed by 881
Abstract
Lake Winona is a 129-hectare urban lake which occupies part of an old side channel of the Mississippi River and has been modified significantly over the past 125 years. The entire shoreline (>8 km) is publicly owned, with current shorelines created mostly during [...] Read more.
Lake Winona is a 129-hectare urban lake which occupies part of an old side channel of the Mississippi River and has been modified significantly over the past 125 years. The entire shoreline (>8 km) is publicly owned, with current shorelines created mostly during two periods of lake dredging and filling of fringe wetlands 70 and 110 years ago, respectively. Since then, some sections were allowed to revegetate naturally with trees and shrubs, some were armored with riprap, and others have been maintained mostly as turfgrass parklands. Shoreline vegetation assessments and tree stand surveys were completed prior to beginning targeted shoreline rehabilitation in 2017. These rehabilitation activities (encompassing the majority of shoreline) include the following: (1) repeated removal and chemical treatment of woody invasive shrubs/trees (primarily common buckthorn Rhamnus cathartica and nonnative bush honeysuckles Lonicera spp.) by contractors and volunteers; (2) chemical spraying and hand pulling of nonnative invasive ornamental grasses (Miscanthus spp.) and forbs (Japanese hops Humulus japonica; leafy spurge Euphorbia esula) annually or as needed; (3) killing of turfgrass and overseeding with native prairie species; (4) shrub and sapling plantings and overseeding with native species in both wooded and turfgrass sections; (5) installation of wave barriers (using cut woody invasives) and planting of emergent aquatic macrophytes; (6) prescribed burns of prairie plantings; (7) establishment of fixed photo reference points to document changes; and (8) altered park mowing practices to maintain a shoreline buffer of vegetation. These ongoing management activities aim to replace more turfgrass with native prairie, plant more shrubs and trees on shorelines, suppress nonnative invasives, and encourage the development of aquatic macrophyte beds to reduce, or eliminate shoreline erosion. Future management activities will continue to emphasize invasive species control, turfgrass conversion to native vegetation, and shoreline erosion reduction. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

Back to TopTop