Endplate Lesions of the Lumbar Spine: Biochemistry and Genetics
Abstract
1. Introduction
2. Materials and Methods
2.1. Enrolment of Patients and Sample Collection
2.2. Patient MRI Evaluation
- -
- Grade 0 (“normal”): No lesions are visually identified in the sagittal MRI slices encompassing the intervertebral space.
- -
- Grade 1 (“wavy/irregular”): No specific lesions are detectable in the intervertebral space, but at least one endplate exhibits an altered shape compared to the typical curvature of a healthy intervertebral space. The endplate may appear wavy or irregular.
- -
- Grade 2 (“notched”): A small lesion is visible in at least one sagittal MRI slice. The lesion has a V-shaped or circular appearance and is present on one or both endplates, suggesting small defects or indentations.
- -
- Grade 3 (“Schmorl’s node”): A deep focal defect is observed in the vertebral endplate, characterized by a smooth margin and rounded appearance. Schmorl’s nodes involve disc tissue protruding through the endplate into the vertebral marrow.
2.3. Protein Array of Bone Remodeling Markers
2.4. Whole Exome Sequencing (WES)
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Enrolled Patients
3.2. Endplate Lesions in Patients Through MRI Score
3.3. Circulating Marker Levels
3.4. Genetic of the Endplate Lesions
3.5. MRI Score and Circulating Marker Levels in Patients with VDR Variant rs2228570
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
VDR | vitamin D receptor |
WES | whole exome sequencing |
DNA | deoxyribonucleic acid |
ACAN | aggrecan |
BMP4 | bone morphogenetic protein 4 |
CYP3A4 | cytochrome P450 family 3 subfamily A member 4 |
GLI2 | GLI family zinc finger 2 |
HSPG2 | heparan sulfate proteoglycan 2 |
MESP2 | mesoderm posterior bHLH transcription factor 2 |
LBP | low back pain |
MRI | magnetic resonance imaging |
BMI | body mass index |
BMP | bone morphogenic protein |
Dkk-1 | Dickkopf-1 |
MMP | matrix metalloprotease |
PDGF | platelet-derived growth factor |
TGF | transforming growth factor |
TRANCE | tumor necrosis factor-related activation-induced cytokine |
PBMC | peripheral blood mononuclear cell |
SD | standard deviation |
NFKB1 | nuclear factor kappa B subunit 1 |
NPR2 | natriuretic peptide receptor 2 |
ETV2 | ETS variant transcription factor 2 |
RUNX1 | RUNX family transcription factor 1 |
LRP4 | LDL receptor-related protein 4 |
SMAD3 | SMAD family member 3 |
FLNA | filamin A |
MYH11 | myosin heavy chain 11 |
MYLK | myosin light chain kinase |
NEB | nebulin |
THSD4 | thrombospondin type 1 domain containing 4 |
COL11A1 | collagen type XI α 1 chain |
COL1A1 | collagen type I α 1 chain |
FBN1 | fibrillin 1 |
FN1 | fibronectin 1 |
GALNS | galactosamine (N-acetyl)-6-sulfatase |
MATN3 | matrilin 3 |
P3H1 | prolyl 3-hydroxylase 1 |
SLC26A2 | solute carrier family 26 member 2 |
THBS2 | thrombospondin 2 |
References
- Lowe, T.G. Scheuermann Disease. J. Bone Jt. Surg. Am. 1990, 72, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Guo, X.; Chen, Z.; Qi, Q.; Li, W.; Guo, Z.; Zeng, Y.; Sun, C.; Liu, Z. Radiological Signs of Scheuermann Disease and Low Back Pain: Retrospective Categorization of 188 Hospital Staff Members with 6-Year Follow-Up. Spine 2014, 39, 1666–1675. [Google Scholar] [CrossRef]
- Ytrehus, B.; Carlson, C.S.; Ekman, S. Etiology and Pathogenesis of Osteochondrosis. Vet. Pathol. 2007, 44, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Dommisse, G.F. The Vulnerable, Rapidly Growing Thoracic Spine of the Adolescent. S. Afr. Med. J. Suid-Afr. Tydskr. Vir Geneeskd. 1990, 78, 211–213. [Google Scholar]
- Ekman, S.; Carlson, C.S. The Pathophysiology of Osteochondrosis. Vet. Clin. N. Am. Small Anim. Pract. 1998, 28, 17–32. [Google Scholar] [CrossRef]
- Trotta, A.; Corrado, A.; Soragnese, M.F.; Santoro, N.; Cantatore, F.P. [Adult Scheuermann’s disease as cause of mechanic dorsalgia]. Reumatismo 2008, 60, 14–21. [Google Scholar] [CrossRef]
- McKenzie, L.; Sillence, D. Familial Scheuermann Disease: A Genetic and Linkage Study. J. Med. Genet. 1992, 29, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Graat, H.C.A.; van Rhijn, L.W.; Schrander-Stumpel, C.T.R.M.; van Ooij, A. Classical Scheuermann Disease in Male Monozygotic Twins: Further Support for the Genetic Etiology Hypothesis. Spine 2002, 27, E485–E487. [Google Scholar] [CrossRef]
- Damborg, F.; Engell, V.; Andersen, M.; Kyvik, K.O.; Thomsen, K. Prevalence, Concordance, and Heritability of Scheuermann Kyphosis Based on a Study of Twins. J. Bone Jt. Surg. Am. 2006, 88, 2133–2136. [Google Scholar] [CrossRef]
- Tribus, C.B. Scheuermann’s Kyphosis in Adolescents and Adults: Diagnosis and Management. J. Am. Acad. Orthop. Surg. 1998, 6, 36–43. [Google Scholar] [CrossRef]
- Brayda-Bruno, M.; Albano, D.; Cannella, G.; Galbusera, F.; Zerbi, A. Endplate Lesions in the Lumbar Spine: A Novel MRI-Based Classification Scheme and Epidemiology in Low Back Pain Patients. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2018, 27, 2854–2861. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Yu, A.; Geng, J.; Liu, Y.; Wang, L.; Shi, J.; Zhou, F.; Zhang, T.; Huang, P.; Cheng, X. The lumbar spinal endplate lesions grades and association with lumbar disc disorders, and lumbar bone mineral density in a middle-young general Chinese population. BMC Musculoskelet. Disord. 2023, 24, 258. [Google Scholar] [CrossRef]
- Colombini, A.; Brayda-Bruno, M.; Lombardi, G.; Croiset, S.J.; Vrech, V.; Maione, V.; Banfi, G.; Cauci, S. FokI Polymorphism in the Vitamin D Receptor Gene (VDR) and Its Association with Lumbar Spine Pathologies in the Italian Population: A Case-Control Study. PLoS ONE 2014, 9, e97027. [Google Scholar] [CrossRef] [PubMed]
- Colombini, A.; Brayda-Bruno, M.; Ferino, L.; Lombardi, G.; Maione, V.; Banfi, G.; Cauci, S. Gender Differences in the VDR-FokI Polymorphism and Conventional Non-Genetic Risk Factors in Association with Lumbar Spine Pathologies in an Italian Case-Control Study. Int. J. Mol. Sci. 2015, 16, 3722–3739. [Google Scholar] [CrossRef] [PubMed]
- Colombini, A.; Galbusera, F.; Cortese, M.C.; Gallazzi, E.; Viganò, M.; Albano, D.; Cauci, S.; Sconfienza, L.M.; Brayda-Bruno, M. Classification of Endplate Lesions in the Lumbar Spine and Association with Risk Factors, Biochemistry, and Genetics. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2021, 30, 2231–2237. [Google Scholar] [CrossRef]
- Cauci, S.; Viganò, M.; de Girolamo, L.; De Luca, P.; Perucca Orfei, C.; Banfi, G.; Lombardi, G.; Brayda-Bruno, M.; Colombini, A. High Levels of Circulating Type II Collagen Degradation Marker (CTx-II) Are Associated with Specific VDR Polymorphisms in Patients with Adult Vertebral Osteochondrosis. Int. J. Mol. Sci. 2017, 18, 2073. [Google Scholar] [CrossRef]
- Colombini, A.; Galbusera, F.; Gallazzi, E.; Cortese, M.C.; Albano, D.; Sconfienza, L.M.; Cauci, S.; Brayda-Bruno, M. Letter to the Editor Concerning “Classification of Endplate Lesions in the Lumbar Spine and Association with Risk Factors, Biochemistry, and Genetics” by Alessandra Colombini et al. (Eur Spine J;. https://doi.org/10.1007/S00586-021-06719-1). Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2022, 31, 2822–2823. [Google Scholar] [CrossRef]
- Zehra, U.; Tryfonidou, M.; Iatridis, J.C.; Illien-Jünger, S.; Mwale, F.; Samartzis, D. Mechanisms and Clinical Implications of Intervertebral Disc Calcification. Nat. Rev. Rheumatol. 2022, 18, 352–362. [Google Scholar] [CrossRef]
- Marasco, E.; Fabbriciani, G.; Rotunno, L.; Longhi, M.; De Luca, P.; De Girolamo, L.; Colombini, A. Identification of Biomarkers in Patients with Rheumatoid Arthritis Responsive to DMARDs but with Progressive Bone Erosion. Front. Immunol. 2023, 14, 1254139. [Google Scholar] [CrossRef]
- Dahary, D.; Golan, Y.; Mazor, Y.; Zelig, O.; Barshir, R.; Twik, M.; Stein, T.I.; Rosner, G.; Kariv, R.; Chen, F.; et al. Genome analysis and knowledge-driven variant interpretation with TGex. BMC Med. Genomics 2019, 12, 200. [Google Scholar] [CrossRef]
- King, J.A.; Marker, P.C.; Seung, K.J.; Kingsley, D.M. BMP5 and the Molecular, Skeletal, and Soft-Tissue Alterations in Short Ear Mice. Dev. Biol. 1994, 166, 112–122. [Google Scholar] [CrossRef]
- Mailhot, G.; Yang, M.; Mason-Savas, A.; Mackay, C.A.; Leav, I.; Odgren, P.R. BMP-5 Expression Increases during Chondrocyte Differentiation in Vivo and in Vitro and Promotes Proliferation and Cartilage Matrix Synthesis in Primary Chondrocyte Cultures. J. Cell. Physiol. 2008, 214, 56–64. [Google Scholar] [CrossRef]
- Snelling, S.J.B.; Hulley, P.A.; Loughlin, J. BMP5 Activates Multiple Signaling Pathways and Promotes Chondrogenic Differentiation in the ATDC5 Growth Plate Model. Growth Factors 2010, 28, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhang, Z.; Yu, Y.; Chu, H.Y.; Yu, S.; Yao, S.; Zhang, G.; Zhang, B.-T. Drug Discovery of DKK1 Inhibitors. Front. Pharmacol. 2022, 13, 847387. [Google Scholar] [CrossRef]
- Zhang, W.; Drake, M.T. Potential Role for Therapies Targeting DKK1, LRP5, and Serotonin in the Treatment of Osteoporosis. Curr. Osteoporos. Rep. 2012, 10, 93–100. [Google Scholar] [CrossRef]
- Andrae, J.; Gallini, R.; Betsholtz, C. Role of Platelet-Derived Growth Factors in Physiology and Medicine. Genes Dev. 2008, 22, 1276–1312. [Google Scholar] [CrossRef]
- Rolny, C.; Nilsson, I.; Magnusson, P.; Armulik, A.; Jakobsson, L.; Wentzel, P.; Lindblom, P.; Norlin, J.; Betsholtz, C.; Heuchel, R.; et al. Platelet-Derived Growth Factor Receptor-Beta Promotes Early Endothelial Cell Differentiation. Blood 2006, 108, 1877–1886. [Google Scholar] [CrossRef] [PubMed]
- Caplan, A.I.; Correa, D. PDGF in Bone Formation and Regeneration: New Insights into a Novel Mechanism Involving MSCs. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2011, 29, 1795–1803. [Google Scholar] [CrossRef] [PubMed]
- Battegay, E.J.; Rupp, J.; Iruela-Arispe, L.; Sage, E.H.; Pech, M. PDGF-BB Modulates Endothelial Proliferation and Angiogenesis in Vitro via PDGF Beta-Receptors. J. Cell Biol. 1994, 125, 917–928. [Google Scholar] [CrossRef]
- Su, W.; Liu, G.; Liu, X.; Zhou, Y.; Sun, Q.; Zhen, G.; Wang, X.; Hu, Y.; Gao, P.; Demehri, S.; et al. Angiogenesis Stimulated by Elevated PDGF-BB in Subchondral Bone Contributes to Osteoarthritis Development. JCI Insight 2020, 5, 135446. [Google Scholar] [CrossRef]
- Clarke, J. PDGF-BB Is the Key to Unlocking Pathological Angiogenesis in OA. Nat. Rev. Rheumatol. 2020, 16, 298. [Google Scholar] [CrossRef]
- Qin, X.; Wang, X. Role of Vitamin D Receptor in the Regulation of CYP3A Gene Expression. Acta Pharm. Sin. B 2019, 9, 1087–1098. [Google Scholar] [CrossRef]
- Wang, Z.; Schuetz, E.G.; Xu, Y.; Thummel, K.E. Interplay between Vitamin D and the Drug Metabolizing Enzyme CYP3A4. J. Steroid Biochem. Mol. Biol. 2013, 136, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Näkki, A.; Battié, M.C.; Kaprio, J. Genetics of Disc-Related Disorders: Current Findings and Lessons from Other Complex Diseases. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2014, 23 (Suppl. 3), S354–S363. [Google Scholar] [CrossRef] [PubMed]
- Perera, R.S.; Dissanayake, P.H.; Senarath, U.; Wijayaratne, L.S.; Karunanayake, A.L.; Dissanayake, V.H.W. Variants of ACAN Are Associated with Severity of Lumbar Disc Herniation in Patients with Chronic Low Back Pain. PLoS ONE 2017, 12, e0181580. [Google Scholar] [CrossRef]
- Yaltirik, C.K.; Timirci-Kahraman, Ö.; Gulec-Yilmaz, S.; Ozdogan, S.; Atalay, B.; Isbir, T. The Evaluation of Proteoglycan Levels and the Possible Role of ACAN Gene (c.6423T>C) Variant in Patients with Lumbar Disc Degeneration Disease. In Vivo 2019, 33, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Kraatari, M.; Skarp, S.; Niinimäki, J.; Karppinen, J.; Männikkö, M. A Whole Exome Study Identifies Novel Candidate Genes for Vertebral Bone Marrow Signal Changes (Modic Changes). Spine 2017, 42, 1201–1206. [Google Scholar] [CrossRef]
- Kohn, A.; Dong, Y.; Mirando, A.J.; Jesse, A.M.; Honjo, T.; Zuscik, M.J.; O’Keefe, R.J.; Hilton, M.J. Cartilage-Specific RBPjκ-Dependent and -Independent Notch Signals Regulate Cartilage and Bone Development. Development 2012, 139, 1198–1212. [Google Scholar] [CrossRef]
- Mead, T.J.; Yutzey, K.E. Notch Pathway Regulation of Chondrocyte Differentiation and Proliferation during Appendicular and Axial Skeleton Development. Proc. Natl. Acad. Sci. USA 2009, 106, 14420–14425. [Google Scholar] [CrossRef]
- Karlsson, C.; Lindahl, A. Notch Signaling in Chondrogenesis. Int. Rev. Cell Mol. Biol. 2009, 275, 65–88. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, C.; Lu, W.; He, T.; Fan, J.; Wang, C.; Jie, Q.; Chan, D.; Cheah, K.S.E.; Yang, L. Hedgehog Signaling Orchestrates Cartilage-to-Bone Transition Independently of Smoothened. Matrix Biol. J. Int. Soc. Matrix Biol. 2022, 110, 76–90. [Google Scholar] [CrossRef]
- Pan, Y.; Jiang, Z.; Ye, Y.; Zhu, D.; Li, N.; Yang, G.; Wang, Y. Role and Mechanism of BMP4 in Regenerative Medicine and Tissue Engineering. Ann. Biomed. Eng. 2023, 51, 1374–1389. [Google Scholar] [CrossRef]
Subject | Spinal Level | |||||
---|---|---|---|---|---|---|
T12L1 | L1L2 | L2L3 | L3L4 | L4L5 | L5S1 | |
OSTEO06 | 1 | 1 | 1 | 3 | 3 | 2 |
OSTEO07 | 2 | 2 | 3 | 1 | 2 | 2 |
OSTEO08 | 1 | 2 | 3 | 2 | 1 | 2 |
OSTEO13 | 1 | 2 | 2 | 2 | 2 | 1 |
OSTEO14 | 0 | 1 | 1 | 3 | 1 | 0 |
OSTEO16 | 2 | 2 | 2 | 1 | 1 | 1 |
OSTEO17 | 1 | 2 | 1 | 1 | 1 | 2 |
OSTEO23 | 1 | 1 | 2 | 2 | 1 | 1 |
OSTEO24 | 1 | 1 | 2 | 2 | 2 | 2 |
OSTEO25 | 2 | 2 | 3 | 3 | 1 | 3 |
BMP-2 | BMP-5 | BMP-7 | BMP-9 | DKK-1 | MMP-3 | PDGF-BB | TGFb3 | TRANCE | ||
---|---|---|---|---|---|---|---|---|---|---|
Patients (n = 10) | Mean ± SD (pg/mL) | 6.9 ± 10.2 | 164.0 ± 238.8 * | 112.6 ± 269.5 | 1.8 ± 0.5 | 7.7 ± 10.5 ** | 3445.1 ± 958.8 | 725.9 ± 176.9 * | 44.1 ± 76.9 | 392.0 ± 956.5 |
Controls (n = 10) | Mean± SD (pg/mL) | 3.0 ± 7.9 | 114.9 ± 331.1 | 75.5 ± 70.8 | 1.7 ± 1.0 | 0.1 ± 0.3 | 3699.4 ± 845.6 | 511.3 ± 179.3 | 29.0 ± 64.7 | 196.2 ± 304.3 |
Sample ID | Gene | Inheritance | Genomic Position in hg38 | Variant | Effect | Prediction | Hom/Het | NM |
---|---|---|---|---|---|---|---|---|
OSTEO06 | VDR | AR | 12:47879112-A-G | c.2T>C/p.Met1Thr | Missense | VUS | Hom | NM_000376.3 |
HSPG2 | AR | 1:21828300-C-T | c.12364G>A/p.Ala4122Thr | Missense | VUS | Het | NM_005529.7 | |
HSPG2 | AR | 1:21854910-A-T | c.6071T>A/p.Leu2024His | Missense | VUS | Het | NM_005529.7 | |
OSTEO08 | VDR | AR | 12:47879112-A-G | c.2T>C/p.Met1Thr | Missense | VUS | Hom | NM_000376.3 |
HSPG2 | AR | 1:21880388-G-C | c.2170C>G/p.(Arg724Gly) | Missense | VUS | Het | NM_005529.7 | |
BMP4 | AD | 14:53949882-CCT-C | c.*148_*149delAG | 3’UTR | VUS | Het | NM_001202.6 | |
OSTEO25 | VDR | AR | 12:47879112-A-G | c.2T>C/p.Met1Thr | Missense | VUS | Hom | NM_000376.3 |
MESP2 | AR | 15:89776903-AGGGCAGGGGCAGGGGCAG-AGGGCAG | c.553_564delGGGCAGGGGCAG/p.Gly185_Gln188del | Inframe indel | VUS | Het | NM_001039958.2 | |
OSTEO13 | VDR | AR | 12:47879112-A-G | c.2T>C/p.Met1Thr | Missense | VUS | Het | NM_000376.3 |
GLI2 | AD | 2:120986563-G-A | c.2191G>A/p.Gly731Arg | Missense | VUS | Het | NM_001374353.1 | |
OSTEO14 | VDR | AR | 12:47879112-A-G | c.2T>C/p.Met1Thr | Missense | VUS | Het | NM_000376.3 |
ACAN | AD, AR | 15:88859273-G-T | c.6688G>T/p.Ala2230Ser | Missense | VUS | Het | NM_001369268.1 | |
OSTEO16 | VDR | AR | 12:47879112-A-G | c.2T>C/p.Met1Thr | Missense | VUS | Het | NM_000376.3 |
GLI2 | AD | 2:120968884-T-G | c.814T>G; p.(Ser272Ala) | Missense | VUS | Het | NM_001374353.1 | |
GLI2 | AD | 2:120968887-T-G | c.817T>G; p.(Tyr273Asp) | Missense | VUS | Het | NM_001374353.1 | |
OSTEO17 | VDR | AR | 12:47879112-A-G | c.2T>C/p.Met1Thr | Missense | VUS | Het | NM_000376.3 |
ACAN | AD, AR | 15:88843433-G-A | c.836G>A/p.Arg279Gln | Missense | VUS | Het | NM_001369268.1 | |
CYP3A4 | AD | 7:99760901-A-G | c.1334T>C/p.Met445Thr | Missense | VUS | Het | NM_017460.6 | |
OSTEO23 | VDR | AR | 12:47879112-A-G | c.2T>C/p.Met1Thr | Missense | VUS | Het | NM_000376.3 |
ACAN | AD, AR | 15:88878056-C-A | c.*3575C>A | Downstream | VUS | Het | NM_001369268.1 | |
MESP2 | AR | 15:89776903-AGGGCAGGGGCAGGGGCAG-AGGGCAG | c.553_564delGGGCAGGGGCAG/p.Gly185_Gln188del | Inframe indel | VUS | Het | NM_001039958.2 | |
BMP4 | AD | 14:53949883-C-CA | c.*148_*149insT | 3’UTR | VUS | Het | NM_001202.6 | |
OSTEO24 | VDR | AR | 12:47879112-A-G | c.2T>C/p.Met1Thr | Missense | VUS | Het | NM_000376.3 |
CYP3A4 | AD | 7:99760901-A-G | c.1334T>C/p.Met445Thr | Missense | VUS | Het | NM_017460.6 | |
HSPG2 | AR | 1:21850441-C-T | c.7216G>A/p.Val2406Met | Missense | VUS | Het | NM_005529.7 | |
MESP2 | AR | 15:89776903-AGGGCAGGGGCAGGGGCAG-AGGGCAG | c.553_564delGGGCAGGGGCAG/p.Gly185_Gln188del | Inframe indel | VUS | Het | NM_001039958.2 |
Spine Level | T12-L1 | L1-L2 | L2-L3 | L3-L4 | L4-L5 | L5-S1 | Total | |||
---|---|---|---|---|---|---|---|---|---|---|
Hom | Mean ± SD | 1.3 ± 0.6 | 1.7 ± 0.6 | 2.3 ± 1.2 | 2.7 ± 0.6 | 1.7 ± 1.2 | 2.3 ± 0.6 | 12.0 ± 1.7 * | ||
Het | Mean ± SD | 1.0 ± 0.6 | 1.5 ± 0.5 | 1.7 ± 0.5 | 1.8 ± 0.8 | 1.3 ± 0.5 | 1.2 ± 0.8 | 8.5 ± 1.5 | ||
Circulating markers | BMP-2 | BMP-5 | BMP-7 | BMP-9 | DKK-1 | MMP-3 | PDGF-BB | TGFb3 | TRANCE | |
Hom | Mean ± SD; pg/mL | 10.3 ± 13.6 | 401.1 ± 355.6 * | 354.5 ± 448.4 | 2.1 ± 0.6 | 17.6 ± 13.9 | 3557.1 ± 1193.2 | 772.4 ± 190.6 | 114.0 ± 125.0 | 1205.5 ± 1636.4 |
Het | Mean ± SD; pg/mL | 6.4 ± 9.8 | 64.5 ± 61.6 | 10.4 ± 12.3 | 1.7 ± 0.3 | 4.0 ± 6.1 | 3239.5 ± 930.6 | 695.9 ± 197.7 | 14.3 ± 14.7 | 50.7 ± 89.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colombini, A.; Raffo, V.; Covone, A.E.; Bassani, T.; Coviello, D.; Cauci, S.; Pallotta, L.; Brayda-Bruno, M. Endplate Lesions of the Lumbar Spine: Biochemistry and Genetics. Genes 2025, 16, 738. https://doi.org/10.3390/genes16070738
Colombini A, Raffo V, Covone AE, Bassani T, Coviello D, Cauci S, Pallotta L, Brayda-Bruno M. Endplate Lesions of the Lumbar Spine: Biochemistry and Genetics. Genes. 2025; 16(7):738. https://doi.org/10.3390/genes16070738
Chicago/Turabian StyleColombini, Alessandra, Vincenzo Raffo, Angela Elvira Covone, Tito Bassani, Domenico Coviello, Sabina Cauci, Ludovica Pallotta, and Marco Brayda-Bruno. 2025. "Endplate Lesions of the Lumbar Spine: Biochemistry and Genetics" Genes 16, no. 7: 738. https://doi.org/10.3390/genes16070738
APA StyleColombini, A., Raffo, V., Covone, A. E., Bassani, T., Coviello, D., Cauci, S., Pallotta, L., & Brayda-Bruno, M. (2025). Endplate Lesions of the Lumbar Spine: Biochemistry and Genetics. Genes, 16(7), 738. https://doi.org/10.3390/genes16070738