Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (205)

Search Parameters:
Keywords = wood film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2801 KiB  
Article
The Influence of Substrate Preparation on the Performance of Two Alkyd Coatings After 7 Years of Exposure in Outdoor Conditions
by Emanuela Carmen Beldean, Maria Cristina Timar and Emilia-Adela Salca Manea
Coatings 2025, 15(8), 918; https://doi.org/10.3390/coatings15080918 - 6 Aug 2025
Abstract
Alkyd resins are among the most common coatings used for exterior wood joinery. In Romania, solvent-borne alkyd coatings are widely used to finish wood. The study aims to compare the performance after 7 years of outdoor exposure of two types of alkyd coatings, [...] Read more.
Alkyd resins are among the most common coatings used for exterior wood joinery. In Romania, solvent-borne alkyd coatings are widely used to finish wood. The study aims to compare the performance after 7 years of outdoor exposure of two types of alkyd coatings, a semi-transparent brown stain with micronized pigments (Alk1) and an opaque white enamel (Alk2), applied directly on wood or wood pre-treated with three types of resins: acryl-polyurethane (R1), epoxy (R2), and alkyd-polyurethane (R3). Fir (Abies alba) wood served as the substrate. Cracking, coating adhesion, and biological degradation were periodically assessed through visual inspection and microscopy. Additionally, a cross-cut test was performed, and the loss of coating on the directly exposed upper faces was measured using ImageJ. The results indicated that resin pretreatments somewhat reduced cracking but negatively affected coating adhesion after long-term exposure. All samples pretreated with resins and coated with Alk1 lost more than 50% (up to 78%) of the original finishing film by the end of the test. In comparison, coated control samples lost less than 50%. The Alk2 coating exhibited a film loss between 2% and 12%, compared to an average loss of 9% for the coated control. Overall, samples pretreated with alkyd-polyurethane resin (R3) and coated with alkyd enamel (Alk2) demonstrated the best performance in terms of cracking, adhesion, and discoloration. Full article
(This article belongs to the Collection Wood: Modifications, Coatings, Surfaces, and Interfaces)
Show Figures

Figure 1

13 pages, 6838 KiB  
Article
Preparation and Bonding Properties of Fabric Veneer Plywood
by Ziyi Yuan, Limei Cheng, Chengsheng Gui and Lu Fang
Coatings 2025, 15(8), 864; https://doi.org/10.3390/coatings15080864 - 23 Jul 2025
Viewed by 309
Abstract
Fabric veneer panels were prepared using ethylene-vinyl acetate copolymer film (EVA) as the intermediate layer and poplar plywood as the substrate. Eight fabrics with different compositions were selected for evaluation to screen out fabric materials suitable for poplar plywood veneer. The fabrics were [...] Read more.
Fabric veneer panels were prepared using ethylene-vinyl acetate copolymer film (EVA) as the intermediate layer and poplar plywood as the substrate. Eight fabrics with different compositions were selected for evaluation to screen out fabric materials suitable for poplar plywood veneer. The fabrics were objectively analyzed by bending and draping, compression, and surface roughness, and subjectively evaluated by establishing seven levels of semantic differences. ESEM, surface adhesive properties, and peel resistance tests were used to characterize the microstructure and physical–mechanical properties of the composites. The results show that cotton and linen fabrics and corduroy fabrics are superior to other fabrics in performance, and they are suitable for decorative materials. Because the fibers of the doupioni silk fabric are too thin, and the fibers of felt fabric are randomly staggered, they are not suitable for the surface decoration materials of man-made panels. The acetate veneer surface gluing performance was 1.31 MPa, and the longitudinal peel resistance was 20.98 N, significantly exceeding that of other fabric veneers. Through the subjective and objective analysis of fabrics and gluing performance tests, it was concluded that, compared with fabrics made of natural fibers, man-made fiber fabrics are more suitable for use as surface finishing materials for wood-based panels. The results of this study provide a theoretical basis and process reference for the development of environmentally friendly decorative panels, which can be expanded and applied to furniture, interior decoration, and other fields. Full article
(This article belongs to the Special Issue Innovations in Functional Coatings for Wood Processing)
Show Figures

Graphical abstract

26 pages, 4950 KiB  
Article
Study on Comprehensive Benefit Evaluation of Rural Houses with an Additional Sunroom in Cold Areas—A Case Study of Hebei Province, China
by Xinyu Zhu, Tiantian Duan, Yang Yang and Chaohong Wang
Buildings 2025, 15(13), 2343; https://doi.org/10.3390/buildings15132343 - 3 Jul 2025
Viewed by 226
Abstract
To address the issues of poor thermal performance and high energy consumption in rural dwellings in cold regions of China, this study investigates multi-type energy-efficient retrofitting strategies for rural houses in the Hebei–Tianjin region. By utilizing a two-step cluster analysis method, 458 rural [...] Read more.
To address the issues of poor thermal performance and high energy consumption in rural dwellings in cold regions of China, this study investigates multi-type energy-efficient retrofitting strategies for rural houses in the Hebei–Tianjin region. By utilizing a two-step cluster analysis method, 458 rural dwellings from 32 villages were classified based on household demographics, architectural features, and energy consumption patterns, identifying three typical categories: pre-1980s adobe dwellings, 1980s–1990s brick–wood structures, and post-1990s brick–concrete houses. Tailored sunspace design strategies were proposed through simulation: low-cost plastic film sunspaces for adobe dwellings (dynamic payback period: 2.8 years; net present value: CNY 2343), 10 mm hollow polycarbonate (PC) panels for brick–wood structures (cost–benefit ratio: 1.72), and high-efficiency broken bridge aluminum Low-e sunspaces for brick–concrete houses (annual natural gas savings: 345.24 m3). Economic analysis confirmed the feasibility of the selected strategies, with positive net present values and cost–benefit ratios exceeding 1. The findings demonstrate that classification-based retrofitting strategies effectively balance energy-saving benefits with economic costs, providing a scientific hierarchical implementation framework for rural residential energy efficiency improvements in cold regions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 9843 KiB  
Article
Study on the Surface Coating Techniques of Furniture in the Long’en Hall of Qing Changling Mausoleum
by Qirong Li, Fan Zhang, Wei Jia and Yifan Guo
Coatings 2025, 15(6), 712; https://doi.org/10.3390/coatings15060712 - 13 Jun 2025
Viewed by 642
Abstract
As a core structure within the Qing Changling Mausoleum, a UNESCO World Cultural Heritage site, Long’en Hall preserves a relatively complete set of Qing dynasty imperial lacquered furniture. These furnishings provide critical physical evidence for studying Qing dynasty sacrificial rituals and the craftsmanship [...] Read more.
As a core structure within the Qing Changling Mausoleum, a UNESCO World Cultural Heritage site, Long’en Hall preserves a relatively complete set of Qing dynasty imperial lacquered furniture. These furnishings provide critical physical evidence for studying Qing dynasty sacrificial rituals and the craftsmanship of court lacquerware. However, limited research has been conducted on the surface finishing techniques of such furnishings, posing challenges to their conservation and accurate restoration. This study focuses on representative furnishings from Long’en Hall—including an offering table, an incense pavilion, a throne, and a poke lamp—and employed a multi-method analytical approach comprising fluorescence microscopy (FM), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared (FTIR) spectroscopy. The analysis was conducted on the following two levels: the lacquer layer structure and material composition. The results show that the furnishings in the Long’en Hall adopt the typical structure of “lacquer ash layer–color lacquer layer”, and the color lacquer layer is composed of raw lacquer, tung oil, animal glue, and other natural organic ingredients as film-forming materials, supplemented with inorganic mineral pigments such as red lead (Pb3O4) and Au metal, which constitutes a stable organic–inorganic composite structure with the lacquer ash layer. The multi-analysis results show a good complementary and cross-corroboration relationship, providing the necessary technical support and a theoretical reference for Qing dynasty palace lacquer wood furniture as cultural relics worthy of scientific protection and imitation. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

19 pages, 6108 KiB  
Article
Physico-Mechanical and Sorption Properties of Wood Treated with Cellulose Nanofibers
by Magdalena Woźniak, Jerzy Majka, Tomasz Krystofiak, Barbara Lis, Edward Roszyk and Izabela Ratajczak
Materials 2025, 18(12), 2762; https://doi.org/10.3390/ma18122762 - 12 Jun 2025
Viewed by 430
Abstract
This paper presents the effect of wood treatment with cellulose nanofibers on its parameters. The wettability, color changes (also after UV+IR radiation), equilibrium moisture content and mechanical parameters of wood treated with cellulose nanofibers (CNF) in three concentrations (0.5, 1 and 2%) were [...] Read more.
This paper presents the effect of wood treatment with cellulose nanofibers on its parameters. The wettability, color changes (also after UV+IR radiation), equilibrium moisture content and mechanical parameters of wood treated with cellulose nanofibers (CNF) in three concentrations (0.5, 1 and 2%) were determined. Wood treatment with CNF increased the wettability of its surface, as evidenced by lower values of the contact angle (24.3–56.3 degrees) compared to untreated wood (98.3 degrees). The SEM images indicated the formation of cellulose nanofiber networks on the wood surface, especially in the case of 2% CNF-treated wood, which formed a well-adhered and homogenous film. Wood treated with 0.5% CNF showed a lower total color change (∆E*) value (1.9) after aging compared to untreated wood (2.9), indicating that the color changes in the treated wood were very small and recognizable only to an experienced observer, while the color differences in the control wood were recognizable to an inexperienced observer. Furthermore, CNF showed no negative effect on the strength parameters of the treated wood and only slightly affected the equilibrium moisture content for both sorption phases over the entire relative humidity range compared to control samples. The results prove the effective use of cellulose nanofibers in wood treatment, which can be an ecological and non-toxic component of wood protection systems. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

19 pages, 5355 KiB  
Article
Effect of Cotton Stalk Biochar Content on the Properties of Cotton Stalk and Residual Film Composites
by Zhipeng Song, Xiaoyun Lian, Junhui Ran, Xuan Zheng, Xufeng Wang and Xiaoqing Lian
Agriculture 2025, 15(12), 1243; https://doi.org/10.3390/agriculture15121243 - 7 Jun 2025
Cited by 1 | Viewed by 596
Abstract
This study aims to improve the performance of wood–plastic composites (WPCs) composed of cotton stalk powder and residual film particles. Additionally, it aims to promote the efficient utilization of cotton stalk biochar. The composites were prepared using modified cotton stalk biochar and xylem [...] Read more.
This study aims to improve the performance of wood–plastic composites (WPCs) composed of cotton stalk powder and residual film particles. Additionally, it aims to promote the efficient utilization of cotton stalk biochar. The composites were prepared using modified cotton stalk biochar and xylem powder as the matrix, maleic anhydride grafted high-density polyethylene (MA-HDPE) as the coupling agent, and polyethylene (PE) residual film particles as the filler. The WPCs were fabricated through melt blending using a twin-screw extruder. Mechanical properties were evaluated using a universal testing machine and texture analyzer, Shore D hardness was measured using a durometer, and microstructure was analyzed using a high-resolution digital optical microscope. A systematic investigation was conducted on the effect of biochar content on material properties. The results indicated that modified biochar significantly enhanced the mechanical and thermal properties of the WPCs. At a biochar content of 80%, the material achieved optimal performance, with a hardness of 57.625 HD, a bending strength of 463.159 MPa, and a tensile strength of 13.288 MPa. Additionally, thermal conductivity and thermal diffusivity decreased to 0.174 W/(m·K) and 0.220 mm2/s, respectively, indicating improved thermal insulation properties. This research provides a novel approach for the high-value utilization of cotton stalks and residual films, offering a potential solution to reduce agricultural waste pollution in Xinjiang and contributing to the development of low-cost and high-performance WPCs with wide-ranging applications. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

19 pages, 6754 KiB  
Article
New Challenges in Assessment of the Acoustic Properties of Coating Polymers
by Mariana Domnica Stanciu, Maria Violeta Guiman and Silviu Marian Năstac
Polymers 2025, 17(10), 1418; https://doi.org/10.3390/polym17101418 - 21 May 2025
Cited by 1 | Viewed by 411
Abstract
The study presented in this paper investigates the influence of coating polymers on the acoustic properties of resonant spruce wood. It evaluates absorption, acoustic reflection, and resonance frequency spectrum characteristics in both unvarnished and varnished samples, with the interface between the coating polymer [...] Read more.
The study presented in this paper investigates the influence of coating polymers on the acoustic properties of resonant spruce wood. It evaluates absorption, acoustic reflection, and resonance frequency spectrum characteristics in both unvarnished and varnished samples, with the interface between the coating polymer and the wood modifying the acoustic response. The novelty of the research consists in evaluating the acoustic and dynamic parameters of resonant spruce wood boards, varnished with varnishes with different chemical properties (oil-based varnish, spirit varnish, nitrocellulose varnish). The study focuses on the influence of the type of varnish and the thickness of the varnish film on the frequency spectrum, damping coefficient, quality factor, acoustic absorption coefficient, and sound reflection. The sound absorption coefficient increases with the number of varnish layers and is influenced by the sound’s frequency range, the type of varnish, and the quality of the wood—factors that collectively enhance acoustic performance. For instance, oil-based varnish applied in 5 or 10 layers contributes to a fuller sound at a frequency of 1.5 kHz. In contrast, spirit varnish, which has a lower acoustic absorption coefficient at this frequency, and a reduced damping coefficient, can lead to a nasal tone, although the frequency spectrum turns out to have the richest. Applying more than 10 layers of varnish softens the sound when using oil-based varnish but sharpens it with spirit varnish on resonant wood. Thus, the acoustic performance of a soundboard can be tailored by selecting the appropriate varnishing system and number of layers applied. However, a detailed analysis of the timbre of musical instruments finished with these varnishes is necessary to confirm their influence on the acoustic quality of the instruments. Full article
(This article belongs to the Special Issue Advances in Wood and Wood Polymer Composites)
Show Figures

Figure 1

17 pages, 1599 KiB  
Article
New Biodegradable Carboxymethyl Cellulose-Based Films with Liquid Products of Wood Pine Pyrolysis with Antibacterial and Antioxidant Properties
by Grażyna B. Dąbrowska, Marcel Antoszewski, Aleksandra Szydłowska-Czerniak, Aneta Raszkowska-Kaczor, Tomasz Jędrzejewski, Sylwia Wrotek, Monika Bartkowiak, Maria Swiontek Brzezinska and Magdalena Zborowska
Materials 2025, 18(10), 2228; https://doi.org/10.3390/ma18102228 - 12 May 2025
Viewed by 547
Abstract
Novel carboxymethylcellulose (CMC) films with liquid products of pyrolysis (LPP) from wood pine were produced. The obtained CMC-LPP films were plasticized with 5% glycerol. CMC-LPP films were a light brown colour with a characteristic smoky scent, and showed a higher oxygen permeability when [...] Read more.
Novel carboxymethylcellulose (CMC) films with liquid products of pyrolysis (LPP) from wood pine were produced. The obtained CMC-LPP films were plasticized with 5% glycerol. CMC-LPP films were a light brown colour with a characteristic smoky scent, and showed a higher oxygen permeability when compared to control film without the addition of the LPP. CMC-LPP exhibited high antioxidant activity (5 and 18 times higher than CMC films). Furthermore, the antibacterial activity of the CMC-LPP films was tested, showing a strong inhibiting growth effect on the seven tested human pathogenic bacteria. The new material had the most substantial bacteriostatic effect on Listeria monocytogenes, Salmonella typhimurium, and Pseudomonas aeruginosa. Introduction of LPP to plasticised CMC produces an eco-friendly material with biocidal effect and favourable mechanical and structural properties, which shows its potential for possible use in many industries. Full article
Show Figures

Figure 1

19 pages, 6268 KiB  
Article
Performance of Micronized Biowax Powders Replacing PTFE Fillers in Bio-Based Epoxy Resin Coatings
by Pieter Samyn, Chris Vanheusden and Patrick Cosemans
Coatings 2025, 15(5), 511; https://doi.org/10.3390/coatings15050511 - 24 Apr 2025
Viewed by 738
Abstract
In view of sustainable-by-design issues, there is an urgent need for replacing harmful coating ingredients with more ecological, non-toxic alternatives from bio-based sources. In particular, fluorine derivatives such as polytetrafluoroethylene (PTFE) powders are frequently applied as coating additives because of their versatile role [...] Read more.
In view of sustainable-by-design issues, there is an urgent need for replacing harmful coating ingredients with more ecological, non-toxic alternatives from bio-based sources. In particular, fluorine derivatives such as polytetrafluoroethylene (PTFE) powders are frequently applied as coating additives because of their versatile role in rendering hydrophobicity and lubrication. In this research, a screening study is presented regarding the performance of alternative micronized biowax powders, produced from various natural origins, when used as functional additives in protective epoxy coatings for wood. The micronized wax powders from bio-based sources (carnauba wax, rice bran wax, amide biowax) and reference fossil sources (PE wax/PTFE, PE wax, PTFE), of large (8 to 11 µm) and small sizes (4 to 6 µm), were added into fully bio-based epoxy clear coat formulations based on epoxidized flaxseed oil and proprietary acid hardener. Within concentration ranges of 0.5 to 10 wt.-%, it was observed that rice bran micropowders present higher hardness, scratch resistance, abrasion resistance, and hydrophobicity when compared to the results for PTFE. Moreover, the proprietary mixtures of biowax combined with PTFE micropowders provide synergistic effects, with PTFE mostly dominating in regards to the mechanical and physical properties. However, the granulometry of the micronized wax powders is a crucial parameter, as the smallest biowax particle sizes are the most effective. Based on further analysis of the sliding interface, a more ductile surface film forms for the coatings with rice bran and carnauba wax micropowders, while the amide wax is more brittle in parallel with the synthetic waxes and PTFE. Infrared spectroscopy confirms a favorable distribution of biowax micropowders at the coating surface in parallel with the formation of a protective surface film and protection of the epoxy matrix after abrasive wear. This study confirms that alternatives to PTFE for the mechanical protection, gloss, and hydrophobicity of wood coatings should be critically selected among the available grades of micronized waxes, depending on the targeted properties. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

15 pages, 3554 KiB  
Article
Ozone Nanobubble-Assisted Pretreatment of Lignocellulose: Enhancing Wood Liquefaction and Bio-Polyurea Development
by Go Masuda, Christian Ebere Enyoh, Weiqian Wang, Satoshi Anzai and Qingyue Wang
Appl. Sci. 2025, 15(9), 4618; https://doi.org/10.3390/app15094618 - 22 Apr 2025
Viewed by 480
Abstract
Nanobubbles have emerged as a novel technology, yet their applications remain largely limited to cleaning and oxidation. This study explores the potential of ozone nanobubbles as a pretreatment method for liquefied wood. Wood meal was treated with ozone nanobubbles in tap water under [...] Read more.
Nanobubbles have emerged as a novel technology, yet their applications remain largely limited to cleaning and oxidation. This study explores the potential of ozone nanobubbles as a pretreatment method for liquefied wood. Wood meal was treated with ozone nanobubbles in tap water under three different conditions: room temperature, 50 °C, and room temperature followed by ultrasonic treatment. The treated samples were then compared with untreated wood meal through component analysis, FT-IR functional group evaluation, and X-Ray diffraction (XRD) analysis of cellulose crystallinity. In the liquefaction process, residue rates, FT-IR analysis, hydroxyl numbers, and viscosity were examined. Additionally, the mechanical properties of synthesized polyurea films were evaluated via tensile testing. The results showed a reduction in amorphous cellulose from 62.3% to 56.6% and hemicellulose from 42.8% to 35.9%, leading to liquefied wood with a high hydroxyl value from 341 KOH/mg to 387 KOH/mg and significantly lower viscosity from 684 cP to 264 cP. Furthermore, the polyurea films synthesized from the treated liquefied wood exhibited no deterioration in physical properties. These findings highlight ozone nanobubble pretreatment as a promising and industrially valuable process for producing low-residue, low-viscosity liquefied wood without compromising material performance. Full article
(This article belongs to the Special Issue Industrial Chemical Engineering and Organic Chemical Technology)
Show Figures

Figure 1

22 pages, 4821 KiB  
Article
Evaluation of Film-Forming Properties of α-1,3-Glucan Obtained from “Chicken of the Woods” Mushroom (Laetiporus sulphureus): Film Development, Characterization, and Biodegradation Assessment
by Kowalczyk Dariusz, Barbara Gieroba, Katarzyna Niedźwiadek, Mikołaj Krysa, Anna Sroka-Bartnicka, Adam Waśko, Ewa Ozimek, Aleksandra Ściegienna, Monika Basiura-Cembala, Waldemar Kazimierczak and Adrian Wiater
Molecules 2025, 30(7), 1619; https://doi.org/10.3390/molecules30071619 - 4 Apr 2025
Viewed by 907
Abstract
Unlike many biopolymers, α-1,3-glucan (α-1,3-GLU) is water-insoluble, making it a promising candidate for the production of moisture-resistant films with applications in biodegradable packaging, biomedicine, and cosmetics. This study aimed to characterize the structural, physicochemical (water affinity, optical, mechanical), and biodegradation properties of a [...] Read more.
Unlike many biopolymers, α-1,3-glucan (α-1,3-GLU) is water-insoluble, making it a promising candidate for the production of moisture-resistant films with applications in biodegradable packaging, biomedicine, and cosmetics. This study aimed to characterize the structural, physicochemical (water affinity, optical, mechanical), and biodegradation properties of a film made from α-1,3-GLU extracted from Laetiporus sulphureus. The film was fabricated through alkaline dissolution, casting, drying, washing to remove residual NaOH, and re-plasticization with a glycerol solution. FTIR and Raman spectroscopy confirmed the polysaccharide nature of the film, with predominant α-glycosidic linkages. The film exhibited a semi-crystalline structure and high opacity due to surface roughness resulting from polymer coagulation. Owing to re-plasticization, the film showed a high moisture content (~47%), high water solubility (81.95% after 24 h), and weak mechanical properties (tensile strength = 1.28 MPa, elongation at break ≈ 10%). Its water vapor permeability (53.69 g mm m−2 d−1 kPa−1) was comparable to other glycerol-plasticized polysaccharide films reported in the literature. The film supported the adhesion of soil microorganisms and target bacteria and was susceptible to degradation by Trichoderma harzianum and endo- and exo-α-1,3-glucanases, indicating its biodegradability. The limitations in its mechanical strength and excessive hydration indicate the need for improvements in the composition and methods of producing α-1,3-GLU films. Full article
Show Figures

Figure 1

18 pages, 5294 KiB  
Article
Multi-Layer Oil- and Water-Resistant Food Containers Made Using Cellulose Nanofibril-Laminated Wood Veneer
by Nabanita Das, Islam Hafez, Douglas Bousfield and Mehdi Tajvidi
Polysaccharides 2025, 6(2), 28; https://doi.org/10.3390/polysaccharides6020028 - 2 Apr 2025
Viewed by 922
Abstract
This work aimed at replacing per- or poly-fluoroalkyl substance (PFAS)-based food-serving containers with wood-based, oil- and grease-resistant food-serving containers. A novel container was developed by laminating wet cellulose nanofibril (CNF) films to both sides of yellow birch wood veneer using a food-grade polyamide–epichlorohydrin [...] Read more.
This work aimed at replacing per- or poly-fluoroalkyl substance (PFAS)-based food-serving containers with wood-based, oil- and grease-resistant food-serving containers. A novel container was developed by laminating wet cellulose nanofibril (CNF) films to both sides of yellow birch wood veneer using a food-grade polyamide–epichlorohydrin additive (PAE) as an adhesive. CNFs significantly improved the wood veneer container’s mechanical strength and barrier properties. The container’s mechanical testing results showed significant increases in flexural strength and modulus of elasticity (MOE) values in both parallel and perpendicular directions to the grain. All formulations of the container showed excellent oil and grease resistance properties by passing “kit” number 12 based on the TAPPI T 559 cm-12 standard. The water absorption tendency of the formulation treated at higher temperature, pressure, and longer press time showed similar performance to commercial paper plates containing PFASs. The developed composite demonstrates superior flexural strength and barrier properties, presenting a sustainable alternative to PFASs in food-serving containers. Both wood and CNFs stand out for their remarkable eco-friendliness, as they are biodegradable and naturally compostable. This unique characteristic not only helps minimize waste but also promotes a healthier environment. If scaled up, these novel containers may present a solution to the oil/grease resistance of bio-based food containers. Full article
Show Figures

Figure 1

12 pages, 901 KiB  
Article
Novel Bio-Based Formulations for Alkyd Wood Coatings: Effects on Biodegradation and Technical Performance
by Idoia Etxeberria, Ingemar Svensson, Ana Isabel Díaz and Leire Barruetabeña
Coatings 2025, 15(4), 400; https://doi.org/10.3390/coatings15040400 - 27 Mar 2025
Viewed by 901
Abstract
Alkyd resins are still one of the most important classes of binders for paint systems. They are outstanding in terms of their versatility of formulations and applications, cost-effectiveness, and durability. Traditionally, they are synthesized using phthalic anhydride, polyalcohols with three or four functional [...] Read more.
Alkyd resins are still one of the most important classes of binders for paint systems. They are outstanding in terms of their versatility of formulations and applications, cost-effectiveness, and durability. Traditionally, they are synthesized using phthalic anhydride, polyalcohols with three or four functional groups (pentaerythritol, glycerol, and trimethylolpropane), and fatty acids or oils. In this study, new bio-alkyd resins were synthesized with the objective of increasing the bio-based content by substituting phthalic anhydride, thereby also enhancing the biodegradability of coatings. The newly synthesized alkyd resins, formulated with azelaic acid, were used to develop coatings incorporating additives while avoiding cobalt-based driers. Additional agents such as leveling, wetting, and anti-skinning agents, were also included. Paints were applied to wood substrates and dried at room temperature. The resulting films were characterized by pendulum hardness, transparency, and color by colorimetry, cross-cut test, contact angle, and gloss. Thermal properties were analyzed by Differential Scanning Calorimetry (DSC), and Total Organic Carbon (TOC) content and aerobic biodegradation were also evaluated. The resulting coating films exhibited good mechanical performance, with hardness values ranging from 132 to 148 Persoz oscillations and strong adhesion to wood substrates (smooth cross-cut edges, Class 0). Significant biodegradability (70% in less than 90 days) was demonstrated under composting conditions, which was considerably higher than that of a commercial reference alkyd coating (34.7%) under the same conditions. These findings suggest that the developed bio-alkyd coatings formulated with azelaic acid and DCO-FA without cobalt-based driers represent a promising alternative to conventional phthalic acid-based alkyds. These novel coatings move closer to fully bio-based formulations and offer enhanced biodegradability, making them a more sustainable option for coating applications. Full article
(This article belongs to the Special Issue Bio-Based and Bio-Inspired Polymers and Composites)
Show Figures

Graphical abstract

13 pages, 3030 KiB  
Article
An Investigation of the Mechanical Properties of Ti Films Reinforced with Wood Composites by Growing Ti Particles on a Wood Substrate
by Wenhui Bao, Yini Tan, Ziyi Ying, Rui Xue, Xiaojiang Xu, Shuangping Duan, Haizhuan Lin and Hui Chen
Polymers 2025, 17(5), 583; https://doi.org/10.3390/polym17050583 - 22 Feb 2025
Viewed by 841
Abstract
Table tennis racquet blades (TTRBs) are specialized wood materials known for their excellent mechanical properties. As one of the widely used physical vapor deposition technologies, magnetron sputtering has become the most effective method for preparing various thin film materials. In this study, the [...] Read more.
Table tennis racquet blades (TTRBs) are specialized wood materials known for their excellent mechanical properties. As one of the widely used physical vapor deposition technologies, magnetron sputtering has become the most effective method for preparing various thin film materials. In this study, the surface of the TTRB is coated with a Ti film with different thicknesses by magnetron sputtering to improve the performance of the TTRB. The surface roughness, crystal structure, viscoelasticity of the TTRB were analyzed by means of non-contact surface profilometry, X-ray diffraction (XRD), and dynamic mechanical analysis (DMA). In order to effectively test TTRB properties, three types of testing devices were designed, including free-fall rebound, laser vibration measurement, and the dynamic rebound test. The results reveal that the deposition of a Ti film on the surface of the TTRB improves the rigidity and rebound efficiency of the TTRB. Under optimized conditions, the initial amplitude, vertical rebound distance, and rebound rate can reach 2.1 μm, 23.7 cm, 13.7%, respectively, when the deposition thickness is 5 μm. It is anticipated that the modification and the corresponding detection methods developed in this study can foster innovative product development, standardize the TTRB industry, and contribute to the advancement of table tennis. Full article
(This article belongs to the Special Issue Recent Developments in Wood Polymer Composites)
Show Figures

Figure 1

23 pages, 12546 KiB  
Article
Effects of Beech Wood Surface Treatment with Polyethylenimine Solution Prior to Finishing with Water-Based Coating
by Tanja Palija, Milica Rančić, Daniela Djikanović, Ksenija Radotić, Marko Petrič, Matjaž Pavlič and Milan Jaić
Polymers 2025, 17(1), 77; https://doi.org/10.3390/polym17010077 - 30 Dec 2024
Viewed by 965
Abstract
The surfaces of beech wood samples were treated with polyethylenimine (PEI) solutions at three different concentrations—0.5%, 1% and 2%—and two molecular weights—low molecular weight (LMW) and high molecular weight (HMW). The effects of PEI surface treatment of wood were characterized by FT-IR spectroscopy, [...] Read more.
The surfaces of beech wood samples were treated with polyethylenimine (PEI) solutions at three different concentrations—0.5%, 1% and 2%—and two molecular weights—low molecular weight (LMW) and high molecular weight (HMW). The effects of PEI surface treatment of wood were characterized by FT-IR spectroscopy, the penetration depth of PEI (EPI fluorescence spectroscopy), the bonding position of PEI (by SEM), the wetting and surface energy, and the water uptake. After PEI treatment, the samples were coated with a water-based transparent acrylic coating (WTAC). The dry film thickness, the penetration depth of the coating, the adhesion strength and the surface roughness of the coated wood surface were evaluated. EPI fluorescence and SEM micrographs showed that PEI HMW chains were deposited on the surface, in contrast to PEI LMW, which penetrates deeper into layers of the wood cells. Treatment with a 1% PEI HMW solution resulted in a 72% reduction in water uptake of the wood (compared to untreated samples after 5 min of applying water droplets to the surface) and a 23.2% reduction in surface energy (compared to untreated samples) while maintaining the adhesion strength of the applied WTAC. The lower water uptake of the treated wood samples reduced the roughness of the coated surface, which is particularly important when the wood surface is finished with water-based coatings. Full article
(This article belongs to the Special Issue Advances in Polyelectrolytes and Polyelectrolyte Complexes)
Show Figures

Figure 1

Back to TopTop