Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (634)

Search Parameters:
Keywords = wood residues

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

11 pages, 4560 KiB  
Article
Valorization of Forest Biomass Through Biochar for Static Floating Applications in Agricultural Uses
by Óscar González-Prieto, Luis Ortiz Torres and María Esther Costas Costas
Biomass 2025, 5(3), 44; https://doi.org/10.3390/biomass5030044 - 30 Jul 2025
Viewed by 198
Abstract
The feasibility of utilizing biochar as a static floating material for agricultural applications was researched to prevent evaporation from open water static storage systems or as a floating barrier in slurry pits, for instance. Five types of biochar were created from chips, bark, [...] Read more.
The feasibility of utilizing biochar as a static floating material for agricultural applications was researched to prevent evaporation from open water static storage systems or as a floating barrier in slurry pits, for instance. Five types of biochar were created from chips, bark, and pellets of pine and residues from two acacia species using a pyrolysis time between 60 and 120 min and mean temperatures between 380 and 690 °C in a simple double-chamber reactor. Biomass and biochar were characterized for their main properties: bulk density, moisture content, volatile matter, ash content, fixed carbon, and pH. Biochar was also evaluated through a basic floatability test over 27 days (648 h) in distilled water. The highest fixed carbon content was observed in pine bark biochar (69.5%), followed by the pine pellets (67.4%) and pine chips (63.4%). Despite their high carbon content, the pellets exhibited a low floatability level, whereas pine bark biochar showed superior static floatage times, together with chip and ground chip biochar. These results suggest that biochar produced from bark and wood chips may be suitable for application as floatability material in water or slurry management systems. These results warrant further research into the static floating of biochar. Full article
Show Figures

Figure 1

20 pages, 8499 KiB  
Article
Characterization of Low-Temperature Waste-Wood-Derived Biochar upon Chemical Activation
by Bilge Yilmaz, Vasiliki Kamperidou, Serhatcan Berk Akcay, Turgay Kar, Hilal Fazli and Temel Varol
Forests 2025, 16(8), 1237; https://doi.org/10.3390/f16081237 - 27 Jul 2025
Viewed by 243
Abstract
Depending on the feedstock type and the pyrolysis conditions, biochars exhibit different physical, chemical, and structural properties, which highly influence their performance in various applications. This study presents a comprehensive characterization of biochar materials derived from the waste wood of pine (Pinus [...] Read more.
Depending on the feedstock type and the pyrolysis conditions, biochars exhibit different physical, chemical, and structural properties, which highly influence their performance in various applications. This study presents a comprehensive characterization of biochar materials derived from the waste wood of pine (Pinus sylvestris L.) and beech (Fagus sylvatica) after low-temperature pyrolysis at 270 °C, followed by chemical activation using zinc chloride. The resulting materials were thoroughly analyzed in terms of their chemical composition (FTIR), thermal behavior (TGA/DTG), structural morphology (SEM and XRD), elemental analysis, and particle size distribution. The successful modification of raw biomass into carbon-rich structures of increased aromaticity and thermal stability was confirmed. Particle size analysis revealed that the activated carbon of Fagus sylvatica (FSAC) exhibited a monomodal distribution, indicating high homogeneity, whereas Pinus sylvestris-activated carbon showed a distinct bimodal distribution. This heterogeneity was supported by elemental analysis, revealing a higher inorganic content in pine-activated carbon, likely contributing to its dimensional instability during activation. These findings suggest that the uniform morphology of beech-activated carbon may be advantageous in filtration and adsorption applications, while pine-activated carbon’s heterogeneous structure could be beneficial for multifunctional systems requiring variable pore architectures. Overall, this study underscored the potential of chemically activated biochar from lignocellulosic residues for customized applications in environmental and material science domains. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

18 pages, 2786 KiB  
Article
Performance of Oriented Strand Boards Made with Jack Pine Strands Produced by an Innovative Strander-Canter
by Rosilei Garcia, Alain Cloutier, Irsan Alipraja, Roger E. Hernández and Ahmed Koubaa
Forests 2025, 16(8), 1227; https://doi.org/10.3390/f16081227 - 25 Jul 2025
Viewed by 173
Abstract
Canadian sawmills commonly use chipper-canters to process softwood logs into squared lumber and wood chips for pulp mills. However, the declining demand for newsprint and print paper has led to an oversupply of wood chips, resulting in economic losses and environmental concerns. To [...] Read more.
Canadian sawmills commonly use chipper-canters to process softwood logs into squared lumber and wood chips for pulp mills. However, the declining demand for newsprint and print paper has led to an oversupply of wood chips, resulting in economic losses and environmental concerns. To address this issue, a strander-canter capable of producing both softwood cants and strands for oriented strand board (OSB) presents a promising alternative. This study evaluates the feasibility of using jack pine strands generated by a novel strander-canter equipped with a cutterhead for OSB strand production. Strands were generated from frozen and unfrozen logs under varying cutting parameters and incorporated in the core layer of the panels. Industrial aspen strands were used for the surface layers. OSB panels were assessed for mechanical and physical properties following the CSA O325:21 standard. Strand size distribution and vertical density profiles were also analyzed. The results indicated that panels made from jack pine strands demonstrated bending and internal bond properties that were either comparable to or superior to those of the control panels. However, including jack pine strands in the core layer increased the thickness swelling of the panels. Full article
(This article belongs to the Special Issue Properties and Uses of Value-Added Wood-Based Products and Composites)
Show Figures

Graphical abstract

17 pages, 900 KiB  
Review
Cellulose Nanofibril-Based Biodegradable Polymers from Maize Husk: A Review of Extraction, Properties, and Applications
by Nthabiseng Motshabi, Gaofetoge Gobodiwang Lenetha, Moipone Alice Malimabe and Thandi Patricia Gumede
Polymers 2025, 17(14), 1947; https://doi.org/10.3390/polym17141947 - 16 Jul 2025
Viewed by 373
Abstract
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with [...] Read more.
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with cellulose nanofibrils (CNFs) has shown promise, yet most research focuses on conventional sources like wood pulp and cotton, neglecting agricultural residues. This review addresses the potential of maize husk, a lignocellulosic waste abundant in South Africa, as a source of CNFs. It evaluates the literature on the structure, extraction, characterisation, and integration of maize husk-derived CNFs into biodegradable polymers. The review examines the chemical composition, extraction methods, and key physicochemical properties that affect performance when blended with PLA, PBS, or PCL. However, high lignin content and heterogeneity pose extraction and dispersion challenges. Optimised maize husk CNFs can enhance the mechanical strength, barrier properties, and thermal resistance of biopolymer systems. This review highlights potential applications in packaging, biomedical, and agricultural sectors, aligning with South African bioeconomic goals. It concludes by identifying research priorities for improving compatibility and processing at an industrial scale, paving the way for maize husk CNFs as effective, locally sourced reinforcements in green material innovation. Full article
Show Figures

Figure 1

17 pages, 2302 KiB  
Article
Experimental Evaluation of Pet Food Waste as Biomass Fuel: Corrosion, Emissions, and Energy Potential
by Harald Puratich-Fernández, Joaquin Aburto-Hole, Joaquin Díaz, Francisca Angerstein, Fernanda de Groote, Héctor Quinteros-Lama, Johan González and Diógenes Hernández
Appl. Sci. 2025, 15(14), 7792; https://doi.org/10.3390/app15147792 - 11 Jul 2025
Viewed by 385
Abstract
The pet food industry faces significant sustainability challenges, including reducing energy consumption, lowering emissions, and adopting circular economy practices. This study aimed to assess and propose energy efficiency measures to enhance sustainability within the sector. The research evaluated the use of unapproved food [...] Read more.
The pet food industry faces significant sustainability challenges, including reducing energy consumption, lowering emissions, and adopting circular economy practices. This study aimed to assess and propose energy efficiency measures to enhance sustainability within the sector. The research evaluated the use of unapproved food as biomass for boiler combustion. It analyzed its chemical composition, energy impact, and emissions of volatile organic compounds (VOCs) through TD-GC/MS, as well as the corrosion effects on boiler metals. An energy assessment of the production process and a combustion characterization of the waste were conducted to identify opportunities for improving energy efficiency and sustainability. The results demonstrated that the chemical composition of the waste and other biomass-related parameters were within acceptable economic and environmental ranges. A reduction of 0.015 Mg of CO2eq per Mg of produced pet food was achieved. Regarding VOCs, their environmental impact was minimal due to the molecular structure of the compounds. Additionally, the corrosion rate caused by waste incineration was comparable to that of domestic gas in the case of cat food, with a rate of 214.74 mpy, while the dog food yielded 55.42 mpy, which is near that of other types of biomass, such as wood chips and pellets. The use of residual biomass in pet food production is a viable alternative for reducing carbon footprint, promoting a circular economy, and improving the industry’s sustainability. Full article
Show Figures

Figure 1

27 pages, 4306 KiB  
Article
Extrusion-Biodelignification Approach for Biomass Pretreatment
by Delon Konan, Adama Ndao, Ekoun Koffi, Saïd Elkoun, Mathieu Robert, Denis Rodrigue and Kokou Adjallé
Waste 2025, 3(3), 21; https://doi.org/10.3390/waste3030021 - 26 Jun 2025
Viewed by 297
Abstract
This work presents a new approach for lignocellulosic biomass pretreatment. The process is a sequential combination of extrusion (Ex) and semi-solid fermentation (SSF). To assess the Ex-SSF pretreatment efficiency, black spruce chips (wood residues) and corn stover (crop residues) were subjected to the [...] Read more.
This work presents a new approach for lignocellulosic biomass pretreatment. The process is a sequential combination of extrusion (Ex) and semi-solid fermentation (SSF). To assess the Ex-SSF pretreatment efficiency, black spruce chips (wood residues) and corn stover (crop residues) were subjected to the process. The negative controls were the pretreatment of both residues with SSF alone without extrusion. Lignin peroxidase was the main ligninolytic enzyme contributing to the delignification in the negative controls. High lignin peroxide (LiP) activities were recorded for raw black spruce (53.7 ± 2.7 U/L) and corn stover (16.4 ± 0.8 U/L) compared to the Ex-SSF pretreated biomasses where the highest LiP activity recorded was 6.0 ± 0.3 U/L (corn residues). However, with the negative controls, only a maximum of 17% delignification was achieved for both biomasses. As for the Ex-SSF process, the pretreatments were preceded by the optimization of the extrusion (Ex) step and the semi-solid fermentation (SSF) step via experimental designs. The Ex-SSF pretreatments led to interesting results and offered cost-effective advantages compared to existing pretreatments. Biomass delignification reached 59.1% and 65.4% for black spruce and corn stover, respectively. For the analyses performed, it was found that manganese peroxidase (MnP) was the main contributor to delignification during the SSF step. MnP activity was up to 13.8 U/L for Ex-SSF pretreated black spruce, and 32.0 U/L for Ex-SSF pretreated corn stover, while the maximum MnP recorded in the negative controls was 1.4 ± 0.1 U/L. Ex-SSF pretreatment increased the cellulose crystallinity index (CrI) by 13% for black spruce and 4% for corn stover. But enzymatic digestibility of the Ex-SSF pretreated biomasses with 0.25 mL/g of enzyme led to 7.6 mg/L sugar recovery for black spruce, which is 2.3 times the raw biomass yield. The Ex-SSF pretreated corn stover led to 17.0 mg/L sugar recovery, which is a 44% improvement in sugar concentration compared to raw corn stover. However, increasing the enzyme content from 0.25 mL/g to 0.50 mg/L and 0.75 mg/L generated lower hydrolysis efficiency (the sugar recovery decreased). Full article
(This article belongs to the Special Issue Agri-Food Wastes and Biomass Valorization—2nd Edition)
Show Figures

Figure 1

18 pages, 10118 KiB  
Article
A Comparative Study on the Effects of Heat Treatment on the Properties of Rubberwood Veneer
by Yayun Wu, He Sun, Zi You, Zhiwei He, Shiqi Zeng, Yuxing Han and Taian Chen
Forests 2025, 16(6), 1010; https://doi.org/10.3390/f16061010 - 16 Jun 2025
Viewed by 809
Abstract
Heat treatment is a widely employed method for modifying solid wood and has also been extended to veneer-type woods. Owing to the thinness and ease of handling of veneers, the regulation of protective media in heat treatment has not been highly regarded by [...] Read more.
Heat treatment is a widely employed method for modifying solid wood and has also been extended to veneer-type woods. Owing to the thinness and ease of handling of veneers, the regulation of protective media in heat treatment has not been highly regarded by the industry and is scarcely reported in research. In light of this, in this paper, rubber wood (Hevea brasiliensis) veneer is taken as the research subject to investigate the influences of heat treatment with hot air (HTHA) and heat treatment with superheated steam (HTSS) at different temperatures on the chemical properties, longitudinal tensile strength, color values, hygroscopicity, thermal degradation performance and microstructure of the wood. The results show that heat treatment alters the chemical properties of wood. Both heat treatments reduce the content of hemicellulose and other components in the veneer, and the characteristic peak of lignin in HTSS is slightly enhanced. The crystallinity of the veneer slightly increases after heat treatment, and the increase in HTSS is greater than that in HTHA. Through scanning electron microscopy, it is observed that heat treatment can effectively remove starch granules in rubber wood veneer, with HTSS being superior to HTHA, and the removal effect increases with the rise in temperature. The longitudinal tensile strength of the veneer decreased by 0.69%, 3.87%, and 24.98% respectively at 135~155 °C HTHA, and by 3.25%, 7.00%, and 18.47% respectively at 135~155 °C HTSS. Both heat treatments reduced the lightness of the veneer and increased the chroma index. At 155 °C, the color difference value of the veneer treated by HTSS was smaller than that treated by HTHA. The effects of heat treatment on the moisture absorption performance of the veneer were different. The equilibrium moisture content of the veneer treated at 135 °C HTHA and 135~155 °C HTSS was lower than that of the untreated material, indicating an improvement in moisture absorption stability. The maximum moisture sorption hysteresis of untreated material is 3.39%. The maximum moisture sorption hysteresis of 135 °C HTHA is not much different from that of untreated material. The values of 145 °C and 155 °C HTHA increase by 8.85% and 9.14% respectively. The values of 135 °C, 145 °C, and 155 °C HTSS increase by 22.42%, 25.37%, and 19.47% respectively. The moisture absorption hysteresis of the veneer increases after heat treatment, and the effect of HTSS improvement is more significant. From the TG and DTG curves, it can be seen that the residual mass percentage of the veneer after heat treatment is higher than that of the untreated material. The residual mass percentage of HTHA at 135 °C, 145 °C, and 155 °C increased by 3.13%, 3.07%, and 2.06% respectively, and that of HTSS increased by 5.14%, 7.21%, and 6.08% respectively. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

23 pages, 1892 KiB  
Review
A Review on Carbon-Negative Woody Biomass Biochar System for Sustainable Urban Management in the United States of America
by Gamal El Afandi, Muhammad Irfan, Amira Moustafa, Salem Ibrahim and Santosh Sapkota
Urban Sci. 2025, 9(6), 214; https://doi.org/10.3390/urbansci9060214 - 10 Jun 2025
Viewed by 1841
Abstract
It is essential to emphasize the significant impacts of climate change, which are evident in the form of severe and prolonged droughts, hurricanes, snowstorms, and other climatic disturbances. These challenges are particularly pronounced in urban environments and among human populations. The situation is [...] Read more.
It is essential to emphasize the significant impacts of climate change, which are evident in the form of severe and prolonged droughts, hurricanes, snowstorms, and other climatic disturbances. These challenges are particularly pronounced in urban environments and among human populations. The situation is further aggravated by the increasing utilization of available open spaces for residential and industrial development, leading to heightened energy consumption, elevated pollution levels, and increased carbon emissions, all of which negatively affect public health. The primary objective of this review article is to provide a comprehensive evaluation of current research, with a particular focus on the innovative use of residual biomass from urban vegetation for biochar production in the United States. This research entails an exhaustive review of existing literature to assess the implementation of a carbon-negative wood biomass biochar system as a strategic approach to sustainable urban management. By transforming urban wood waste—including tree trimmings, construction debris, and storm-damaged timber—into biochar through pyrolysis, a thermochemical process that sequesters carbon while generating renewable energy, we can leverage this valuable resource. The resulting biochar offers a range of co-benefits: it enhances soil health, improves water retention, reduces stormwater runoff, and lowers greenhouse gas emissions when applied in urban green spaces, agriculture, and land restoration projects. This review highlights the advantages and potential of converting urban wood waste into biochar while exploring how municipalities can strengthen their green ecosystems. Furthermore, it aims to provide a thorough understanding of how the utilization of woody biomass biochar can contribute to mitigating urban carbon emissions across the United States. Full article
(This article belongs to the Special Issue Sustainable Energy Management and Planning in Urban Areas)
Show Figures

Figure 1

19 pages, 5355 KiB  
Article
Effect of Cotton Stalk Biochar Content on the Properties of Cotton Stalk and Residual Film Composites
by Zhipeng Song, Xiaoyun Lian, Junhui Ran, Xuan Zheng, Xufeng Wang and Xiaoqing Lian
Agriculture 2025, 15(12), 1243; https://doi.org/10.3390/agriculture15121243 - 7 Jun 2025
Cited by 1 | Viewed by 591
Abstract
This study aims to improve the performance of wood–plastic composites (WPCs) composed of cotton stalk powder and residual film particles. Additionally, it aims to promote the efficient utilization of cotton stalk biochar. The composites were prepared using modified cotton stalk biochar and xylem [...] Read more.
This study aims to improve the performance of wood–plastic composites (WPCs) composed of cotton stalk powder and residual film particles. Additionally, it aims to promote the efficient utilization of cotton stalk biochar. The composites were prepared using modified cotton stalk biochar and xylem powder as the matrix, maleic anhydride grafted high-density polyethylene (MA-HDPE) as the coupling agent, and polyethylene (PE) residual film particles as the filler. The WPCs were fabricated through melt blending using a twin-screw extruder. Mechanical properties were evaluated using a universal testing machine and texture analyzer, Shore D hardness was measured using a durometer, and microstructure was analyzed using a high-resolution digital optical microscope. A systematic investigation was conducted on the effect of biochar content on material properties. The results indicated that modified biochar significantly enhanced the mechanical and thermal properties of the WPCs. At a biochar content of 80%, the material achieved optimal performance, with a hardness of 57.625 HD, a bending strength of 463.159 MPa, and a tensile strength of 13.288 MPa. Additionally, thermal conductivity and thermal diffusivity decreased to 0.174 W/(m·K) and 0.220 mm2/s, respectively, indicating improved thermal insulation properties. This research provides a novel approach for the high-value utilization of cotton stalks and residual films, offering a potential solution to reduce agricultural waste pollution in Xinjiang and contributing to the development of low-cost and high-performance WPCs with wide-ranging applications. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

18 pages, 2361 KiB  
Article
Particleboards with Various Biomass Residues
by Electra Papadopoulou, Dimitrios Moutousidis, Christos Achelonoudis, Stavros Tsompanidis, Christina Kyriakou-Tziamtzi, Konstantinos Chrissafis and Dimitrios N. Bikiaris
Materials 2025, 18(11), 2632; https://doi.org/10.3390/ma18112632 - 4 Jun 2025
Viewed by 518
Abstract
Particleboards were developed by replacing a part of wood with various biomass residues, including coffee bean husks, spent coffee grounds, thistle, Sideritis and dead leaves of Posidonia oceanica. These materials were analysed to determine their physicochemical properties like the moisture content, pH, [...] Read more.
Particleboards were developed by replacing a part of wood with various biomass residues, including coffee bean husks, spent coffee grounds, thistle, Sideritis and dead leaves of Posidonia oceanica. These materials were analysed to determine their physicochemical properties like the moisture content, pH, and buffer capacity, using standard laboratory techniques, while thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) were also used for their further characterisation. The results revealed that all biomasses contained cellulose, hemicellulose, and lignin in varying proportions, along with differing degrees of crystallinity. To produce particleboards, the biomasses were bonded using two types of adhesives: (a) conventional urea-formaldehyde resin (UF) and (b) polymeric 4,4′-methylene diphenyl isocyanate (pMDI). Laboratory-scale, single-layer particleboards were manufactured simulating industrial production practices. These panels were evaluated for their mechanical and physical properties according to European standards. The findings showed a general reduction in mechanical performance when compared to conventional wood-based panels. However, panels made with coffee grounds and Posidonia showed improved resistance to thickness swelling after 24 h in water at 20 °C. Additionally, all experimental panels exhibited lower formaldehyde content than wood-based reference panels. This study demonstrated the feasibility of upcycling biomass residues as a sustainable alternative to virgin wood in the production of particleboard, providing a resource-efficient solution for specific interior applications within a circular economy framework. Full article
(This article belongs to the Special Issue Modern Wood-Based Materials for Sustainable Building)
Show Figures

Graphical abstract

16 pages, 3075 KiB  
Article
Softwood-Based Biochar in the Design of Cement-Blended Binders with Advanced Properties
by Jaroslav Pokorný, Radek Ševčík, Lucie Zárybnická, Jiří Šál and Luboš Podolka
Buildings 2025, 15(11), 1949; https://doi.org/10.3390/buildings15111949 - 4 Jun 2025
Viewed by 401
Abstract
Biomass residues from the agricultural industry, logging and wood processing activities have become a valuable fuel source. If processed under pyrolysis combustion, several products are generated. Bio-oil and gases are essential alternatives to fossil coal-based fuels for energy and electricity production, whose need [...] Read more.
Biomass residues from the agricultural industry, logging and wood processing activities have become a valuable fuel source. If processed under pyrolysis combustion, several products are generated. Bio-oil and gases are essential alternatives to fossil coal-based fuels for energy and electricity production, whose need is constantly growing. Biochar, the porous carbon-based lightweight product, often ends up as a soil fertilizer. However, it can be applied in other industrial sectors, e.g., in plastics production or in modifying cementitious materials intended for construction needs. This work dealt with the application of small amounts of softwood-based biochar up to 2.0 wt.% on hydration kinetics and a wide range of physical and mechanical properties, such as water transport characteristics and flexural and compressive strengths of modified cement pastes. In the comparison with reference specimens, the biochar incorporation into cement pastes brought benefits like the reduction of open porosity, improvement of strength properties, and decreased capillary water absorption of 7-day and 28-day-cured cement pastes. Moreover, biochar-dosed cement pastes showed an increase in heat evolution during the hydration process, accompanied by higher consumption of clinker minerals. Considering all examined characteristics, the optimal dosage of softwood-derived biochar of 1.0 wt.% of Portland cement can be recommended. Full article
Show Figures

Figure 1

19 pages, 1873 KiB  
Article
Effect of Birch Sawdust Hydrolysis on Chemical Characteristics, Aggregation, and Surface Activity of Extracted Soda Lignin
by Galia Shulga, Brigita Neiberte, Valerija Kudrjavceva, Anrijs Verovkins, Arturs Viksna, Sanita Vitolina, Julija Brovkina and Talrits Betkers
Polymers 2025, 17(11), 1455; https://doi.org/10.3390/polym17111455 - 23 May 2025
Viewed by 504
Abstract
Various pretreatment methods, often employed in wood biorefineries, aim to disrupt the wood architecture, thereby enhancing the efficiency of hemicellulose extraction for increasing the production of bio-ethanol, bio-gas, and bio-oil, as well as improving the pulping process. Pretreatment for the pulping process has [...] Read more.
Various pretreatment methods, often employed in wood biorefineries, aim to disrupt the wood architecture, thereby enhancing the efficiency of hemicellulose extraction for increasing the production of bio-ethanol, bio-gas, and bio-oil, as well as improving the pulping process. Pretreatment for the pulping process has advantages such as enhanced yield in biorefined products and reducing chemicals and energy consumption. This study examined the effect of an alkaline hydrolysis of birch sawdust on the chemical composition, aggregation ability, and surface activity of soda lignin obtained by soda pulping. The alkaline hydrolysis of birch sawdust led to a remarkable removal of hemicellulose and reduced its mechanical strength. The resorption of lignin fragments on the lignocellulosic matrix during the hydrolysis was observed. The soda pulping of the original and the treated sawdust was carried out under laboratory conditions at 165 °C for 90 min, using 4.5% sodium hydroxide. A higher yield of soda lignin and pulp was obtained from the treated sawdust. The reduced content of acidic and methoxyl groups in the chemical composition of the soda lignin from the hydrolyzed sawdust was explained by the predominance of polycondensation reactions in forming its primary structure. The changes in size and zeta potential values of the formed lignin particles, as well as in the modality of the size distribution with decreasing pH, were studied. The early-proposed suggestion about the existence of structural complementarity in the formation of the ordered lignin supermolecular structures has been testified. The higher surface activity at the air–water interface for the soda lignin extracted from the hydrolyzed sawdust, compared to the lignin from the original residue, was mainly attributed to a lower content of the acidic groups in its chemical composition, shifting the hydrophilic–hydrophobic balance of its structure toward hydrophobicity. Full article
(This article belongs to the Special Issue Advanced Polymer Materials: Synthesis, Structure, and Properties)
Show Figures

Figure 1

14 pages, 4635 KiB  
Article
Fire Resistance and Mechanical Properties of Wooden Dou-Gong Brackets in Chinese Traditional Architecture Exposed to Different Fire Load Levels
by Zhenzhong Lai, Xin Li, Miaotian Long, Long Yan and Zhisheng Xu
Fire 2025, 8(5), 201; https://doi.org/10.3390/fire8050201 - 17 May 2025
Cited by 1 | Viewed by 904
Abstract
Dou-Gong brackets, the distinctive structural element in ancient Chinese architecture, fulfill critical roles in load transfer, span reduction, and decoration, making its preservation vital for safeguarding wooden heritage buildings. This study investigates the combustion performance and residual load-bearing capacity of key Dou-Gong bracket [...] Read more.
Dou-Gong brackets, the distinctive structural element in ancient Chinese architecture, fulfill critical roles in load transfer, span reduction, and decoration, making its preservation vital for safeguarding wooden heritage buildings. This study investigates the combustion performance and residual load-bearing capacity of key Dou-Gong bracket components—Zuo-dou, Zheng-xin-gua-gong, and Qiao—exposed to varying fire conditions. The results reveal that an increasing fire load elevates heating rates and peak temperatures of wood substrates, resulting in a significant degradation of structural integrity. At a fire load of 55 kW, the peak temperatures at the bottom, joint edge, and top of the Dou-Gong brackets reach 755.3 °C, 489.9 °C, and 620.7 °C, respectively, representing increases of 2%, 65%, and 38%, respectively, compared to those observed at a fire load of 20 kW. Moreover, the charring rate of Dou-Gong bracket increases from 0.22–0.26 mm/min at a fire load of 20 kW to 0.50–0.56 mm/min at a fire load of 55 kW, accompanied by an increase in mass loss rate from 28.5% to 36.9%. These findings highlight the significant impact of fire conditions on the fire characteristic and structural integrity of Dou-Gong brackets, providing the first quantitative evidence of their degradation under fire exposure. By addressing this vulnerability, the study contributes to the scientific preservation of ancient wooden architecture under contemporary fire risk scenarios. Full article
(This article belongs to the Special Issue Fire Prevention and Flame Retardant Materials)
Show Figures

Figure 1

29 pages, 6704 KiB  
Article
Kinetic Analysis of Construction, Renovation, and Demolition (CRD) Wood Pyrolysis Using Model-Fitting and Model-Free Methods via Thermogravimetric Analysis
by Aravind Ganesan, Simon Barnabé, Younès Bareha, Simon Langlois, Olivier Rezazgui and Cyrine Boussabbeh
Energies 2025, 18(10), 2496; https://doi.org/10.3390/en18102496 - 12 May 2025
Viewed by 696
Abstract
The pyrolysis of non-recyclable construction, renovation, and demolition (CRD) wood waste is a complex thermochemical process involving devolatilization, diffusion, phase transitions, and char formation. CRD wood, a low-ash biomass containing 24–32% lignin, includes both hardwood and softwood components, making it a viable heterogeneous [...] Read more.
The pyrolysis of non-recyclable construction, renovation, and demolition (CRD) wood waste is a complex thermochemical process involving devolatilization, diffusion, phase transitions, and char formation. CRD wood, a low-ash biomass containing 24–32% lignin, includes both hardwood and softwood components, making it a viable heterogeneous feedstock for bioenergy production. Thermogravimetric analysis (TGA) of CRD wood residues was conducted at heating rates of 10, 20, 30, and 40 °C/min up to 900 °C, employing model-fitting (Coats–Redfern (CR)) and model-free (Ozawa–Flynn–Wall (OFW), Kissinger–Akahira–Sunose (KAS), and Friedman (FM)) approaches to determine kinetic and thermodynamic parameters. The degradation process exhibited three stages, with peak weight loss occurring at 350–400 °C. The Coats–Redfern method identified diffusion and phase interfacial models as highly correlated (R2 > 0.99), with peak activation energy (Ea) at 30 °C/min reaching 114.96 kJ/mol. Model-free methods yielded Ea values between 172 and 196 kJ/mol across conversion rates (α) of 0.2–0.8. Thermodynamic parameters showed enthalpy (ΔH) of 179–192 kJ/mol, Gibbs free energy (ΔG) of 215–275 kJ/mol, and entropy (ΔS) between −60 and −130 J/mol·K, indicating an endothermic, non-spontaneous process. These results support CRD wood’s potential for biochar production through controlled pyrolysis. Full article
Show Figures

Figure 1

Back to TopTop