Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (671)

Search Parameters:
Keywords = wood cellulose

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5449 KiB  
Article
Comparisons of the Effects of Polymer and Alcohol Varnishes on Norway Spruce Wood Surface Modifications
by Mariana Domnica Stanciu, Maria Cristina Timar, Mircea Mihalcica, Mihaela Cosnita and Florin Dinulică
Polymers 2025, 17(15), 2131; https://doi.org/10.3390/polym17152131 - 1 Aug 2025
Viewed by 350
Abstract
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, [...] Read more.
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, but also to protect the wood from dirt. The varnishes used both to protect the wood from resonance and to ensure a special aesthetic appearance are either polymeric varnishes (nitrocellulose, oil-based) or volatile solvents (spirit). In this study, the color changes, the surface morphology and the chemical spectrum produced by three types of varnishes, applied in 5, 10 and 15 layers, on resonance spruce plates were analyzed. The results revealed significant changes in the color parameters: the lightness decreased by approximately 17% after the first layer, by 50% after 5 layers, by 65% after 10 layers and by 70% after 15 layers. The color parameters are most influenced by the anatomical quality of spruce wood (annual ring width and earlywood/latewood ratio) in the case of oil-based varnishes and least influenced in the case of nitrocellulose varnishes. The chemical fingerprint was determined by FTIR spectrum analysis, which revealed that the most pronounced absorptions were the double band 2926–2858 cm−1, corresponding to aliphatic methylene and methyl groups (asymmetric and symmetrical C-H stretch), and the bands at 1724 cm−1 (oil-based varnish), 1722 cm−1 (nitrocellulose varnish) and 1708 cm−1 (spirit varnish), all assigned to non-conjugated carbonyl groups in either carboxylic acids, esters aldehydes or ketones. The novelty of the study lies in the comparative analysis of three types of varnishes used in the musical instrument industry, applied to samples of spruce resonance wood with different macroscopic characteristics in three different layer thicknesses. Full article
(This article belongs to the Special Issue Advances in Wood Based Composites, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 5847 KiB  
Article
Parametric Analysis of Rammed Earth Walls in the Context of the Thermal Protection of Environmentally Friendly Buildings
by Piotr Kosiński, Wojciech Jabłoński and Krystian Patyna
Sustainability 2025, 17(15), 6886; https://doi.org/10.3390/su17156886 - 29 Jul 2025
Viewed by 285
Abstract
Rammed earth (RE), a traditional material aligned with circular economy (CE) principles, has been gaining renewed interest in contemporary construction due to its low environmental impact and compatibility with sustainable building strategies. Though not a modern invention, it is being reintroduced in response [...] Read more.
Rammed earth (RE), a traditional material aligned with circular economy (CE) principles, has been gaining renewed interest in contemporary construction due to its low environmental impact and compatibility with sustainable building strategies. Though not a modern invention, it is being reintroduced in response to the increasingly strict European Union (EU) regulations on carbon footprint, life cycle performance, and thermal efficiency. RE walls offer multiple benefits, including humidity regulation, thermal mass, plasticity, and structural strength. This study also draws attention to their often-overlooked ability to mitigate indoor overheating. To preserve these advantages while enhancing thermal performance, this study explores insulation strategies that maintain the vapor-permeable nature of RE walls. A parametric analysis using Delphin 6.1 software was conducted to simulate heat and moisture transfer in two main configurations: (a) a ventilated system insulated with mineral wool (MW), wood wool (WW), hemp shives (HS), and cellulose fiber (CF), protected by a jute mat wind barrier and finished with wooden cladding; (b) a closed system using MW and WW panels finished with lime plaster. In both cases, clay plaster was applied on the interior side. The results reveal distinct hygrothermal behavior among the insulation types and confirm the potential of natural, low-processed materials to support thermal comfort, moisture buffering, and the alignment with CE objectives in energy-efficient construction. Full article
Show Figures

Figure 1

14 pages, 2758 KiB  
Article
Monitoring Lead–Phosphorus Interactions Through 31P-NMR Used as a Sensor in Phosphine Functionalized Silica Gel Adsorbent
by Jessica Badillo-Camacho, José A. Gutiérrez-Ortega, Ilya G. Shenderovich, Yenni G. Velázquez-Galván and Ricardo Manríquez-González
Gels 2025, 11(8), 580; https://doi.org/10.3390/gels11080580 - 26 Jul 2025
Viewed by 250
Abstract
A triphenylphosphine-functionalized silica gel material, optimized for lead adsorption, was synthesized via a one-pot sol–gel reaction and characterized using FTIR and solid-state 13C and 29Si NMR and XPS spectroscopy. The interaction between lead cations and phosphine groups was evaluated using the [...] Read more.
A triphenylphosphine-functionalized silica gel material, optimized for lead adsorption, was synthesized via a one-pot sol–gel reaction and characterized using FTIR and solid-state 13C and 29Si NMR and XPS spectroscopy. The interaction between lead cations and phosphine groups was evaluated using the 31P NMR chemical shift tensor as a sensor. Two distinct types of phosphine groups, exhibiting different rotational mobility behaviors, were identified, with their ratio influenced by the presence of lead cations. These results suggest that the adsorption behavior of lead on this functionalized silica gel adsorbent can be directly evaluated by its lead–phosphorus interaction. This association was corroborated by the shifting of the binding energies of phosphorus functional groups after lead uptake in the XPS analysis. Full article
(This article belongs to the Special Issue Gel-Based Adsorbent Materials for Environmental Remediation)
Show Figures

Figure 1

17 pages, 900 KiB  
Review
Cellulose Nanofibril-Based Biodegradable Polymers from Maize Husk: A Review of Extraction, Properties, and Applications
by Nthabiseng Motshabi, Gaofetoge Gobodiwang Lenetha, Moipone Alice Malimabe and Thandi Patricia Gumede
Polymers 2025, 17(14), 1947; https://doi.org/10.3390/polym17141947 - 16 Jul 2025
Viewed by 381
Abstract
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with [...] Read more.
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with cellulose nanofibrils (CNFs) has shown promise, yet most research focuses on conventional sources like wood pulp and cotton, neglecting agricultural residues. This review addresses the potential of maize husk, a lignocellulosic waste abundant in South Africa, as a source of CNFs. It evaluates the literature on the structure, extraction, characterisation, and integration of maize husk-derived CNFs into biodegradable polymers. The review examines the chemical composition, extraction methods, and key physicochemical properties that affect performance when blended with PLA, PBS, or PCL. However, high lignin content and heterogeneity pose extraction and dispersion challenges. Optimised maize husk CNFs can enhance the mechanical strength, barrier properties, and thermal resistance of biopolymer systems. This review highlights potential applications in packaging, biomedical, and agricultural sectors, aligning with South African bioeconomic goals. It concludes by identifying research priorities for improving compatibility and processing at an industrial scale, paving the way for maize husk CNFs as effective, locally sourced reinforcements in green material innovation. Full article
Show Figures

Figure 1

13 pages, 2599 KiB  
Article
Enhancement of Dimensional Stability, Hydrophobicity, and Mechanical Strength of North American Red Alder Wood Through Silane Impregnation Combined with DES Pretreatment
by Yang Zheng, Ting Zhou, Chenyang Cai and Honghai Liu
Forests 2025, 16(7), 1152; https://doi.org/10.3390/f16071152 - 12 Jul 2025
Viewed by 240
Abstract
Wood is a green and renewable bio-based building material, but its hygroscopicity affects its dimensional stability, limiting its use in construction. Chemical modification can improve its properties, yet its effectiveness depends on wood permeability and traditional modifiers. This study first used a deep [...] Read more.
Wood is a green and renewable bio-based building material, but its hygroscopicity affects its dimensional stability, limiting its use in construction. Chemical modification can improve its properties, yet its effectiveness depends on wood permeability and traditional modifiers. This study first used a deep eutectic solvent (DES) to boost the permeability of North American alder wood. Then, methyl trimethoxysilane was impregnated under supercritical carbon dioxide (SCI), pressure (PI), vacuum (VI), and atmospheric pressure (AI) conditions. DES treatment damaged the cell structure, increasing wood permeability. Silane was deposited and polymerized in the cell lumen, chemically bonding with cell-wall components, filling walls and pits, and thickening walls. The VI group had the highest absolute density (0.59 g/cm3, +36.6%) and the lowest moisture absorption (4.4%, −33.3%). The AI group had the highest ASE (25%). The PI group showed the highest surface hardness (RL, 2592 N) and a water contact angle of 131.9°, much higher than natural wood. Overall, the VI group had the best performance. Silane reacts with cellulose, hemicellulose, and lignin in wood via hydrolysis and hydroxyl bonding, forming stable bonds that enhance the treated wood’s hydrophobicity, dimensional stability, and surface hardness. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

13 pages, 1305 KiB  
Article
A Wavelength Rule for the Analysis of Clusteroluminescence
by Frank B. Peters and Andreas O. Rapp
Polymers 2025, 17(14), 1908; https://doi.org/10.3390/polym17141908 - 10 Jul 2025
Viewed by 385
Abstract
A key discovery of this study is the strong correlation (r = 0.96) between excitation and emission maxima across chemically distinct clusteroluminogens. All 157 evaluated peaks fall along a single regression line (Ex = 0.844 Em − 12 nm), a pattern that was [...] Read more.
A key discovery of this study is the strong correlation (r = 0.96) between excitation and emission maxima across chemically distinct clusteroluminogens. All 157 evaluated peaks fall along a single regression line (Ex = 0.844 Em − 12 nm), a pattern that was not valid for conventional fluorophores. This suggests a general principle of clusteroluminescence. We show that in lignocellulosic materials, peak positions reflect chemical interactions: isolated lignin and cellulose showed short excitation and emission wavelengths, while native wood exhibited longer wavelengths. Fungal or photoinduced degradation led to a further red-shift. These effects are attributed to increased molecular heterogeneity, reducing the effective energy gap within the lignocellulosic complex. We conclude that the spectral position reflects the degree of molecular interaction rather than the chemical structure of individual molecules. It may serve as a novel analytical parameter for assessing purity and degradation in a wide range of polymers. Full article
(This article belongs to the Special Issue Advanced Preparation and Application of Cellulose: 2nd Edition)
Show Figures

Graphical abstract

27 pages, 4306 KiB  
Article
Extrusion-Biodelignification Approach for Biomass Pretreatment
by Delon Konan, Adama Ndao, Ekoun Koffi, Saïd Elkoun, Mathieu Robert, Denis Rodrigue and Kokou Adjallé
Waste 2025, 3(3), 21; https://doi.org/10.3390/waste3030021 - 26 Jun 2025
Viewed by 299
Abstract
This work presents a new approach for lignocellulosic biomass pretreatment. The process is a sequential combination of extrusion (Ex) and semi-solid fermentation (SSF). To assess the Ex-SSF pretreatment efficiency, black spruce chips (wood residues) and corn stover (crop residues) were subjected to the [...] Read more.
This work presents a new approach for lignocellulosic biomass pretreatment. The process is a sequential combination of extrusion (Ex) and semi-solid fermentation (SSF). To assess the Ex-SSF pretreatment efficiency, black spruce chips (wood residues) and corn stover (crop residues) were subjected to the process. The negative controls were the pretreatment of both residues with SSF alone without extrusion. Lignin peroxidase was the main ligninolytic enzyme contributing to the delignification in the negative controls. High lignin peroxide (LiP) activities were recorded for raw black spruce (53.7 ± 2.7 U/L) and corn stover (16.4 ± 0.8 U/L) compared to the Ex-SSF pretreated biomasses where the highest LiP activity recorded was 6.0 ± 0.3 U/L (corn residues). However, with the negative controls, only a maximum of 17% delignification was achieved for both biomasses. As for the Ex-SSF process, the pretreatments were preceded by the optimization of the extrusion (Ex) step and the semi-solid fermentation (SSF) step via experimental designs. The Ex-SSF pretreatments led to interesting results and offered cost-effective advantages compared to existing pretreatments. Biomass delignification reached 59.1% and 65.4% for black spruce and corn stover, respectively. For the analyses performed, it was found that manganese peroxidase (MnP) was the main contributor to delignification during the SSF step. MnP activity was up to 13.8 U/L for Ex-SSF pretreated black spruce, and 32.0 U/L for Ex-SSF pretreated corn stover, while the maximum MnP recorded in the negative controls was 1.4 ± 0.1 U/L. Ex-SSF pretreatment increased the cellulose crystallinity index (CrI) by 13% for black spruce and 4% for corn stover. But enzymatic digestibility of the Ex-SSF pretreated biomasses with 0.25 mL/g of enzyme led to 7.6 mg/L sugar recovery for black spruce, which is 2.3 times the raw biomass yield. The Ex-SSF pretreated corn stover led to 17.0 mg/L sugar recovery, which is a 44% improvement in sugar concentration compared to raw corn stover. However, increasing the enzyme content from 0.25 mL/g to 0.50 mg/L and 0.75 mg/L generated lower hydrolysis efficiency (the sugar recovery decreased). Full article
(This article belongs to the Special Issue Agri-Food Wastes and Biomass Valorization—2nd Edition)
Show Figures

Figure 1

13 pages, 3376 KiB  
Article
Research on the Prevention and Control of Korean Pine Wood Decay by Bacillus amyloliquefaciens AW3
by Jing Sun, Yanan Wang, Dongpeng Zhao, Hao Li, Yuanchao Li, Jingkui Li and Dawei Qi
Forests 2025, 16(6), 1030; https://doi.org/10.3390/f16061030 - 19 Jun 2025
Viewed by 333
Abstract
As one of the decay-resistant woods, Korean pine is widely used in the construction industry. However, even the most corrosion-resistant wood is still susceptible to decay under the right humidity and temperature conditions. In this study, Bacillus amyloliquefaciens (B. amyloliquefaciens) bacterial [...] Read more.
As one of the decay-resistant woods, Korean pine is widely used in the construction industry. However, even the most corrosion-resistant wood is still susceptible to decay under the right humidity and temperature conditions. In this study, Bacillus amyloliquefaciens (B. amyloliquefaciens) bacterial liquid and filter bacterial solution were prepared for the anti-corrosion treatment of Korean pine wood, aiming to improve its decay-resistant property. Through the plate confrontation test, it was discovered that B. amyloliquefaciens AW3 could significantly inhibit the growth of Fomitopsis pinicola (F. Pinicola). The results of mass loss rate, mechanical properties test, XRD, FTIR and SEM analysis showed that the preserved Korean pine wood had significant improvement in various properties compared with the decayed wood, which was manifested in the significant reduction of mass loss, improvement of mechanical properties, and increased wood cellulose diffraction peak intensity. There is no mycelium infection of F. pinicola in Korean pine wood, and the antiseptic liquid can penetrate into the wood evenly, which plays an effective antiseptic role. The B. amyloliquefaciens bacterial liquid exhibited superior preservative performance compared to the B. amyloliquefaciens filter bacterial solution. In conclusion, B. amyloliquefaciens, as an efficient and environmentally friendly biological preservative, holds broad application prospects in improving the anti-corrosion performance of Korean pine wood. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

19 pages, 6108 KiB  
Article
Physico-Mechanical and Sorption Properties of Wood Treated with Cellulose Nanofibers
by Magdalena Woźniak, Jerzy Majka, Tomasz Krystofiak, Barbara Lis, Edward Roszyk and Izabela Ratajczak
Materials 2025, 18(12), 2762; https://doi.org/10.3390/ma18122762 - 12 Jun 2025
Viewed by 430
Abstract
This paper presents the effect of wood treatment with cellulose nanofibers on its parameters. The wettability, color changes (also after UV+IR radiation), equilibrium moisture content and mechanical parameters of wood treated with cellulose nanofibers (CNF) in three concentrations (0.5, 1 and 2%) were [...] Read more.
This paper presents the effect of wood treatment with cellulose nanofibers on its parameters. The wettability, color changes (also after UV+IR radiation), equilibrium moisture content and mechanical parameters of wood treated with cellulose nanofibers (CNF) in three concentrations (0.5, 1 and 2%) were determined. Wood treatment with CNF increased the wettability of its surface, as evidenced by lower values of the contact angle (24.3–56.3 degrees) compared to untreated wood (98.3 degrees). The SEM images indicated the formation of cellulose nanofiber networks on the wood surface, especially in the case of 2% CNF-treated wood, which formed a well-adhered and homogenous film. Wood treated with 0.5% CNF showed a lower total color change (∆E*) value (1.9) after aging compared to untreated wood (2.9), indicating that the color changes in the treated wood were very small and recognizable only to an experienced observer, while the color differences in the control wood were recognizable to an inexperienced observer. Furthermore, CNF showed no negative effect on the strength parameters of the treated wood and only slightly affected the equilibrium moisture content for both sorption phases over the entire relative humidity range compared to control samples. The results prove the effective use of cellulose nanofibers in wood treatment, which can be an ecological and non-toxic component of wood protection systems. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

33 pages, 1352 KiB  
Review
Delignification as a Key Strategy for Advanced Wood-Based Materials: Chemistry, Delignification Parameters, and Emerging Applications
by Paschalina Terzopoulou, Evangelia C. Vouvoudi and Dimitris S. Achilias
Forests 2025, 16(6), 993; https://doi.org/10.3390/f16060993 - 12 Jun 2025
Viewed by 977
Abstract
Wood is a naturally abundant, biodegradable, and renewable material with significant potential as an alternative to petroleum-based materials. However, its inherent heterogeneity, anisotropy, and modest mechanical properties limit its application in high-performance structural uses. Delignification, a critical process in papermaking and biorefining, has [...] Read more.
Wood is a naturally abundant, biodegradable, and renewable material with significant potential as an alternative to petroleum-based materials. However, its inherent heterogeneity, anisotropy, and modest mechanical properties limit its application in high-performance structural uses. Delignification, a critical process in papermaking and biorefining, has emerged as a promising pretreatment technique to enhance the properties of wood for advanced subsequent applications. This process selectively removes lignin while preserving the aligned cellulose structure, thereby improving mechanical strength, dimensional stability, and potential for functionalization. Various delignification methods, including alkaline, acidic, and reductive catalytic fractionation, have been explored to optimize the wood’s structural and chemical properties. When combined with densification or impregnation, delignified wood exhibits superior mechanical performance, making it suitable for a range of applications, including structural materials, optical devices, biomedical applications, and energy storage. This detailed review examines the chemistry and mechanisms of delignification, its impact on the physical and mechanical properties of wood, and its role in developing sustainable, high-performance bio-based materials. Furthermore, challenges and future opportunities in delignification research are discussed, highlighting its potential for next-generation wood-based innovative applications. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

17 pages, 1198 KiB  
Article
Anti-Inflammatory Potential of Essential Oil from the Heart-Wood of the Folk Medicinal Tree Cinnamomum kanehirai Hayata in Macrophages
by May-Lan Liu, Pang-Yen Liu, Louis Kuoping Chao, Tzu-Jung Yang, Lan-Hui Li, Yih-Ming Weng, Sarana Rose Sommano, Yuwalee Unpaprom, Rameshprabu Ramaraj, Chen-Lung Ho and Kuo-Feng Hua
Int. J. Mol. Sci. 2025, 26(11), 5419; https://doi.org/10.3390/ijms26115419 - 5 Jun 2025
Viewed by 642
Abstract
Inflammation is a vital physiological response that plays a crucial role in regulating host defense against pathogens while maintaining tissue homeostasis. Inflammasomes, a family of protein complexes, are responsible for controlling the expression of pro-inflammatory cytokines IL-1β and IL-18, and they play significant [...] Read more.
Inflammation is a vital physiological response that plays a crucial role in regulating host defense against pathogens while maintaining tissue homeostasis. Inflammasomes, a family of protein complexes, are responsible for controlling the expression of pro-inflammatory cytokines IL-1β and IL-18, and they play significant roles in inflammatory responses. However, dysregulated inflammation can become a risk factor for the pathogenesis of various diseases. The discovery of anti-inflammatory substances derived from natural products represents an important strategy for new drug development. In this study, we found that the essential oil derived from the heartwood of Cinnamomum kanehirai Hayata (EOC) exhibits anti-inflammatory activities by inhibiting the NLRP3, NLRP1, NLRC4, AIM2, and non-canonical inflammasomes in macrophages. EOC also suppresses the expression of NLRP3, TNF-α, IL-6, and NO in LPS-activated macrophages. The mechanisms underlying the anti-inflammatory activity of EOC were shown to involve a reduction in reactive oxygen species production and NF-κB activation. Furthermore, terpinen-4-ol may be the key anti-inflammatory compound present in EOC. These results suggest that EOC has potential as an anti-inflammatory agent for future development. Full article
(This article belongs to the Special Issue Updates on Synthetic and Natural Antioxidants)
Show Figures

Figure 1

18 pages, 2361 KiB  
Article
Particleboards with Various Biomass Residues
by Electra Papadopoulou, Dimitrios Moutousidis, Christos Achelonoudis, Stavros Tsompanidis, Christina Kyriakou-Tziamtzi, Konstantinos Chrissafis and Dimitrios N. Bikiaris
Materials 2025, 18(11), 2632; https://doi.org/10.3390/ma18112632 - 4 Jun 2025
Viewed by 522
Abstract
Particleboards were developed by replacing a part of wood with various biomass residues, including coffee bean husks, spent coffee grounds, thistle, Sideritis and dead leaves of Posidonia oceanica. These materials were analysed to determine their physicochemical properties like the moisture content, pH, [...] Read more.
Particleboards were developed by replacing a part of wood with various biomass residues, including coffee bean husks, spent coffee grounds, thistle, Sideritis and dead leaves of Posidonia oceanica. These materials were analysed to determine their physicochemical properties like the moisture content, pH, and buffer capacity, using standard laboratory techniques, while thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) were also used for their further characterisation. The results revealed that all biomasses contained cellulose, hemicellulose, and lignin in varying proportions, along with differing degrees of crystallinity. To produce particleboards, the biomasses were bonded using two types of adhesives: (a) conventional urea-formaldehyde resin (UF) and (b) polymeric 4,4′-methylene diphenyl isocyanate (pMDI). Laboratory-scale, single-layer particleboards were manufactured simulating industrial production practices. These panels were evaluated for their mechanical and physical properties according to European standards. The findings showed a general reduction in mechanical performance when compared to conventional wood-based panels. However, panels made with coffee grounds and Posidonia showed improved resistance to thickness swelling after 24 h in water at 20 °C. Additionally, all experimental panels exhibited lower formaldehyde content than wood-based reference panels. This study demonstrated the feasibility of upcycling biomass residues as a sustainable alternative to virgin wood in the production of particleboard, providing a resource-efficient solution for specific interior applications within a circular economy framework. Full article
(This article belongs to the Special Issue Modern Wood-Based Materials for Sustainable Building)
Show Figures

Graphical abstract

10 pages, 950 KiB  
Article
Modern Analytical Chemistry Meets Heritage Books: Analysis of Volatile Organic Compounds (VOCs) from Two Books Preserved at the Biblioteca Capitolare of Busto Arsizio
by Chiara Chiodini, Pierangela Rovellini, Matteo Chiodini, Luca Giacomelli, Daniela Baglio and the 5B IISS Torno Working Group
Molecules 2025, 30(11), 2447; https://doi.org/10.3390/molecules30112447 - 3 Jun 2025
Viewed by 646
Abstract
The development of sensitive, non-invasive methods is essential for the preservation and study of heritage books, allowing insights into their historical production processes and conservation needs. Volatile organic compound (VOC) analysis provides a valuable, non-destructive approach to assess paper composition and degradation in [...] Read more.
The development of sensitive, non-invasive methods is essential for the preservation and study of heritage books, allowing insights into their historical production processes and conservation needs. Volatile organic compound (VOC) analysis provides a valuable, non-destructive approach to assess paper composition and degradation in historical volumes. In this study, we analyzed VOC emissions from two books preserved at the Biblioteca Capitolare of Busto Arsizio, Italy: a 16th-century Latin grammar book and a 19th-century mathematics handbook for measurement conversions. Using headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry (GC-MS), VOCs were sampled after 24 h of storage at room temperature. The results revealed distinct degradation markers: Straight-chain aldehydes, indicative of lipid oxidation, were more prevalent in the 16th-century book, reflecting the higher quality and durability of its rag-based paper. In contrast, elevated furfural levels in the 19th-century book suggest accelerated cellulose hydrolysis typical of wood pulp paper. Additionally, the presence of menthol and anethole in both volumes points to the use of bacteriostatic agents for preservation. These findings not only highlight differences in material composition but also underscore the importance of tailored conservation approaches for historical documents from different eras. Full article
Show Figures

Figure 1

16 pages, 17025 KiB  
Article
Bisulfite Pretreatment Improves Enzymatic Digestibility of Oil Palm Empty Fruit Bunch and Poplar Through Changing Its Structure and Lignin Distribution
by Liping Tan, Xuezhi Li, Xianqin Lu and Jian Zhao
Int. J. Mol. Sci. 2025, 26(11), 5334; https://doi.org/10.3390/ijms26115334 - 1 Jun 2025
Viewed by 482
Abstract
This paper investigated the changes in anatomy, ultrastructure and lignin distribution of oil palm empty fruit bunch (EFB) by bisulfite pretreatment. It was found that after bisulfite pretreatment, a large number of pores formed in the cell walls, and the removal of part [...] Read more.
This paper investigated the changes in anatomy, ultrastructure and lignin distribution of oil palm empty fruit bunch (EFB) by bisulfite pretreatment. It was found that after bisulfite pretreatment, a large number of pores formed in the cell walls, and the removal of part of the lignin in the cell wall corner, partial middle layer, and other locations made the tissue structure of the EFB looser, which uncovered cellulose and broke the steric hindrance of cellulase access to cellulose in EFB, and also weakened the negative influence of lignin on cellulase. The changes can greatly contribute to the improvement of enzymatic hydrolysis after bisulfite pretreatment, which is consistent with the increased saccharification efficiency of the pretreated EFB. Poplar was also used to compare the differences and similarities between non-wood and wood materials. Full article
(This article belongs to the Special Issue Lignocellulose Bioconversion and High-Value Utilization)
Show Figures

Figure 1

17 pages, 1599 KiB  
Article
New Biodegradable Carboxymethyl Cellulose-Based Films with Liquid Products of Wood Pine Pyrolysis with Antibacterial and Antioxidant Properties
by Grażyna B. Dąbrowska, Marcel Antoszewski, Aleksandra Szydłowska-Czerniak, Aneta Raszkowska-Kaczor, Tomasz Jędrzejewski, Sylwia Wrotek, Monika Bartkowiak, Maria Swiontek Brzezinska and Magdalena Zborowska
Materials 2025, 18(10), 2228; https://doi.org/10.3390/ma18102228 - 12 May 2025
Viewed by 547
Abstract
Novel carboxymethylcellulose (CMC) films with liquid products of pyrolysis (LPP) from wood pine were produced. The obtained CMC-LPP films were plasticized with 5% glycerol. CMC-LPP films were a light brown colour with a characteristic smoky scent, and showed a higher oxygen permeability when [...] Read more.
Novel carboxymethylcellulose (CMC) films with liquid products of pyrolysis (LPP) from wood pine were produced. The obtained CMC-LPP films were plasticized with 5% glycerol. CMC-LPP films were a light brown colour with a characteristic smoky scent, and showed a higher oxygen permeability when compared to control film without the addition of the LPP. CMC-LPP exhibited high antioxidant activity (5 and 18 times higher than CMC films). Furthermore, the antibacterial activity of the CMC-LPP films was tested, showing a strong inhibiting growth effect on the seven tested human pathogenic bacteria. The new material had the most substantial bacteriostatic effect on Listeria monocytogenes, Salmonella typhimurium, and Pseudomonas aeruginosa. Introduction of LPP to plasticised CMC produces an eco-friendly material with biocidal effect and favourable mechanical and structural properties, which shows its potential for possible use in many industries. Full article
Show Figures

Figure 1

Back to TopTop