Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (191)

Search Parameters:
Keywords = wood resistance measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1906 KiB  
Article
Integrating CT-Based Lung Fibrosis and MRI-Derived Right Ventricular Function for the Detection of Pulmonary Hypertension in Interstitial Lung Disease
by Kenichi Ito, Shingo Kato, Naofumi Yasuda, Shungo Sawamura, Kazuki Fukui, Tae Iwasawa, Takashi Ogura and Daisuke Utsunomiya
J. Clin. Med. 2025, 14(15), 5329; https://doi.org/10.3390/jcm14155329 - 28 Jul 2025
Viewed by 388
Abstract
Background/Objectives: Interstitial lung disease (ILD) is frequently complicated by pulmonary hypertension (PH), which is associated with reduced exercise capacity and poor prognosis. Early and accurate non-invasive detection of PH remains a clinical challenge. This study evaluated whether combining quantitative CT analysis of [...] Read more.
Background/Objectives: Interstitial lung disease (ILD) is frequently complicated by pulmonary hypertension (PH), which is associated with reduced exercise capacity and poor prognosis. Early and accurate non-invasive detection of PH remains a clinical challenge. This study evaluated whether combining quantitative CT analysis of lung fibrosis with cardiac MRI-derived measures of right ventricular (RV) function improves the diagnostic accuracy of PH in patients with ILD. Methods: We retrospectively analyzed 72 ILD patients who underwent chest CT, cardiac MRI, and right heart catheterization (RHC). Lung fibrosis was quantified using a Gaussian Histogram Normalized Correlation (GHNC) software that computed the proportions of diseased lung, ground-glass opacity (GGO), honeycombing, reticulation, consolidation, and emphysema. MRI was used to assess RV end-systolic volume (RVESV), ejection fraction, and RV longitudinal strain. PH was defined as a mean pulmonary arterial pressure (mPAP) ≥ 20 mmHg and pulmonary vascular resistance ≥ 3 Wood units on RHC. Results: Compared to patients without PH, those with PH (n = 21) showed significantly reduced RV strain (−13.4 ± 5.1% vs. −16.4 ± 5.2%, p = 0.026) and elevated RVESV (74.2 ± 18.3 mL vs. 59.5 ± 14.2 mL, p = 0.003). CT-derived indices also differed significantly: diseased lung area (56.4 ± 17.2% vs. 38.4 ± 12.5%, p < 0.001), GGO (11.8 ± 3.6% vs. 8.65 ± 4.3%, p = 0.005), and honeycombing (17.7 ± 4.9% vs. 12.8 ± 6.4%, p = 0.0027) were all more prominent in the PH group. In receiver operating characteristic curve analysis, diseased lung area demonstrated an area under the curve of 0.778 for detecting PH. This increased to 0.847 with the addition of RVESV, and further to 0.854 when RV strain was included. Combined models showed significant improvement in risk reclassification: net reclassification improvement was 0.700 (p = 0.002) with RVESV and 0.684 (p = 0.004) with RV strain; corresponding IDI values were 0.0887 (p = 0.03) and 0.1222 (p = 0.01), respectively. Conclusions: Combining CT-based fibrosis quantification with cardiac MRI-derived RV functional assessment enhances the non-invasive diagnosis of PH in ILD patients. This integrated imaging approach significantly improves diagnostic precision and may facilitate earlier, more targeted interventions in the management of ILD-associated PH. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
Show Figures

Figure 1

16 pages, 3262 KiB  
Article
Comparison of Acoustic Tomography and Drilling Resistance for the Internal Assessment of Urban Trees in Madrid
by Miguel Esteban, Guadalupe Olvera-Licona, Gabriel Humberto Virgen-Cobos and Ignacio Bobadilla
Forests 2025, 16(7), 1125; https://doi.org/10.3390/f16071125 - 8 Jul 2025
Viewed by 229
Abstract
Acoustic tomography is a non-destructive technique used in the internal assessment of standing trees. Various researchers have focused on developing analytical tools using this technique, demonstrating that they can detect internal biodeterioration in cross-sections with good accuracy. This study evaluates the use of [...] Read more.
Acoustic tomography is a non-destructive technique used in the internal assessment of standing trees. Various researchers have focused on developing analytical tools using this technique, demonstrating that they can detect internal biodeterioration in cross-sections with good accuracy. This study evaluates the use of two ultrasonic wave devices with different frequencies (USLab and Sylvatest Duo) and a stress wave device (Microsecond Timer) to generate acoustic tomography using ImageWood VC1 software. The tests were carried out on 12 cross-sections of urban trees in the city of Madrid of the species Robinia pseudoacacia L., Platanus × hybrida Brot., Ulmus pumila L., and Populus alba L. Velocity measurements were made, forming a diffraction mesh in both standing trees and logs after cutting them down. An inspection was carried out with a perforation resistance drill (IML RESI F-400S) in the radial direction in each section, which allowed for more precise identification of defects and differentiating between holes and cracks. The various defects were determined with greater accuracy in the tomographic images taken with the higher-frequency equipment (45 kHz), and the combination of ultrasonic tomography and the use of the inspection drill can provide a more accurate representation of the defects. Full article
(This article belongs to the Special Issue Wood Properties: Measurement, Modeling, and Future Needs)
Show Figures

Figure 1

13 pages, 4092 KiB  
Article
Assessing the Density of Wood in Heritage Buildings’ Elements Through Expedited Semi-Destructive Techniques
by Dulce F. Henriques, Ali Umut Șen and Maria da Glória Gomes
Appl. Sci. 2025, 15(13), 7552; https://doi.org/10.3390/app15137552 - 5 Jul 2025
Viewed by 261
Abstract
Historically, wood has been among the main materials used in heritage buildings. However, the species and mechanical properties of these elements are often unknown. This uncertainty complicates safety assessment calculations, aggravated by the natural variability of the wood properties. The aim of this [...] Read more.
Historically, wood has been among the main materials used in heritage buildings. However, the species and mechanical properties of these elements are often unknown. This uncertainty complicates safety assessment calculations, aggravated by the natural variability of the wood properties. The aim of this work is to assess the density of wooden elements in service using semi-destructive techniques that retain the integrity of structural elements. This research had two phases. First, penetration resistance tests were carried out on laboratory scale on Pinus sylvestris L. wood samples taken from 18th, 19th, and 20th century heritage buildings in Lisbon, Portugal. Later, a field study was carried out on wooden elements from the same buildings, involving needle penetration, core drilling, and moisture content determination tests. The laboratory test results showed a strong correlation between the needle penetration depth and wood density, with an R2 value of 0.76. The results of the field study indicated that the density estimated by the needle penetration test correlated effectively with the measured density of extracted cores after moisture correction, with an R2 of 0.99. In conclusion, the experimental results confirm that penetration resistance and moisture tests are reliable and practical for estimating wood density under in-service conditions. Full article
Show Figures

Figure 1

19 pages, 5413 KiB  
Article
A Dual-Signal Ratiometric Optical Sensor Based on Natural Pine Wood and Platinum(II) Octaethylporphyrin with High Performance for Oxygen Detection
by Zhongxing Zhang, Yujie Niu, Hongbo Mu, Jingkui Li, Jinxin Wang and Ting Liu
Sensors 2025, 25(13), 3967; https://doi.org/10.3390/s25133967 - 26 Jun 2025
Viewed by 285
Abstract
Optical oxygen sensors have attracted considerable attention owing to their high sensitivity, rapid response, and broad applicability. However, their test results may be affected by fluctuations in the pump light source and instability of the detection equipment. In this study, the intrinsic luminescence [...] Read more.
Optical oxygen sensors have attracted considerable attention owing to their high sensitivity, rapid response, and broad applicability. However, their test results may be affected by fluctuations in the pump light source and instability of the detection equipment. In this study, the intrinsic luminescence of pine wood was utilized as the reference signal, and the luminescence of platinum(II) octaethylporphyrin (PtOEP) was employed as the oxygen indication signal, to fabricate a dual-signal ratiometric oxygen sensor PtOEP/PDMS@Pine. The ratio of the luminescence of pine wood to that of PtOEP was defined as the optical parameter (OP). OP increased linearly with oxygen concentration ([O2]) in the range of 10–100 kPa, and a calibration curve was obtained. The sensor exhibits excellent anti-interference capabilities, effectively resisting fluctuations from laser sources and detection equipment. It also displays stable hydrophobicity with a contact angle of 118.3° and maintains excellent photostability under continuous illumination. The sensor exhibited long-term stability within 90 days and robust recovery performance during cyclic tests, wherein the response time and recovery time were determined to be 1.4 s and 1.7 s, respectively. Finally, the effects of temperature fluctuations and photobleaching on the sensor’s performance have been effectively corrected, enabling accurate oxygen concentration measurements in complex environments. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Graphical abstract

22 pages, 3528 KiB  
Article
Comparative Evaluation of Redox and Non-Redox Epoxy–Clay Coatings for Corrosion Resistance in ACQ Saline Media
by Yun-Xiang Lan, Yun-Hsuan Chen, Hsin-Yu Chang, Karen S. Santiago, Li-Yun Su, Cheng-Yu Tsai, Chun-Hung Huang and Jui-Ming Yeh
Polymers 2025, 17(12), 1684; https://doi.org/10.3390/polym17121684 - 17 Jun 2025
Viewed by 512
Abstract
This study prepared epoxy–clay nanocomposites (ECNs) by incorporating organophilic clays modified with either non-redox cetyltrimethylammonium bromide (CTAB) or redox-active aniline pentamer (AP), then compared their anticorrosion performance on metal substrates in saline environments. The test solution contained 2 wt% alkaline copper quaternary (ACQ) [...] Read more.
This study prepared epoxy–clay nanocomposites (ECNs) by incorporating organophilic clays modified with either non-redox cetyltrimethylammonium bromide (CTAB) or redox-active aniline pentamer (AP), then compared their anticorrosion performance on metal substrates in saline environments. The test solution contained 2 wt% alkaline copper quaternary (ACQ) wood preservatives. Cold-rolled steel (CRS) panels coated with the ECNs were evaluated via electrochemical impedance spectroscopy (EIS) in saline media both with and without ACQ. For CRS coated with unmodified epoxy, the Nyquist plot showed impedance dropping from 255 kΩ to 121 kΩ upon adding 2 wt% ACQ—indicating that Cu2⁺ ions accelerate iron oxidation. Introducing 1 wt% CTAB–clay into the epoxy increased impedance from 121 kΩ to 271 kΩ, while 1 wt% AP–clay raised it to 702 kΩ. This improvement arises because the organophilic clay platelets create a more tortuous path for Cu2+ and O₂ diffusion, as confirmed by ICP–MS measurements of Cu2+ after EIS and oxygen permeability tests (GPA), thereby slowing iron oxidation. Moreover, ECN coatings containing AP–clay outperformed those with CTAB–clay in corrosion resistance, suggesting that AP not only enhances platelet dispersion but also promotes formation of a dense, passive metal oxide layer at the coating–metal interface, as shown by TEM, GPA, and XRD analyses. Finally, accelerated salt-spray exposure following ASTM B-117 yielded corrosion behavior consistent with the EIS results. Full article
(This article belongs to the Special Issue Development and Innovation of Stimuli-Responsive Polymers)
Show Figures

Figure 1

15 pages, 1084 KiB  
Article
Hydraulic Traits Constrain Salinity-Dependent Niche Segregation in Mangroves
by Haijing Cheng, Yinjie Chen, Yunhui Peng, Mi Wei and Junfeng Niu
Plants 2025, 14(12), 1850; https://doi.org/10.3390/plants14121850 - 16 Jun 2025
Viewed by 339
Abstract
To understand the mechanisms underlying species assemblage along salt gradients in intertidal zones, we measured the xylem hydraulic vulnerability curves (HVCs), leaf water potential (ψ), stomatal conductance (gs), specific leaf area (SLA), and wood [...] Read more.
To understand the mechanisms underlying species assemblage along salt gradients in intertidal zones, we measured the xylem hydraulic vulnerability curves (HVCs), leaf water potential (ψ), stomatal conductance (gs), specific leaf area (SLA), and wood density (WD) for six mangrove species of Avicennia marina, Bruguiera gymnorrhiza, Aegiceras corniculatum, Kandelia obovata, Sonneratia apetala, and Sonneratia caseolaris. We found the following: (1) A. marina and B. gymnorhiza had the most negative P50 (water potential at which 50% of hydraulic conductivity was lost), while S. caseolaris and S. apetala had the least negative P50, indicating different resistance to embolism in xylem; (2) P50 and P88 (water potential at which 88% of hydraulic conductivity was lost) declined with increasing salinity from the onshore to offshore species, as their water regulation strategy meanwhile transitioned from isohydry to anisohydry; (3) B. gymnorhiza had smaller SLA but larger hydraulic safety margin (HSM), implying potentially higher capacity of water retention in leaves and lower risk of hydraulic failure in xylem. These results suggest that hydraulic traits play an important role in shaping the salt-driven niche segregation of mangroves along intertidal zones. Our research contributes to a more comprehensive understanding of the hydraulic physiology of mangroves in salt adaption and may facilitate a general modeling framework for examining and predicting mangrove resilience to a changing climate. Full article
(This article belongs to the Special Issue Aquatic Plants and Wetland)
Show Figures

Figure 1

22 pages, 2708 KiB  
Article
Effect of Changing Climatic Conditions on Properties of Wood Textile Composites
by Claudia L. von Boyneburgk and Hans-Peter Heim
Materials 2025, 18(12), 2764; https://doi.org/10.3390/ma18122764 - 12 Jun 2025
Viewed by 330
Abstract
Wood–textile composites (WTCs), consisting of polypropylene and woven willow wood, have potential for both interior and exterior applications. However, their basic materials are not inherently resistant to outdoor weathering. This study examines the impact of various climatic conditions on the material behavior of [...] Read more.
Wood–textile composites (WTCs), consisting of polypropylene and woven willow wood, have potential for both interior and exterior applications. However, their basic materials are not inherently resistant to outdoor weathering. This study examines the impact of various climatic conditions on the material behavior of WTCs. The composite and its components were aged under different scenarios, including kiln-drying, frost, standard and tropical climate, and artificial weathering and water storage, and analyzed for dimensional stability, chemical changes (FTIR), mechanical damage (µ-CT), and mechanical performance. While kiln-drying, frost, and tropical climates had only minor effects, water storage caused swelling-related damage, resulting in a 45% decrease in Young’s modulus but increased elongation at break (+88%) and impact strength (+75%). Artificial weathering led to significant degradation: tensile strength declined by 28%, Young’s modulus by 49%, and impact strength by 26%. In the medium term, this degradation compromises the integrity of the composite. The results highlight the need for effective stabilization measures—such as polymer modification or structural protection—to ensure the long-term durability of WTCs in outdoor use. Full article
(This article belongs to the Special Issue Leather, Textiles and Bio-Based Materials)
Show Figures

Graphical abstract

22 pages, 5832 KiB  
Article
Carbonized Dual-Layer Balsa Wood Membrane for Efficient Oil–Water Separation in Kitchen Applications
by Mamadou Souare, Changqing Dong, Xiaoying Hu, Junjiao Zhang, Juejie Xue and Quanjun Zheng
Membranes 2025, 15(6), 160; https://doi.org/10.3390/membranes15060160 - 24 May 2025
Viewed by 1511
Abstract
Wood-based membranes have garnered increasing attention due to their structural advantages and durability in the efficient treatment of oily kitchen wastewater. However, conventional fabrication methods often rely on toxic chemicals or synthetic processes, generating secondary pollutants and suffering from fouling, which reduces performance [...] Read more.
Wood-based membranes have garnered increasing attention due to their structural advantages and durability in the efficient treatment of oily kitchen wastewater. However, conventional fabrication methods often rely on toxic chemicals or synthetic processes, generating secondary pollutants and suffering from fouling, which reduces performance and increases resource loss. In this study, an innovative bilayer membrane was developed from balsa wood by combining a hydrophilic longitudinal layer for water transport with a polydimethylsiloxane (PDMS)-impregnated carbonized transverse layer to enhance hydrophobicity, resulting in increased separation efficiency and a reduction in fouling by 98.38%. The results show a high permeation flux of 1176.86 Lm–2 h–1 and a separation efficiency of 98.60%, maintaining low fouling resistance (<3%) over 20 cycles. Mechanical tests revealed a tensile strength of 10.92 MPa and a fracture elongation of 10.42%, ensuring robust mechanical properties. Wettability measurements indicate a 144° contact angle and a 7° sliding angle with water on the carbonized side, and a 163.7° contact angle with oil underwater and a 5° sliding angle on the hydrophilic side, demonstrating excellent selective wettability. This study demonstrates the potential of carbonized wood-based membranes as a sustainable, effective alternative for large-scale wastewater treatment. Full article
Show Figures

Graphical abstract

17 pages, 4056 KiB  
Article
Effects of Thinning of the Infected Trees and Cultivating of the Resistant Pines on Soil Microbial Diversity and Function
by Xiaorui Zhang, Zhuo Liu, Mu Cao and Tingting Dai
Forests 2025, 16(5), 813; https://doi.org/10.3390/f16050813 - 13 May 2025
Viewed by 446
Abstract
Pine wilt disease (PWD) poses a significant threat to pine forest health, making sanitation thinning of infected trees and cultivation of disease-resistant pine stands crucial measures for forest ecosystem restoration. To date, limited studies have systematically investigated how post-sanitation planting of pine-wilt-disease-resistant Pinus [...] Read more.
Pine wilt disease (PWD) poses a significant threat to pine forest health, making sanitation thinning of infected trees and cultivation of disease-resistant pine stands crucial measures for forest ecosystem restoration. To date, limited studies have systematically investigated how post-sanitation planting of pine-wilt-disease-resistant Pinus species affects soil microbiome, especially regarding bacterial and fungal diversity characteristics, functional succession patterns, and community assembly processes. In this study, we performed a comparative analysis of soil microbial community characteristics and biochemical properties between experimental plots subjected to sanitation thinning and those replanted with disease-resistant pine species. The results indicated that compared to the sanitation-thinned experimental plot, the disease-resistant experimental plots (Pinus taeda experimental plot and Pinus thunbergii experimental plot) exhibited significantly higher activities of β-glucosidase (S-β-GC), N-acetyl-β-D-glucosidase (S-NAG), and soil arylsulfatase (S-ASF). Compared with the sanitation logging stands, our analysis revealed that the Pinus taeda experimental plot and Pinus thunbergii experimental plot exhibited significantly higher fungal community evenness (OTUs), greater species abundance (OTUs), and more unique fungal taxa. Furthermore, the edaphic properties—specifically soil moisture content (SMC), pH levels, and total potassium (TK)—significantly influenced the structures of soil bacterial and fungal communities. Compared to the sanitation-thinned experimental plot, wood saprotrophic fungi and ectomycorrhizal fungi exhibited increased abundance in both the P. taeda experimental plot and Pinus thunbergii experimental plot. Furthermore, the null models indicated that both the P. taeda experimental plot and P. thunbergii experimental plot enhanced the undominated processes of bacteria and fungi. In summary, our data elucidate the differences in bacterial and fungal responses between pine forests undergoing thinning due to infected trees and those cultivated for disease resistance. This deepens our understanding of microbial functions and community assembly processes within these ecosystems. Full article
(This article belongs to the Special Issue How Does Forest Management Affect Soil Dynamics?)
Show Figures

Figure 1

19 pages, 6453 KiB  
Article
The Response of Dung Beetle Communities to Land Use Change in the Brazilian Cerrado
by Pedro Gomes Peixoto, Gabriela de Sousa Barbosa, Heytor Lemos Martins, Ana Luíza Franco, Jhansley Ferreira da Mata and Vanesca Korasaki
Land 2025, 14(4), 781; https://doi.org/10.3390/land14040781 - 5 Apr 2025
Viewed by 739
Abstract
The transformation of the Cerrado biome into areas with different levels of activity and anthropic pressure negatively impacts biodiversity. This study evaluated the response of the dung beetle community to changes in land use systems: forests, rubber trees, pastures, and soybeans. Five areas [...] Read more.
The transformation of the Cerrado biome into areas with different levels of activity and anthropic pressure negatively impacts biodiversity. This study evaluated the response of the dung beetle community to changes in land use systems: forests, rubber trees, pastures, and soybeans. Five areas were sampled in each system with a minimum distance of 2 km between them. Dung beetles were collected using pitfall traps, and both local (vegetation density, basal area of wooded vegetation, fractal dimension, litter height, electrical conductance (mV), water content in the soil (%), and soil resistance (kPa)) and landscape-related environmental variables (land use and overall composition and configuration of the landscape surrounding the sampling areas) were measured. In total, 2294 specimens were collected and distributed among 34 species and 18 genera. There was no significant difference in abundance between the systems, but differences in the number of species and biomass were observed between forest and soybean systems, as well as a separation of communities between the tree-covered (forest and rubber tree) and open (pasture and soybean) systems. Density and arboreal basal area were the main predictive variables for the diversity of the dung beetle community, reinforcing the importance of vegetation cover for maintaining diversity, whereas local and landscape-related variables influenced community composition. Full article
(This article belongs to the Special Issue Agroforestry Systems for Biodiversity and Landscape Conservation)
Show Figures

Figure 1

15 pages, 2025 KiB  
Article
Advanced Evaluation of Fire Resistance in Spruce Wood (Picea abies spp.) Treated with Innovative Surface Coatings
by Redžo Hasanagić, Selma Mujanić, Eli Keržič, Leila Fathi, Mohsen Bahmani, Mohammad Dahmardeh Ghalehno, Boštjan Lesar and Miha Humar
Fire 2025, 8(4), 120; https://doi.org/10.3390/fire8040120 - 21 Mar 2025
Viewed by 714
Abstract
This study investigates innovative surface coatings’ effectiveness in enhancing spruce wood’s fire resistance (Picea abies spp.). Spruce wood samples were treated with various agents, including oils, waxes, boric acid, commercial coatings, and fire-retardant agents. The evaluation was conducted using the small flame [...] Read more.
This study investigates innovative surface coatings’ effectiveness in enhancing spruce wood’s fire resistance (Picea abies spp.). Spruce wood samples were treated with various agents, including oils, waxes, boric acid, commercial coatings, and fire-retardant agents. The evaluation was conducted using the small flame method (EN ISO 11925-2:2020), surface roughness analysis, hyperspectral imaging (HSI), and contact angle measurements. The results demonstrated significant improvements in fire resistance for samples treated with specific coatings, particularly the Burn Block spray and Caparol coating, which effectively prevented flame spread. The analysis revealed that the Burn Block spray reduced the average flame height to 6.57 cm, while the Caparol coating achieved a similar effect with an average flame height of 6.95 cm. In contrast, untreated samples exhibited a flame height of 9.34 cm, with boric acid-treated samples reaching up to 12.18 cm. Char depth measurements and the surface roughness analysis revealed a clear correlation between the type of treatment and the thermal stability of the wood. Hyperspectral imaging enabled a detailed visualisation of surface degradation, while contact angle measurements highlighted the impact of hydrophobicity on flammability. This research provides in-depth insights into the fire-retardant mechanisms of spruce wood and offers practical guidelines for developing safer and more sustainable wood materials for the construction industry. Full article
Show Figures

Figure 1

15 pages, 4415 KiB  
Article
Interference of Edaphoclimatic Variations on Nondestructive Parameters Measured in Standing Trees
by Carolina Kravetz, Cinthya Bertoldo, Rafael Lorensani and Karina Ferreira
Forests 2025, 16(3), 535; https://doi.org/10.3390/f16030535 - 19 Mar 2025
Viewed by 382
Abstract
The diversity of commercial tree planting sites, with their distinct environmental conditions, directly influences tree growth and consequently impacts the wood properties in various ways. However, there is limited research evaluating the impact of these variations in nondestructive testing. Therefore, this study aimed [...] Read more.
The diversity of commercial tree planting sites, with their distinct environmental conditions, directly influences tree growth and consequently impacts the wood properties in various ways. However, there is limited research evaluating the impact of these variations in nondestructive testing. Therefore, this study aimed to investigate whether edaphoclimatic variations affect parameters obtained through nondestructive tests conducted on standing trees. To this end, 30 specimens were selected from 3 Eucalyptus sp. clones, aged 1, 3, and 4 years, grown in 2 regions, totaling 540 trees. Tree development was monitored quarterly over 12 months. The tests included ultrasound propagation, drilling resistance, and penetration resistance, and the trees were measured for diameter at breast height (DBH) and height. Among the edaphoclimatic factors evaluated, only temperature and soil water storage differed statistically between the two study regions. The higher temperature and lower soil water storage in region 2 promoted tree growth, with these trees showing greater drilling resistance and higher longitudinal wave velocities. In addition, the influence of climatic factors was evidenced by the variation of wave propagation velocity throughout the year. Periods of lower water availability resulted in higher velocities, while periods of greater precipitation were associated with lower velocities. The research results showed that temperature and soil water storage had significant effects on tree growth (DBH and height), as well as ultrasound wave propagation velocity and drilling resistance. Full article
Show Figures

Figure 1

18 pages, 4720 KiB  
Article
Design of Wood-Based Gd (III)-Hemoporphyrin Monomethyl Ether Eco-Material for Optical Oxygen Sensing with a Wide Detection Range
by Yujie Niu, Jinxin Wang, Zhongxing Zhang and Ting Liu
Sensors 2025, 25(6), 1670; https://doi.org/10.3390/s25061670 - 8 Mar 2025
Viewed by 575
Abstract
Gaseous oxygen detection is essential in numerous production and manufacturing sectors. To meet the varying oxygen detection requirements across different fields, techniques that offer a wide oxygen detection range should be developed. In this study, a wood-based oxygen sensing material was designed using [...] Read more.
Gaseous oxygen detection is essential in numerous production and manufacturing sectors. To meet the varying oxygen detection requirements across different fields, techniques that offer a wide oxygen detection range should be developed. In this study, a wood-based oxygen sensing material was designed using balsa wood as the supporting matrix and gadolinium hemoporphyrin monomethyl ether (Gd-HMME) as the oxygen-sensitive indicator. The wood-based Gd-HMME exhibits a cellular porous structure, which not only facilitates the loading of a substantial number of indicator molecules but also enables the rapid interaction between indicators and oxygen molecules. OP is defined as the ratio of the phosphorescence intensity of the oxygen-sensing material in the anaerobic and aerobic environment. A linear relationship between OP and oxygen partial pressure ([O2]) was obtained within the whole range of [O2] (0–100 kPa). The wood-based Gd-HMME exhibited excellent resistance to photobleaching, along with a rapid response time (3.9 s) and recovery time (4.4 s). It was demonstrated that the measurement results obtained using wood-based Gd-HMME were not influenced by other gaseous components present in the air. An automatic oxygen detection system was developed using LabVIEW for practical use, and the limit of detection was determined to be 0.01 kPa. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

12 pages, 3387 KiB  
Article
A Novel Chrono-Potentiometry (CP) Method for Determining the Moisture Content of Wood Above the Fibre Saturation Point (FSP)
by Valdek Tamme, Hannes Tamme, Peeter Muiste and Ahto Kangur
Forests 2025, 16(3), 446; https://doi.org/10.3390/f16030446 - 1 Mar 2025
Viewed by 706
Abstract
The use of a novel chrono-potentiometry method (abbreviated as “CP”) in the determination of the moisture content in wood (abbreviated as “MC”) above the FSP is a practical application of the electrical charging effect (or ECE). In the specific case of this CP [...] Read more.
The use of a novel chrono-potentiometry method (abbreviated as “CP”) in the determination of the moisture content in wood (abbreviated as “MC”) above the FSP is a practical application of the electrical charging effect (or ECE). In the specific case of this CP method, the ECE consists of an electrical charging phase for the wood and a discharge phase following the interruption of the charging current. The electrical resistance, R, and the electrical chargeability, Cha(E), of three hardwood species were determined from the final potential, E1, of the charging phase and the initial potential, E2, of the discharge phase, with the three hardwood species being birch (Betula spp.), aspen (Populus spp.), and black alder (Alnus glutinosa (L.) Gaertn). An auxiliary variable in the form of U (E1; E2) was defined as a function of E1 and E2. This was used as an independent electrical variable in the calibration model for a CP moisture meter for the three tree species when it came to the moisture content (MC) region above the FSP (fibre saturation point). It was found that upon a determination of the MC in the wood, the traditional calibration model (the R-model), which uses the electrical resistance of wood, was able to predict a single-measurement precision level of +/−10% for the MC while the U-model predicted a precision level of +/−1.75% for the MC over a single MC measurement in the wood. Full article
Show Figures

Figure 1

22 pages, 6312 KiB  
Article
Development and Evaluation of a Polymer Composite Material Reinforced by Tectona Grandis Fiber, with Static Analysis
by Sandeep Bavanam Nagaraja Reddy, Kishor Buddha, Kadiyala Chandra Babu Naidu and Dudekula Baba Basha
Polymers 2025, 17(5), 634; https://doi.org/10.3390/polym17050634 - 27 Feb 2025
Viewed by 1052
Abstract
This research seeks to investigate the viability of using Tectona grandis wood powder as a reinforcement material in polymer matrix composites because of the increasing awareness of natural fibers that offer impressive characteristics and cost-effectiveness in addition to being biodegradable. The fibers were [...] Read more.
This research seeks to investigate the viability of using Tectona grandis wood powder as a reinforcement material in polymer matrix composites because of the increasing awareness of natural fibers that offer impressive characteristics and cost-effectiveness in addition to being biodegradable. The fibers were mixed with epoxy resin, and the mixture was passed through a filter to remove fiber bundles and then compression molded to form composites, which were cured in an oven. Different experiments were performed on the composite to measure its mechanical characteristics. The tests performed were a tensile test to measure the mechanical properties of the material like strength and elastic properties, a compression test for evaluating the behavior of the material under a compressive load, a hardness test for the rate of indentation resistivity, and an impact test for the material’s ability to withstand shock loads. The results showed that fiber reinforcement caused a significant enhancement in the mechanical aspect of the composite, where the compression strength obtained was 249.83 MPa, and the tensile strength obtained was 17.98 MPa. SEM microstructural analysis and a moisture absorption test were performed, while an additional analysis was carried out using Ansys work bench software. This research proves that Tectona grandis wood powder improves the mechanical properties of polymer composites and represents a viable substitute for synthetic reinforcements. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop