Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (438)

Search Parameters:
Keywords = whole genome comparison

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1307 KiB  
Article
Unveiling a Shift in the Rotavirus Strains in Benin: Emergence of Reassortment Intergenogroup and Equine-like G3P[8] Strains in the Post-Vaccination Era
by Jijoho M. Agbla, Milton T. Mogotsi, Alban G. Zohoun, Nkosazana D. Shange, Annick Capochichi, Ayodeji E. Ogunbayo, Rolande Assogba, Shainey Khakha, Aristide Sossou, Hlengiwe Sondlane, Jason M. Mwenda, Mathew D. Esona and Martin M. Nyaga
Viruses 2025, 17(8), 1091; https://doi.org/10.3390/v17081091 (registering DOI) - 7 Aug 2025
Abstract
While a global downward trend in rotavirus diarrhea cases has been observed following vaccine introduction, reassortment, genetic drift, and vaccine-escaping strains remain a concern, particularly in Sub-Saharan Africa. Here, we provide genomic insights into three equine-like G3P[8] rotavirus strains detected in Benin during [...] Read more.
While a global downward trend in rotavirus diarrhea cases has been observed following vaccine introduction, reassortment, genetic drift, and vaccine-escaping strains remain a concern, particularly in Sub-Saharan Africa. Here, we provide genomic insights into three equine-like G3P[8] rotavirus strains detected in Benin during the post-vaccine era. Whole-genome sequencing was performed using the Illumina MiSeq platform, and genomic analysis was conducted using bioinformatics tools. The G3 of the study strains clustered within the recently described lineage IX, alongside the human-derived equine-like strain D388. The P[8] is grouped within the lineage III, along with cognate strains from the GenBank database. Both the structural and non-structural gene segments of these study strains exhibited genetic diversity, highlighting the ongoing evolution of circulating strains. Notably, we identified a novel NSP2 lineage, designated NSP2-lineage VI. Amino acid comparisons of the G3 gene showed two conservative substitutions at positions 156 (A156V) and 260 (I260V) and one radical substitution at position 250 (K250E) relative to the prototype equine-like strain D388, the equine strain Erv105, and other non-equine-like strains. In the P[8] gene, three conservative (N195G, N195D, N113D) and one radical (D133N) substitutions were observed when compared with vaccine strains Rotarix and RotaTeq. These findings suggest continuous viral evolution, potentially driven by vaccine pressure. Ongoing genomic surveillance is essential to monitor genotype shifts as part of the efforts to evaluate the impact of emerging strains and to assess vaccine effectiveness in Sub-Saharan Africa. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

14 pages, 2067 KiB  
Article
Selection Signature Analysis of Whole-Genome Sequences to Identify Genome Differences Between Selected and Unselected Holstein Cattle
by Jiarui Cai, Liu Yang, Yahui Gao, George E. Liu, Yang Da and Li Ma
Animals 2025, 15(15), 2247; https://doi.org/10.3390/ani15152247 - 31 Jul 2025
Viewed by 238
Abstract
A unique line of Holstein cattle has been maintained without selection in Minnesota since 1964. After many generations, unselected cattle produce less milk, but have better reproductive performance and health traits when compared with contemporary cows. Comparisons between this line of unselected Holstein [...] Read more.
A unique line of Holstein cattle has been maintained without selection in Minnesota since 1964. After many generations, unselected cattle produce less milk, but have better reproductive performance and health traits when compared with contemporary cows. Comparisons between this line of unselected Holstein and those under selection provide useful insights that connect selection and complex traits in cattle. Utilizing these unique resources and sequence data, we sought to identify genome changes due to selection. We sequenced 30 unselected and 54 selected Holstein cattle and compared their sequence variants to identify selection signatures. After many years, the two populations showed completely different patterns in their genome-level population structures and linkage disequilibrium. By integrating signals from five different detection methods, we detected consensus selection signatures from at least four methods covering 14,533 SNPs and 155 protein-coding genes. An integrated analysis of selection signatures with gene annotation, pathways, and the cattle QTL database demonstrated that the genomic regions under selection are related to milk productivity, health, and reproductive efficiency. The polygenic nature of these complex traits is evident from hundreds of selection signatures and candidate genes, suggesting that long-term artificial selection has acted on the whole genome rather than a few major genes. In summary, our study identified candidate selection signatures underlying phenotypic differences between unselected and selected Holstein cows and revealed insights into the genetic basis of complex traits in cattle. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

20 pages, 3015 KiB  
Article
Integrated Whole-Genome Sequencing and In Silico Characterization of Salmonella Cerro and Schwarzengrund from Brazil
by Nathaly Barros Nunes, Vinicius Silva Castro, Adelino da Cunha-Neto, Fernanda Tavares Carvalho, Ricardo César Tavares Carvalho and Eduardo Eustáquio de Souza Figueiredo
Genes 2025, 16(8), 880; https://doi.org/10.3390/genes16080880 - 26 Jul 2025
Viewed by 512
Abstract
Background: Salmonella is a bacterium that causes foodborne infections. This study characterized two strains isolated from cheese and beef in Brazil using whole-genome sequencing (WGS). Objectives: We evaluated their antimicrobial resistance profiles, virulence factors, plasmid content, serotypes and phylogenetic relationships. Methods: DNA was [...] Read more.
Background: Salmonella is a bacterium that causes foodborne infections. This study characterized two strains isolated from cheese and beef in Brazil using whole-genome sequencing (WGS). Objectives: We evaluated their antimicrobial resistance profiles, virulence factors, plasmid content, serotypes and phylogenetic relationships. Methods: DNA was extracted and sequenced on the NovaSeq 6000 platform; the pangenome was assembled using the Roary tool; and the phylogenetic tree was constructed via IQ-TREE. Results and Discussion: For contextualization and comparison, 3493 Salmonella genomes of Brazilian origin from NCBI were analyzed. In our isolates, both strains carried the aac(6′)-Iaa_1 gene, while only Schwarzengrund harbored the qnrB19_1 gene and the Col440I_1 plasmid. Cerro presented the islands SPI-1, SPI-2, SPI-3, SPI-4, SPI-5 and SPI-9, while Schwarzengrund also possessed SPI-13 and SPI-14. Upon comparison with other Brazilian genomes, we observed that Cerro and Schwarzengrund represented only 0.40% and 2.03% of the national database, respectively. Furthermore, they revealed that Schwarzengrund presented higher levels of antimicrobial resistance, a finding supported by the higher frequency of plasmids in this serovar. Furthermore, national data corroborated our findings that SPI-13 and SPI-14 were absent in Cerro. A virulence analysis revealed distinct profiles: the cdtB and pltABC genes were present in the Schwarzengrund isolates, while the sseK and tldE1 family genes were exclusive to Cerro. The results indicated that the sequenced strains have pathogenic potential but exhibit low levels of antimicrobial resistance compared to national data. The greater diversity of SPIs in Schwarzengrund explains their prevalence and higher virulence potential. Conclusions: Finally, the serovars exhibit distinct virulence profiles, which results in different clinical outcomes. Full article
Show Figures

Figure 1

16 pages, 3400 KiB  
Article
Antimicrobial Resistance Genotypes and Mobile Genetic Elements of Poultry-Derived Escherichia coli: A Retrospective Genomic Study from the United States
by Sohyun Cho, Hazem Ramadan, Lari M. Hiott, Jonathan G. Frye and Charlene R. Jackson
Pathogens 2025, 14(8), 726; https://doi.org/10.3390/pathogens14080726 - 23 Jul 2025
Viewed by 631
Abstract
The presence of antibiotic resistance in commensal bacteria may be an influential factor in the persistence of resistance in pathogens. This is especially critical for Escherichia coli that consumers may be exposed to through the consumption of uncooked meat. In this study, E. [...] Read more.
The presence of antibiotic resistance in commensal bacteria may be an influential factor in the persistence of resistance in pathogens. This is especially critical for Escherichia coli that consumers may be exposed to through the consumption of uncooked meat. In this study, E. coli isolates previously recovered from poultry in the US between 2001 and 2012 were whole-genome sequenced to identify their antibiotic resistance genes and mobile genetic elements. The genomes of 98 E. coli isolates from poultry carcass rinsates and 2 isolates from poultry diagnostic samples with multidrug resistance or potential extended-spectrum β-lactam (ESBL)-producing phenotypes as well as the genetic variabilities among the E. coli were assessed. All E. coli isolates were positive for at least one antibiotic resistance gene and plasmid replicon, with 37 resistance genes and 27 plasmid replicons detected among the isolates. While no ESBL genes were detected, blaCMY-2 was the most common β-lactamase gene, and blaTEM and blaCARB-2 were also identified. Most isolates (95%) harbored at least one intact phage, and as many as seven intact phages were identified in one isolate. These results show the occurrence of antibiotic resistance genes and mobile genetic elements in these 100 poultry-associated E. coli isolates, which may be responsible for the resistance phenotypes exhibited by the isolates. This retrospective study also enables comparisons of resistance genes and mobile genetic elements from more recent E. coli isolates associated with poultry to aid in understanding the trends of both antibiotic resistance phenotypes and genotypes in the poultry setting over time. Full article
Show Figures

Figure 1

12 pages, 1781 KiB  
Article
Detecting Methylation Changes Induced by Prime Editing
by Ronin Joshua S. Cosiquien, Isaiah J. Whalen, Phillip Wong, Ryan J. Sorensen, Anala V. Shetty, Shun-Qing Liang and Clifford J. Steer
Genes 2025, 16(7), 825; https://doi.org/10.3390/genes16070825 - 15 Jul 2025
Viewed by 295
Abstract
While prime editing offers improved precision compared to traditional CRISPR-Cas9 systems, concerns remain regarding potential off-target effects, including epigenetic changes such as DNA methylation. In this study, we investigated whether prime editing induces aberrant CpG methylation patterns. Whole-genome bisulfite sequencing revealed overall methylation [...] Read more.
While prime editing offers improved precision compared to traditional CRISPR-Cas9 systems, concerns remain regarding potential off-target effects, including epigenetic changes such as DNA methylation. In this study, we investigated whether prime editing induces aberrant CpG methylation patterns. Whole-genome bisulfite sequencing revealed overall methylation similarity between Cas9-edited, and PE2-edited cells. However, localized epigenetic changes were observed, particularly in CpG islands and exon regions. The PE2-edited group showed a higher proportion of differentially methylated regions (DMRs) in some coding sequences compared to controls and Cas9-edited samples. Notably, CpG island methylation reached 0.18% in the PE2 vs. Cas9 comparison, indicating a higher susceptibility of these regulatory elements to epigenetic alterations by prime editing. Molecular function analyses including Gene Ontology and KEGG pathway analyses further revealed enrichment in molecular functions related to transcriptional regulation and redox activity in PE2-edited cells. These findings suggest that prime editing, while precise, may introduce subtle but functionally relevant methylation changes that could influence gene expression and cellular pathways. In summary, prime editing can induce localized DNA methylation changes in human cells, particularly within regulatory and coding regions. Understanding these epigenetic consequences is critical for the development of safer and more effective therapeutic applications of genome editing technologies. Full article
(This article belongs to the Special Issue Gene Editing Techniques for Neurodegenerative Diseases)
Show Figures

Figure 1

19 pages, 3395 KiB  
Article
Hybrid Whole Genomes of Brucella melitensis from Tunisian Animal Isolates: Virulence Factors, Antimicrobial Susceptibility, and Phylogeny
by Ibtihel Ben Abdallah, Germán Kopprio, Awatef Béjaoui, Susanne Köhler, Kaouther Guesmi, Sana Kalthoum, Jacob Gatz, Amel Arfaoui, Monia Lachtar, Haikel Hajlaoui, Mohamed Naceur Baccar, Holger Scholz and Abderrazak Maaroufi
Microorganisms 2025, 13(7), 1651; https://doi.org/10.3390/microorganisms13071651 - 12 Jul 2025
Viewed by 426
Abstract
Brucellosis remains endemic in Tunisia, causing abortions in small ruminants, and represents a public health threat through occupational exposure and the consumption of contaminated animal products. The aims of this study are to assess the antibiotic susceptibility of two Brucella melitensis isolates (TATA [...] Read more.
Brucellosis remains endemic in Tunisia, causing abortions in small ruminants, and represents a public health threat through occupational exposure and the consumption of contaminated animal products. The aims of this study are to assess the antibiotic susceptibility of two Brucella melitensis isolates (TATA and SBZ) from aborted sheep, to analyze their genomes using hybrid whole-genome sequencing, and to investigate their antimicrobial resistance (AMR), potential virulence factors (VFs), and phylogenetic relationships. Both isolates were phenotypically confirmed to be susceptible to doxycycline, gentamicin, rifampicin, streptomycin, and trimethoprim–sulfamethoxazole, and no corresponding classical AMR genes were identified. However, several potential AMR-related genes (mprF, bepCDEFG, qacG, and adeF) and a mutation in the parC gene were detected. The analysis of the genotypes revealed 74 potential virulence genes, primarily involved in lipopolysaccharide synthesis and type IV secretion systems. Genomic comparison showed over 99% nucleotide identity between the Tunisian strains, B. melitensis bv. 1 16M and B. melitensis bv. 3 Ether. Five gene clusters, including three hypothetical proteins with 100% identity, were detected exclusively in the TATA and SBZ strains. Additionally, two unique gene clusters were identified in SBZ: a rhodocoxin reductase and another hypothetical protein. Both isolates were assigned to sequence types ST11 and ST89. Core-genome-based phylogenetic analysis clustered both strains with biovar 3 and ordered the Tunisian strains into two distinct groups: TATA within Tunisian Cluster 1 is closely related to strains from Egypt and Italy, while SBZ near MST Cluster 4 is more related to isolates from Austria and two outliers from Italy and Tunisia. This study provides the first genomic characterization of B. melitensis from aborted sheep in Tunisia and offers valuable insights into AMR, virulence, and phylogenetic distribution. Full article
(This article belongs to the Special Issue Epidemiology and Control Strategies for Brucellosis)
Show Figures

Figure 1

12 pages, 4263 KiB  
Article
Characterization of a Novel Lentzea Species Isolated from the Kumtagh Desert and Genomic Insights into the Secondary Metabolite Potential of the Genus
by Ying Wen, Jiahui Li, Fujun Qiao, Wanyin Luo, Tuo Chen, Guangxiu Liu and Wei Zhang
Microorganisms 2025, 13(7), 1628; https://doi.org/10.3390/microorganisms13071628 - 10 Jul 2025
Viewed by 307
Abstract
A novel actinobacterial strain, designated E54T, was isolated from a hyper-arid desert soil sample collected from the Kumtagh Desert in Dunhuang, Gansu Province, China. Phylogenetic analysis based on 16S rRNA gene sequences placed strain E54T within the genus Lentzea, [...] Read more.
A novel actinobacterial strain, designated E54T, was isolated from a hyper-arid desert soil sample collected from the Kumtagh Desert in Dunhuang, Gansu Province, China. Phylogenetic analysis based on 16S rRNA gene sequences placed strain E54T within the genus Lentzea, showing highest similarity to Lentzea waywayandensis DSM 44232T (98.9%) and Lentzea flava NBRC 15743T (98.5%). However, whole-genome comparisons revealed that the average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between E54T and these related strains were below the thresholds for species delineation. Strain E54T exhibited typical morphological characteristics of the genus Lentzea, forming a branched substrate. It grew optimally at 28–30 °C, pH 7.0–9.0, and tolerated up to 10% NaCl. The cell wall contained meso-diaminopimelic acid, the predominant menaquinone was MK-9(H4), and major fatty acids included iso-C16:0. The polar lipid profile comprised diphosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl inositol, hydroxyphosphatidyl ethanolamine, and an unidentified lipid. The characteristic amino acid type of the cell wall was meso-DAP. Whole-cell hydrolysis experiments revealed the characteristic cell wall sugar fractions: ribose and galactose. The genome of strain E54T is approximately 8.0 Mb with a DNA G+C content of 69.38 mol%. Genome mining revealed 39 biosynthetic gene clusters (BGCs), including non-ribosomal peptide synthetases (NRPS), polyketide synthases (PKS), terpenes, and siderophores. Comparative antiSMASH-based genome analysis across 38 Lentzea strains further demonstrated the genus’ remarkable biosynthetic diversity. NRPS and type I PKS (T1PKS) were the most prevalent BGC types, indicating a capacity to synthesize structurally complex and pharmacologically relevant metabolites. Together, these findings underscore the untapped biosynthetic potential of the genus Lentzea and support the proposal of strain E54T as a novel species. The strain E54T (=JCM 34936T = GDMCC 4.216T) should represent a novel species, for which the name Lentzea xerophila sp. nov. is proposed. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

27 pages, 3232 KiB  
Article
Genomic and Functional Characterization of Multidrug-Resistant E. coli: Insights into Resistome, Virulome, and Signaling Systems
by Vijaya Bharathi Srinivasan, Naveenraj Rajasekar, Karthikeyan Krishnan, Mahesh Kumar, Chankit Giri, Balvinder Singh and Govindan Rajamohan
Antibiotics 2025, 14(7), 667; https://doi.org/10.3390/antibiotics14070667 - 30 Jun 2025
Viewed by 534
Abstract
Introduction: Genetic plasticity and adaptive camouflage in critical pathogens have contributed to the global surge in multidrug-resistant (MDR) infections, posing a serious threat to public health and therapeutic efficacy. Antimicrobial resistance, now a leading cause of global mortality, demands urgent action through diagnostics, [...] Read more.
Introduction: Genetic plasticity and adaptive camouflage in critical pathogens have contributed to the global surge in multidrug-resistant (MDR) infections, posing a serious threat to public health and therapeutic efficacy. Antimicrobial resistance, now a leading cause of global mortality, demands urgent action through diagnostics, vaccines, and therapeutics. In India, the Indian Council of Medical Research’s surveillance network identifies Escherichia coli as a major cause of urinary tract infections, with increasing prevalence in human gut microbiomes, highlighting its significance across One Health domains. Methods: Whole-genome sequencing of E. coli strain ECG015, isolated from a human gut sample, was performed using the Illumina NextSeq platform. Results: Genomic analysis revealed multiple antibiotic resistance genes, virulence factors, and efflux pump components. Phylogenomic comparisons showed close relatedness to pathovars from both human and animal origins. Notably the genome encoded protein tyrosine kinases (Etk/Ptk and Wzc) and displayed variations in the envelope stress-responsive CpxAR two-component system. Promoter analysis identified putative CpxR-binding sites upstream of genes involved in resistance, efflux, protein kinases, and the MazEF toxin–antitoxin module, suggesting a potential regulatory role of CpxAR in stress response and persistence. Conclusions: This study presents a comprehensive genomic profile of E. coli ECG015, a gut-derived isolate exhibiting clinically significant resistance traits. For the first time, it implicates the CpxAR two-component system as a potential central regulator coordinating antimicrobial resistance, stress kinase signaling, and programmed cell death. These findings lay the groundwork for future functional studies aimed at targeting stress-response pathways as novel intervention strategies against antimicrobial resistance. Full article
(This article belongs to the Special Issue Genomic Analysis of Drug-Resistant Pathogens)
Show Figures

Figure 1

12 pages, 1044 KiB  
Article
Endplate Lesions of the Lumbar Spine: Biochemistry and Genetics
by Alessandra Colombini, Vincenzo Raffo, Angela Elvira Covone, Tito Bassani, Domenico Coviello, Sabina Cauci, Ludovica Pallotta and Marco Brayda-Bruno
Genes 2025, 16(7), 738; https://doi.org/10.3390/genes16070738 - 26 Jun 2025
Viewed by 406
Abstract
Background/Objectives: Endplate lesions of the lumbar spine are often asymptomatic and frequently observed incidentally by radiological assessment. Variants in the vitamin D receptor gene (VDR) and an increase in some biochemical markers related to the osteo-cartilaginous metabolism were found in patients [...] Read more.
Background/Objectives: Endplate lesions of the lumbar spine are often asymptomatic and frequently observed incidentally by radiological assessment. Variants in the vitamin D receptor gene (VDR) and an increase in some biochemical markers related to the osteo-cartilaginous metabolism were found in patients with endplate lesions. The aim of this study was to identify biochemical and genetic markers putatively associated with the presence of endplate lesions of the lumbar spine. Methods: Quantification of circulating bone remodeling proteins was obtained from 10 patients with endplate lesions and compared with age- and sex-matched controls. Whole exome sequencing (WES) was performed on patient genomic DNA using the Novaseq 6000 platform (Illumina, San Diego, CA, USA), obtaining a median read depth of 117×–200×, with ≥98% of regions covering at least 20×. The sequencing product was aligned to the reference genome (GRCh38.p13-hg38) and analyzed with Geneyx software. Results: We observed modifications in the levels of circulating proteins involved in bone remodeling and angiogenesis. We identified variants of interest in aggrecan (ACAN), bone morphogenetic protein 4 (BMP4), cytochrome P450 family 3 subfamily A member 4 (CYP3A4), GLI family zinc finger 2 (GLI2), heparan sulfate proteoglycan 2 (HSPG2), and mesoderm posterior bHLH transcription factor 2 (MESP2). VDR polymorphism (rs2228570) was present in nine patients, with the homozygotic ones having more severe endplate lesions and higher levels of the analyzed circulating markers in comparison with heterozygotic patients. Conclusions: These data represent interesting evidence of genetic variants, particularly in VDR, and altered levels of circulating markers of bone remodeling associated with endplate lesions, which should be confirmed in a larger population. The hypothesis suggested by our results is that the endplate lesions could be the consequence of an altered ossification mechanism at the vertebral level. Full article
(This article belongs to the Special Issue Genes and Gene Polymorphisms Associated with Complex Diseases)
Show Figures

Figure 1

13 pages, 1398 KiB  
Article
KBeagle: An Adaptive Strategy and Tool for Improving Imputation Accuracy and Computation Time
by Xingyu Guo, Jie Qin, Shikai Wang, Jincheng Zhong, Li Liu, Yixi Kangzhu, Daoliang Lan and Jiabo Wang
Int. J. Mol. Sci. 2025, 26(12), 5797; https://doi.org/10.3390/ijms26125797 - 18 Jun 2025
Viewed by 385
Abstract
Whole-genome sequencing (WGS) technology has made significant progress in obtaining the genomic information of organisms and is now the primary way to uncover genetic variation. However, due to the complexity of the genome and technical limitations, large genome segments remain ungenotyped. Imputation is [...] Read more.
Whole-genome sequencing (WGS) technology has made significant progress in obtaining the genomic information of organisms and is now the primary way to uncover genetic variation. However, due to the complexity of the genome and technical limitations, large genome segments remain ungenotyped. Imputation is a useful strategy for predicting missing genotypes. The accuracy and computing speed of imputation software are important criteria that should inform future developments in genomic research. In this study, the K-Means algorithm and multithreading were used to cluster reference individuals to reduce the number and improve the length of haplotypes in the subpopulation. We named this strategy “KBeagle”. In the comparison test, we determined that the KBeagle-imputed dataset (KID) can identify more single-nucleotide polymorphism (SNP) loci associated with the specified traits compared to the Beagle-imputed dataset (BID), while also achieving much lower false discovery rates (FDRs) and Type I error rates under the same power of detection of association signals. We envision that the main application of KBeagle will focus on livestock sequencing studies under a strong genetic structure. In summary, we have generated an accurate and efficient imputation method, improving the imputation matching rate and calculation time. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Graphical abstract

20 pages, 1308 KiB  
Article
Identification, Comparison, and Profiling of Selected Diarrhoeagenic Pathogens from Diverse Water Sources and Human and Animal Faeces Using Whole-Genome Sequencing
by Arinao Murei and Maggy Ndombo Benteke Momba
Microorganisms 2025, 13(6), 1373; https://doi.org/10.3390/microorganisms13061373 - 12 Jun 2025
Viewed by 495
Abstract
Consumption of contaminated drinking water is known to cause waterborne diseases such as diarrhoea, dysentery, typhoid, and hepatitis. This study applied whole-genome sequencing (WGS) to detect, identify, compare, and profile diarrhoeagenic pathogens (Vibrio cholerae, Shiga toxin-producing Escherichia coli, and Escherichia [...] Read more.
Consumption of contaminated drinking water is known to cause waterborne diseases such as diarrhoea, dysentery, typhoid, and hepatitis. This study applied whole-genome sequencing (WGS) to detect, identify, compare, and profile diarrhoeagenic pathogens (Vibrio cholerae, Shiga toxin-producing Escherichia coli, and Escherichia coli O157:H7) from 3168 water samples and 135 faecal samples (human and animal). Culture-based methods, MALDI-TOF mass spectrometry, and PCR were employed prior to WGS for identification of pathogens. Culture-based results revealed high presumptive prevalence of STEC (40.2%), V. cholerae (37.1%), and E. coli O157:H7 (22.7%). The MALDI-TOF confirmed 555 isolates with V. cholerae identified as Vibrio albensis. Shiga toxin-producing Escherichia coli (STEC) was more prevalent in wastewater (60%), treated water (54.1%), and groundwater (36.8%). PCR detected 46.4% of virulence genes from the water isolates and 66% of virulence genes from the STEC stool isolates. WGS also revealed STEC (92.9%) as the most prevalent species and found common virulence (e.g., hcp1/tssD1 and hlyE) and resistance (e.g., acrA and baeR) genes in all three types of samples. Five resistance and thirteen virulence genes overlapped among treated water and stool isolates. These findings highlight the diarrhoeagenic pathogens’ public health risk in water sources and underscore the need for better water quality monitoring and treatment standards. Full article
(This article belongs to the Special Issue Microbes in Wastewater Treatment)
Show Figures

Figure 1

23 pages, 2939 KiB  
Article
Genetic Characterization and Symbiotic Performance of Soybean Rhizobia Under Cold and Water-Deficient Conditions in Poland
by Riku Watanabe, Maria Daniela Artigas Ramirez, Shin-ichiro Agake, Sonoko Dorothea Bellingrath-Kimura, Sylwia Lewandowska, Yuki Onishi, Yohei Nishikawa, Haruko Takeyama, Michiko Yasuda and Naoko Ohkama-Ohtsu
Plants 2025, 14(12), 1786; https://doi.org/10.3390/plants14121786 - 11 Jun 2025
Viewed by 652
Abstract
Soybeans have been cultivated in Poland for more than 140 years. However, Poland’s cold and water-deficient climatic conditions hinder soybean cultivation. Although the availability of suitable soybean varieties in Poland contributes to meeting the demand for soybean production, it is important to identify [...] Read more.
Soybeans have been cultivated in Poland for more than 140 years. However, Poland’s cold and water-deficient climatic conditions hinder soybean cultivation. Although the availability of suitable soybean varieties in Poland contributes to meeting the demand for soybean production, it is important to identify rhizobial inoculants in Polish soils suitable for soybean cultivation. In this study, we cultivated soybean varieties (Abelina, Merlin, and Sultana) grown in soils taken from four regions in Poland and isolated 330 strains from soybean root nodules. 16S rRNA gene sequencing identified 49 strains of highly stress-tolerant nodule-associated bacteria, including Bradyrhizobium, Rhizobium, Ensifer, Tardiphaga, and Ralstonia spp. Several isolates exhibited positive effects on soybean growth under cold and water-deficient conditions. In particular, the isolate Bradyrhizobium japonicum PSN49, which is phylogenetically similar to B. japonicum USDA 123, increased plant biomass and nodule formation in the soybean cultivar Abelina under abiotic stress conditions due to its high nitrogen-fixing activity. Whole-genome comparisons between PSN49 and other Bradyrhizobium strains revealed that trehalose biosynthesis genes and cold shock proteins contributed to cold stress tolerance. These findings and the strains identified in this study will enhance soybean production and deepen the understanding of the soybean–rhizobium relationship in Poland. Full article
(This article belongs to the Special Issue Advances in Nitrogen Nutrition in Plants)
Show Figures

Figure 1

17 pages, 1880 KiB  
Article
One-Year Monitoring of the Evolution of SARS-CoV-2 Omicron Subvariants Through Wastewater Analysis (Central Italy, August 2023–July 2024)
by Alessandra Nappo, Maya Petricciuolo, Giulia Berno, Agnese Carnevali, Cesare Ernesto Maria Gruber, Giulia Bicchieraro, Roberta Spaccapelo, Martina Rueca, Fabrizio Carletti, Pietro Giorgio Spezia, Carolina Veneri, Giuseppina La Rosa, Elisabetta Suffredini, Daniele Focosi, Giovanni Chillemi, Ermanno Federici and Fabrizio Maggi
Life 2025, 15(6), 850; https://doi.org/10.3390/life15060850 - 24 May 2025
Viewed by 774
Abstract
Wastewater surveillance has proven to be a cost-effective, non-invasive method for monitoring the spread and evolution of SARS-CoV-2, yet its value during today’s low-incidence phase is still being defined. Between August 2023 and July 2024, 42 composite wastewater samples were collected in Perugia, [...] Read more.
Wastewater surveillance has proven to be a cost-effective, non-invasive method for monitoring the spread and evolution of SARS-CoV-2, yet its value during today’s low-incidence phase is still being defined. Between August 2023 and July 2024, 42 composite wastewater samples were collected in Perugia, Italy and analyzed using RT-qPCR and whole-genome sequencing to identify circulating SARS-CoV-2 lineages. In parallel, clinical samples (respiratory tract samples) were collected and analyzed, allowing for direct comparisons to confirm the robustness of the wastewater findings. The sewage viral loads ranged from 8.9 × 105 to 4.9 × 107 genome copies inhabitant−1 day−1, outlining two modest community waves (September–December 2023 and May–July 2024). Sequencing resolved 403 Omicron lineages and revealed three successive subvariant phases: (i) XBB.* dominance (August–October 2023), when late-Omicron XBB subvariants (mainly EG.5.* and XBB.1.5) accounted for almost all genomes; (ii) a BA.2.86/JN surge (November 2023–March 2024), during which the BA.2.86 subvariant, driven mainly by its JN descendants (especially JN.1), rapidly displaced XBB.* and peaked at 89% in February 2024; and (iii) KP.* takeover (April–July 2024), with JN.1-derived KP subvariants rising steadily and KP.3 reaching 81% by July 2024, thereby becoming the dominant lineage. Comparisons of data from wastewater and clinical surveillance demonstrated how the former presented a much higher diversity of circulating viral lineages. Importantly, some subvariants (including BA.2.86*) were detected in wastewater weeks to months prior to clinical identification, and for longer periods. Taken together, the obtained data validated wastewater surveillance as an effective early warning system, especially during periods of low infection prevalence and/or limited molecular testing efforts. This methodology can thus complement clinical surveillance by offering valuable insights into viral dynamics at the community level and enhancing pandemic preparedness. Full article
(This article belongs to the Section Epidemiology)
Show Figures

Figure 1

26 pages, 4096 KiB  
Article
Explainable AI Model Reveals Informative Mutational Signatures for Cancer-Type Classification
by Jonas Wagner, Jan Oldenburg, Neetika Nath and Stefan Simm
Cancers 2025, 17(11), 1731; https://doi.org/10.3390/cancers17111731 - 22 May 2025
Viewed by 628
Abstract
Background/Objectives: The prediction of cancer types is primarily reliant on driver genes and their specific mutations. The advancement in novel omics technologies has led to the acquisition of additional genetic data. When integrated with artificial intelligence models, there is considerable potential for [...] Read more.
Background/Objectives: The prediction of cancer types is primarily reliant on driver genes and their specific mutations. The advancement in novel omics technologies has led to the acquisition of additional genetic data. When integrated with artificial intelligence models, there is considerable potential for this to enhance the accuracy of cancer diagnosis. As mutational signatures can provide insights into repair mechanism malfunctions, they also have the potential for more accurate cancer diagnosis. Methods: First, we compared unsupervised and supervised machine learning approaches to predict cancer types. We employed deep and artificial neural network architectures with an explainable component like layerwise relevance propagation to extract the most relevant features for the cancer-type prediction. Ten-fold cross-validation and an extensive grid search were used to optimize the neural network architecture using driver gene mutations, mutational signatures and topological mutation information as input. The PCAWG dataset was used as input to discriminate between 17 primary sites and 24 cancer types. Results: Overall, our approach showed that the most relevant mutation information to discriminate between cancer types is increased by >10% using the whole genome or intergenic and intronic genome regions instead of exome information. Furthermore, the most relevant features for most cancer types, except for two, are in the mutational signatures and not the topological mutation information. Conclusions: Informative mutational signatures outperformed the prediction of cancer types in comparison to driver gene mutations and added a new layer of diagnostic information. As the degree of information within the mutational signatures is not solely based on the frequency of occurrence, it is even possible to separate cancer types from the same primary site by the different relevant mutations. Furthermore, the comparison of informative mutational signatures allowed the cancer-type assignment of specific impaired repair mechanisms. Full article
(This article belongs to the Section Cancer Informatics and Big Data)
Show Figures

Figure 1

16 pages, 1679 KiB  
Article
Whole-Genome Sequencing and Comparative Genomic Analysis of Three Clinical Bloodstream Infection Isolates of Trichosporon austroamericanum
by Takanori Horiguchi, Takashi Umeyama, Hiroko Tomuro, Amato Otani, Takayuki Shinohara, Masahiro Abe, Shogo Takatsuka, Ken Miyazawa, Minoru Nagi, Yasunori Muraosa, Yasutaka Hoshino, Takashi Sakoh, Hideki Araoka, Naoyuki Uchida, Tomoyoshi Kaneko, Yuko Nagano, Hiroki Tsukada, Taiga Miyazaki and Yoshitsugu Miyazaki
J. Fungi 2025, 11(5), 401; https://doi.org/10.3390/jof11050401 - 21 May 2025
Viewed by 808
Abstract
Trichosporon austroamericanum is a recently described yeast species related to Trichosporon inkin and exclusively isolated from clinical specimens. However, its genomic features and pathogenic potential remain poorly understood. In this study, we performed whole-genome sequencing on three blood-derived isolates from patients with invasive [...] Read more.
Trichosporon austroamericanum is a recently described yeast species related to Trichosporon inkin and exclusively isolated from clinical specimens. However, its genomic features and pathogenic potential remain poorly understood. In this study, we performed whole-genome sequencing on three blood-derived isolates from patients with invasive fungal infections and comparative analyses with 13 related Trichosporon species. The three isolates yielded high-quality assemblies of 9–10 scaffolds (~21 Mb), facilitating reliable comparisons. While most species had comparable genome sizes, Trichosporon ovoides, Trichosporon coremiiforme, and Cutaneotrichosporon mucoides displayed large, fragmented genomes, suggestive of polyploidy. ANI analysis and phylogenetic trees based on ANI and single-copy orthologs supported the classification of T. austroamericanum as a distinct clade with moderate intraspecific divergence. Using the Galleria mellonella, a model for fungal pathogenicity, all T. austroamericanum strains reduced larval survival, and NIIDF 0077300 exhibited virulence comparable to T. asahii and greater than T. inkin. To explore the gene-level differences associated with pathogenicity, we performed ortholog analysis based on single-copy genes. This revealed a unique Zn(II)2Cys6-type transcription factor gene (OG0010545) present only in NIIDF 0077300 and T. asahii. These findings highlight the genomic diversity and infection-associated traits of T. austroamericanum, providing a framework for future functional studies. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

Back to TopTop