Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (855)

Search Parameters:
Keywords = whole construction process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 703 KiB  
Article
Development of the Visual Analysis of Form and Contour
by Clay Mash, Lauren M. Henry and Marc H. Bornstein
Children 2025, 12(8), 1005; https://doi.org/10.3390/children12081005 - 30 Jul 2025
Viewed by 194
Abstract
Background/Objectives: A common approach to investigating visual form processing is through studying responses to visual stimuli that comprise illusory contours. Such stimuli induce contours where none exist physically and thus reveal the constructive nature of visual perception and the conditions that engender it. [...] Read more.
Background/Objectives: A common approach to investigating visual form processing is through studying responses to visual stimuli that comprise illusory contours. Such stimuli induce contours where none exist physically and thus reveal the constructive nature of visual perception and the conditions that engender it. The present work used IC stimuli to study the development of visual form detection and extraction in infants and adults. Methods: Infant and adult participants viewed square stimulus forms with either real or illusory contours, while their looking behavior was measured with an eye tracker. Fixations of the stimuli were coded by region, distinguishing between the contours of the forms and within the forms themselves. Fixations were summed by region, and fixations on forms were interpreted to index the detection of coherent, whole forms. Fixations on contours (real and illusory) were interpreted to index the extraction of form edges. Results: Total form fixations differed by age. For real contours, fixations by infants exceeded those by adults; when contours were illusory, adult fixations were greater than those of infants. Contour fixations were similar between ages. Infants and adults both looked more at contours when illusory than when real. Conclusions: Together, the results provide new conclusions about change and continuity in the visual analysis of form and contour. The results suggest that the visual detection and binding of simple form structure appears to develop between infancy and adulthood. However, the exploration of contours that support the extraction of form contours from backgrounds appears to change little between infancy and adulthood. Full article
(This article belongs to the Section Pediatric Ophthalmology)
Show Figures

Figure 1

24 pages, 3885 KiB  
Article
Discrete Meta-Modeling Method of Breakable Corn Kernels with Multi-Particle Sub-Area Combinations
by Jiangdong Xu, Yanchun Yao, Yongkang Zhu, Chenxi Sun, Zhi Cao and Duanyang Geng
Agriculture 2025, 15(15), 1620; https://doi.org/10.3390/agriculture15151620 - 26 Jul 2025
Viewed by 209
Abstract
Simulation is an important technical tool in corn threshing operations, and the establishment of the corn kernel model is the core part of the simulation process. The existing modeling method is to treat the whole kernel as a rigid body, which cannot be [...] Read more.
Simulation is an important technical tool in corn threshing operations, and the establishment of the corn kernel model is the core part of the simulation process. The existing modeling method is to treat the whole kernel as a rigid body, which cannot be crushed during the simulation process, and the calculation of the crushing rate needs to be considered through multiple criteria such as the contact force, the number of collisions, and so on. Aiming at the issue that kernel crushing during maize threshing cannot be accurately modeled in discrete element simulations, in this study, a sub-area crushing model was constructed; representative samples with 26%, 30% and 34% moisture content were selected from a double-season maturing region in China; based on the physical dimensions and biological structure of the maize kernel, three stress regions were defined; and mechanical property tests were conducted on each of the three stress regions using a texturometer as a way to determine the different crushing forces due to the heterogeneity of the maize structure. The correctness of the model was verified by stacking angle and mechanical property experiments. A discrete element model of corn kernels was established using the Bonding V2 method and sub-area modeling. Bonding parameters were calculated by combining stacking angle tests and mechanical property tests. The flattened corn kernel was used as a prototype, and the bonding parameters were determined through size and mechanical property tests. A 22-ball bonding model was developed using dimensional parameters, and the kernel density was recalculated. Results showed that the relative error between the stacking angle test and the measured mean value was 0.31%. The maximum deviation of axial compression simulation results from the measured mean value was 22.8 N, and the minimum deviation was 3.67 N. The errors between simulated and actual rupture forces at the three force areas were 5%, 10%, and 0.6%, respectively. The decreasing trend of the maximum rupture force for the three moisture levels in the simulation matched that of the actual rupture force. The discrete element model can accurately reflect the rupture force, energy relationship, and rupture process on both sides, top, and bottom of the grain, and it can solve the error problem caused by the contact between the threshing element and the grain line in the actual threshing process to achieve the design optimization of the threshing drum. The modeling method provided in this study can also be applied to breakable discrete element models for wheat and soybean, and it provides a reference for optimizing the design of subsequent threshing devices. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

26 pages, 6806 KiB  
Article
Fine Recognition of MEO SAR Ship Targets Based on a Multi-Level Focusing-Classification Strategy
by Zhaohong Li, Wei Yang, Can Su, Hongcheng Zeng, Yamin Wang, Jiayi Guo and Huaping Xu
Remote Sens. 2025, 17(15), 2599; https://doi.org/10.3390/rs17152599 - 26 Jul 2025
Viewed by 339
Abstract
The Medium Earth Orbit (MEO) spaceborne Synthetic Aperture Radar (SAR) has great coverage ability, which can improve maritime ship target surveillance performance significantly. However, due to the huge computational load required for imaging processing and the severe defocusing caused by ship motions, traditional [...] Read more.
The Medium Earth Orbit (MEO) spaceborne Synthetic Aperture Radar (SAR) has great coverage ability, which can improve maritime ship target surveillance performance significantly. However, due to the huge computational load required for imaging processing and the severe defocusing caused by ship motions, traditional ship recognition conducted in focused image domains cannot process MEO SAR data efficiently. To address this issue, a multi-level focusing-classification strategy for MEO SAR ship recognition is proposed, which is applied to the range-compressed ship data domain. Firstly, global fast coarse-focusing is conducted to compensate for sailing motion errors. Then, a coarse-classification network is designed to realize major target category classification, based on which local region image slices are extracted. Next, fine-focusing is performed to correct high-order motion errors, followed by applying fine-classification applied to the image slices to realize final ship classification. Equivalent MEO SAR ship images generated by real LEO SAR data are utilized to construct training and testing datasets. Simulated MEO SAR ship data are also used to evaluate the generalization of the whole method. The experimental results demonstrate that the proposed method can achieve high classification precision. Since only local region slices are used during the second-level processing step, the complex computations induced by fine-focusing for the full image can be avoided, thereby significantly improving overall efficiency. Full article
(This article belongs to the Special Issue Advances in Remote Sensing Image Target Detection and Recognition)
Show Figures

Graphical abstract

12 pages, 1599 KiB  
Article
CRISPR/Cas12a-Chemiluminescence Cascaded Bioassay for Amplification-Free and Sensitive Detection of Nucleic Acids
by Xiaotian Guan, Peizheng Wang, Yi Wang and Shuqing Sun
Biosensors 2025, 15(8), 479; https://doi.org/10.3390/bios15080479 - 24 Jul 2025
Viewed by 351
Abstract
The CRISPR/Cas system has attracted increasing attention in accurate nucleic acid detection. Herein, we reported a CRISPR/Cas12a-chemiluminescence cascaded bioassay (CCCB) for the amplification-free and sensitive detection of human papillomavirus type 16 (HPV-16) and parvovirus B19 (PB-19). A magnetic bead (MB)-linking single-stranded DNA (LssDNA)-alkaline [...] Read more.
The CRISPR/Cas system has attracted increasing attention in accurate nucleic acid detection. Herein, we reported a CRISPR/Cas12a-chemiluminescence cascaded bioassay (CCCB) for the amplification-free and sensitive detection of human papillomavirus type 16 (HPV-16) and parvovirus B19 (PB-19). A magnetic bead (MB)-linking single-stranded DNA (LssDNA)-alkaline phosphatase (ALP) complex was constructed as the core component of the bioassay. During the detection process, the single-stranded target DNA was captured and enriched by LssDNA and then activated the trans-cleavage activity of Cas12a. Due to the Cas12a-mediated cleavage of LssDNA, ALP was released from the MB, subsequently catalyzing the substrate to generate a chemiluminescence (CL) signal. Given the cascade combination of CRISPR/Cas12a with the CL technique, the limits of detection for HPV-16 and PB-19 DNA were determined as 0.14 pM and 0.37 pM, respectively, and the whole detection could be completed within 60 min. The practicality and reliability of the platform were validated through target-spiked clinical specimens, and the recovery rate was 93.4–103.5%. This dual-amplification strategy—operating without target pre-amplification—featured high specificity, low contamination risk, facile preparation, and robust stability. It provides a novel approach for sensitive nucleic acid detection, with the potential for rapid extension to the diagnosis of various infectious diseases. Full article
Show Figures

Figure 1

22 pages, 4190 KiB  
Article
Calibration of Building Performance Simulations for Zero Carbon Ready Homes: Two Open Access Case Studies Under Controlled Conditions
by Christopher Tsang, Richard Fitton, Xinyi Zhang, Grant Henshaw, Heidi Paola Díaz-Hernández, David Farmer, David Allinson, Anestis Sitmalidis, Mohamed Dgali, Ljubomir Jankovic and William Swan
Sustainability 2025, 17(15), 6673; https://doi.org/10.3390/su17156673 - 22 Jul 2025
Viewed by 399
Abstract
This study provides a detailed dataset from two modern homes constructed inside an environmentally controlled chamber. These data are used to carefully calibrate a dynamic thermal simulation model of these homes. The calibrated models show good agreement with measurements taken under controlled conditions. [...] Read more.
This study provides a detailed dataset from two modern homes constructed inside an environmentally controlled chamber. These data are used to carefully calibrate a dynamic thermal simulation model of these homes. The calibrated models show good agreement with measurements taken under controlled conditions. The two case study homes, “The Future Home” and “eHome2”, were constructed within the University of Salford’s Energy House 2.0, and high-quality data were collected over eight days. The calibration process involved updating U-values, air permeability rates, and modelling refinements, such as roof ventilation, ground temperatures, and sub-floor void exchange rates, set as boundary conditions. Results demonstrated a high level of accuracy, with performance gaps in whole-house heat transfer coefficient reduced to 0.5% for “The Future Home” and 0.6% for “eHome2”, falling within aggregate heat loss test uncertainty ranges by a significant amount. The study highlights the improved accuracy of calibrated dynamic thermal simulation models, compared to results from the steady-state Standard Assessment Procedure model. By providing openly accessible calibrated models and a clearly defined methodology, this research presents valuable resources for future building performance modelling studies. The findings support the UK’s transition to dynamic modelling approaches proposed in the recently introduced Home Energy Model approach, contributing to improved prediction of energy efficiency and aligning with goals for zero carbon ready and sustainable housing development. Full article
Show Figures

Figure 1

15 pages, 2174 KiB  
Article
Weak Acids as Endogenous Inhibitors of the Proton-Activated Chloride Channel
by Inês C. A. Pombeiro Stein, Maren Schulz, Daniel Rudolf, Christine Herzog, Frank Echtermeyer, Nils Kriedemann, Robert Zweigerdt and Andreas Leffler
Cells 2025, 14(14), 1110; https://doi.org/10.3390/cells14141110 - 19 Jul 2025
Viewed by 342
Abstract
The recently identified proton-activated chloride (PAC) channel is ubiquitously expressed, and it regulates several proton-sensitive physiological and pathophysiological processes. While the PAC channel is activated by strong acids due to the binding of protons to extracellular binding sites, here, we describe the way [...] Read more.
The recently identified proton-activated chloride (PAC) channel is ubiquitously expressed, and it regulates several proton-sensitive physiological and pathophysiological processes. While the PAC channel is activated by strong acids due to the binding of protons to extracellular binding sites, here, we describe the way in which weak acids inhibit the PAC channel by a mechanism involving a distinct extracellular binding site. Whole-cell patch clamp was performed on wildtype HEK293T cells, PAC-knockout HEK293 cells expressing human (h)PAC mutant constructs, and on hiPSC-derived cardiomyocytes. Proton-induced cytotoxicity was examined in HEK293T cells. Acetic acid inhibited endogenous PAC channels in HEK 293T cells in a reversible, concentration-dependent, and pH-dependent manner. The inhibition of PAC channels was also induced by lactic acid, propionic acid, itaconic acid, and β-hydroxybutyrate. Weak acids also inhibited recombinant wildtype hPAC channels and PAC-like currents in hiPSC-derived cardiomyocytes. Replacement of the extracellular arginine 93 by an alanine (hPAC–Arg93Ala) strongly reduced the inhibition by some weak acids, including arachidonic acid. Although lactic acid inhibited PAC, it did not reduce the proton-induced cytotoxicity examined in wildtype HEK 293 cells. To conclude, weak acids inhibit PAC via an extracellular mechanism involving Arg93. These data warrant further investigations into the regulation of the PAC channel by endogenous weak acids. Full article
(This article belongs to the Special Issue pH Sensing, Signaling, and Regulation in Cellular Processes)
Show Figures

Figure 1

26 pages, 3771 KiB  
Article
BGIR: A Low-Illumination Remote Sensing Image Restoration Algorithm with ZYNQ-Based Implementation
by Zhihao Guo, Liangliang Zheng and Wei Xu
Sensors 2025, 25(14), 4433; https://doi.org/10.3390/s25144433 - 16 Jul 2025
Viewed by 239
Abstract
When a CMOS (Complementary Metal–Oxide–Semiconductor) imaging system operates at a high frame rate or a high line rate, the exposure time of the imaging system is limited, and the acquired image data will be dark, with a low signal-to-noise ratio and unsatisfactory sharpness. [...] Read more.
When a CMOS (Complementary Metal–Oxide–Semiconductor) imaging system operates at a high frame rate or a high line rate, the exposure time of the imaging system is limited, and the acquired image data will be dark, with a low signal-to-noise ratio and unsatisfactory sharpness. Therefore, in order to improve the visibility and signal-to-noise ratio of remote sensing images based on CMOS imaging systems, this paper proposes a low-light remote sensing image enhancement method and a corresponding ZYNQ (Zynq-7000 All Programmable SoC) design scheme called the BGIR (Bilateral-Guided Image Restoration) algorithm, which uses an improved multi-scale Retinex algorithm in the HSV (hue–saturation–value) color space. First, the RGB image is used to separate the original image’s H, S, and V components. Then, the V component is processed using the improved algorithm based on bilateral filtering. The image is then adjusted using the gamma correction algorithm to make preliminary adjustments to the brightness and contrast of the whole image, and the S component is processed using segmented linear enhancement to obtain the base layer. The algorithm is also deployed to ZYNQ using ARM + FPGA software synergy, reasonably allocating each algorithm module and accelerating the algorithm by using a lookup table and constructing a pipeline. The experimental results show that the proposed method improves processing speed by nearly 30 times while maintaining the recovery effect, which has the advantages of fast processing speed, miniaturization, embeddability, and portability. Following the end-to-end deployment, the processing speeds for resolutions of 640 × 480 and 1280 × 720 are shown to reach 80 fps and 30 fps, respectively, thereby satisfying the performance requirements of the imaging system. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

20 pages, 7700 KiB  
Article
Influence of Pregnancy on Whole-Transcriptome Sequencing in the Mammary Gland of Kazakh Mares
by Zhenyu Zhang, Zhixin Lu, Xinkui Yao, Linling Li, Jun Meng, Jianwen Wang, Yaqi Zeng and Wanlu Ren
Animals 2025, 15(14), 2056; https://doi.org/10.3390/ani15142056 - 11 Jul 2025
Viewed by 347
Abstract
Kazakh mares have drawn significant attention for their outstanding lactation traits. Lactation, a complex physiological activity, is modulated by multiple factors. This study utilized high-throughput sequencing to conduct whole-transcriptome sequencing analysis on the mammary gland tissue of eight Kazakh mares, of which four [...] Read more.
Kazakh mares have drawn significant attention for their outstanding lactation traits. Lactation, a complex physiological activity, is modulated by multiple factors. This study utilized high-throughput sequencing to conduct whole-transcriptome sequencing analysis on the mammary gland tissue of eight Kazakh mares, of which four were pregnant and four were non-pregnant, to systematically reveal the molecular regulatory mechanisms. The results showed differential expression in 2136 mRNAs, 180 lncRNAs, 104 miRNAs, and 1162 circRNAs. Gene ontology functional annotation indicates that these differentially expressed genes are involved in multiple key biological processes, such as the cellular process (BP), metabolic process, and biological regulation. Kyoto Encyclopedia of Genes and Genomes analysis suggests that the differentially expressed genes are significantly enriched in essential pathways such as cytokine–cytokine receptor interaction, the chemokine signaling pathway, and the PI3K-Akt signaling pathway. Additionally, this study constructed a competing endogenous RNA (ceRNA) regulatory network based on the differentially expressed genes (|log2FC| > 1, FDR < 0.05), offering a novel perspective for revealing the functional regulation of the mammary gland. This study compared genomic differences in mammary gland tissue of pregnant and non-pregnant Kazakh mares and identified candidate genes that are closely related to lactation regulation. It found that various genes, such as PIK3CG, IL7R, and SOD2, play central regulatory roles in activating mammary gland functions. These findings provide theoretical support for explaining the molecular mechanisms underlying the mammary gland development of Kazakh mares. Full article
(This article belongs to the Section Equids)
Show Figures

Figure 1

16 pages, 10934 KiB  
Article
Visualization Monitoring and Safety Evaluation of Turnout Wheel–Rail Forces Based on BIM for Sustainable Railway Management
by Xinyi Dong, Yuelei He and Hongyao Lu
Sensors 2025, 25(14), 4294; https://doi.org/10.3390/s25144294 - 10 Jul 2025
Viewed by 368
Abstract
With China’s high-speed rail network undergoing rapid expansion, turnouts constitute critical elements whose safety and stability are essential to railway operation. At present, the efficiency of wheel–rail force safety monitoring conducted in the small hours reserved for the construction and maintenance of operating [...] Read more.
With China’s high-speed rail network undergoing rapid expansion, turnouts constitute critical elements whose safety and stability are essential to railway operation. At present, the efficiency of wheel–rail force safety monitoring conducted in the small hours reserved for the construction and maintenance of operating lines without marking train operation lines is relatively low. To enhance the efficiency of turnout safety monitoring, in this study, a three-dimensional BIM model of the No. 42 turnout was established and a corresponding wheel–rail force monitoring scheme was devised. Collision detection for monitoring equipment placement and construction process simulation was conducted using Navisworks, such that the rationality of cable routing and the precision of construction sequence alignment were improved. A train wheel–rail force analysis program was developed in MATLAB R2022b to perform signal filtering, and static calibration was applied to calculate key safety evaluation indices—namely, the coefficient of derailment and the rate of wheel load reduction—which were subsequently analyzed. The safety of the No. 42 turnout and the effectiveness of the proposed monitoring scheme were validated, theoretical support was provided for train operational safety and turnout maintenance, and technical guidance was offered for whole-life-cycle management and green, sustainable development of railway infrastructure. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

17 pages, 4423 KiB  
Article
Multivariate Framework of Metabolism in Advanced Prostate Cancer Using Whole Abdominal and Pelvic Hyperpolarized 13C MRI—A Correlative Study with Clinical Outcomes
by Hsin-Yu Chen, Ivan de Kouchkovsky, Robert A. Bok, Michael A. Ohliger, Zhen J. Wang, Daniel Gebrezgiabhier, Tanner Nickles, Lucas Carvajal, Jeremy W. Gordon, Peder E. Z. Larson, John Kurhanewicz, Rahul Aggarwal and Daniel B. Vigneron
Cancers 2025, 17(13), 2211; https://doi.org/10.3390/cancers17132211 - 1 Jul 2025
Cited by 1 | Viewed by 543 | Correction
Abstract
Background: Most of the existing hyperpolarized (HP) 13C MRI analyses use univariate rate maps of pyruvate-to-lactate conversion (kPL), and radiomic-style multiparametric models extracting complex, higher-order features remain unexplored. Purpose: To establish a multivariate framework based on whole abdomen/pelvis HP 13 [...] Read more.
Background: Most of the existing hyperpolarized (HP) 13C MRI analyses use univariate rate maps of pyruvate-to-lactate conversion (kPL), and radiomic-style multiparametric models extracting complex, higher-order features remain unexplored. Purpose: To establish a multivariate framework based on whole abdomen/pelvis HP 13C-pyruvate MRI and evaluate the association between multiparametric features of metabolism (MFM) and clinical outcome measures in advanced and metastatic prostate cancer. Methods: Retrospective statistical analysis was performed on 16 participants with metastatic or local-regionally advanced prostate cancer prospectively enrolled in a tertiary center who underwent HP-pyruvate MRI of abdomen or pelvis between November 2020 and May 2023. Five patients were hormone-sensitive and eleven were castration-resistant. GMP-grade [1-13C]pyruvate was polarized using a 5T clinical-research DNP polarizer, and HP MRI used a set of flexible vest-transmit, array-receive coils, and echo-planar imaging sequences. Three basic metabolic maps (kPL, pyruvate summed-over-time, and mean pyruvate time) were created by semi-automatic segmentation, from which 316 MFMs were extracted using an open-source, radiomic-compliant software package. Univariate risk classifier was constructed using a biologically meaningful feature (kPL,median), and the multivariate classifier used a two-step feature selection process (ranking and clustering). Both were correlated with progression-free survival (PFS) and overall survival (OS) (median follow-up = 22.0 months) using Cox proportional hazards model. Results: In the univariate analysis, patients harboring tumors with lower-kPL,median had longer PFS (11.2 vs. 0.5 months, p < 0.01) and OS (NR vs. 18.4 months, p < 0.05) than their higher-kPL,median counterparts. Using a hypothesis-generating, age-adjusted multivariate risk classifier, the lower-risk subgroup also had longer PFS (NR vs. 2.4 months, p < 0.002) and OS (NR vs. 18.4 months, p < 0.05). By contrast, established laboratory markers, including PSA, lactate dehydrogenase, and alkaline phosphatase, were not significantly associated with PFS or OS (p > 0.05). Key limitations of this study include small sample size, retrospective study design, and referral bias. Conclusions: Risk classifiers derived from select multiparametric HP features were significantly associated with clinically meaningful outcome measures in this small, heterogeneous patient cohort, strongly supporting further investigation into their prognostic values. Full article
Show Figures

Figure 1

31 pages, 8354 KiB  
Article
The Design and Experiment of a Motion Control System for the Whole-Row Reciprocating Seedling Picking Mechanism of an Automatic Transplanter
by Jiawei Shi, Jianping Hu, Wei Liu, Junpeng Lv, Yongwang Jin, Mengjiao Yao and Che Wang
Agriculture 2025, 15(13), 1423; https://doi.org/10.3390/agriculture15131423 - 30 Jun 2025
Viewed by 347
Abstract
Aiming at the problem that the whole row of reciprocating seedling picking mechanism is prone to inertial impacts during operation due to its excessive mass, causing seedling damage and positioning errors, this study builds a motion control system with a PLC controller as [...] Read more.
Aiming at the problem that the whole row of reciprocating seedling picking mechanism is prone to inertial impacts during operation due to its excessive mass, causing seedling damage and positioning errors, this study builds a motion control system with a PLC controller as the core and proposes a composite motion control strategy based on planned S-curve acceleration and deceleration and fuzzy PID to achieve rapid response, precise positioning, and smooth operation of the seedling picking mechanism. By establishing the objective function and constraint conditions and taking into account the dynamic change of the seedling picking displacement, the S-curve acceleration and deceleration control algorithm is planned in six and seven stages to meet the requirements of a smooth transition of the speed and continuous change of the acceleration curve of the seedling picking mechanism during movement. A fuzzy PID positioning control system is designed, the control system transfer function is constructed, and fuzzy rules are formulated to dynamically compensate for the error and its rate of change to meet the requirements of fast response and no overshoot oscillation of the positioning control system. The speed and acceleration of the seedling picking mechanism under the six-segment and seven-segment S-curve acceleration and deceleration motion control conditions were simulated using MATLAB2024a simulation software and compared with the trapezoidal acceleration and deceleration motion control. The planned S-curve acceleration and deceleration control algorithm has a more stable control effect on the seedling picking mechanism when it operates under the conditions of the dynamic change of the displacement, and it meets the design requirements of seedling picking efficiency. The positioning control system was modeled and simulated using the Simulink simulation platform. When KP = 15, KI = 3, and KD = 1, the whole-row seedling picking control system ran stably, responded quickly, and had no overshoot. Compared with the PID control system with fixed parameters, the fuzzy PID control system reduced the time consumption in the rising stage by 24.5% and shortened the overall stabilization process by 17.6%. The zero overshoot characteristic was ensured, and the response speed was faster. When a disturbance signal is added, the overshoot of the fuzzy PID control system is reduced by 2.4%, and the response speed is increased by 6.8% compared with the fixed-parameter PID control system. The dynamic response rate and anti-disturbance performance are better than those of the fixed-parameter PID control system. A bench comparison test was carried out. The results showed that the S-curve acceleration and deceleration motion control algorithm reduced the average mass loss rate of seedlings by 46.19% compared with the trapezoidal acceleration and deceleration motion control algorithm, and the seedling picking efficiency met the design requirements. Fuzzy PID positioning control was used, and the maximum displacement error of the end effector during seedling picking was −1.4 mm, and the average relative error rate was 0.22%, which met the positioning accuracy requirements of the end effector in the X-axis direction and verified the stability and accuracy of the designed control system. The designed control system was tested in the field, and the average comprehensive success rate of seedling picking and throwing reached 96.2%, which verified the feasibility and practicality of the control system. Full article
(This article belongs to the Special Issue Soil-Machine Systems and Its Related Digital Technologies Application)
Show Figures

Figure 1

29 pages, 1867 KiB  
Review
Should Grain-Based Staple Foods Be Included in Admonitions to “Avoid Processed and Ultra-Processed Food”?
by Julie Miller Jones
Nutrients 2025, 17(13), 2188; https://doi.org/10.3390/nu17132188 - 30 Jun 2025
Viewed by 638
Abstract
Background/Objectives: The nutritional importance of grain-based foods (GBFs) and whole grains (WGs) is underscored by their central position in dietary guidance worldwide. Many jurisdictions recommend consumers increase WG intake because they are associated with multiple health benefits, with evidence quality rated as moderate [...] Read more.
Background/Objectives: The nutritional importance of grain-based foods (GBFs) and whole grains (WGs) is underscored by their central position in dietary guidance worldwide. Many jurisdictions recommend consumers increase WG intake because they are associated with multiple health benefits, with evidence quality rated as moderate to high. High intakes of ultra-processed foods (UPFs), as defined by NOVA that classifies food by level of processing, are associated with numerous negative health outcomes, with evidence less convincing than for WGs. Yet, some dietary guidance recommends consumers to avoid UPFs. This creates two divergent guidelines since NOVA designates most commonly eaten grain-based foods (GBFs) as UPFs. These contradictory guidelines fail to comply with recommended principles of dietary guidance and generate questions about underlying assumptions and definitions that classify WG staples and colas together. Methods: Definitions and assumptions for systems ostensibly categorizing foods by level of processing were evaluated for validity by various methods. Special attention was paid to the ability of different classifications to differentiate between WGs, RGs staples, and indulgent GBFs. Findings from meta-analyses associating high intakes of WGs with numerous health benefits were compared with those associating high intakes of UPFs. Menus and modeling studies were assessed for ability to meet recommendations for WGs and the grain food group with customary GBFs while avoiding UPFs. Advice to “avoid UPFs” was tested against principles for effective dietary guidance. Results: Definitions and categorizations of foods by levels of processing vary markedly. Assumptions for NOVA and other systems are questionable. While meta-analyses consistently show high intakes of UPFs are associated with adverse health outcomes, high intake of WG foods, nearly all designated as UPFs, are associated with better health outcomes, although evidence quality for the latter is rated stronger. These findings add to the body of evidence suggesting flawed assumptions behind categorizing WG staples in terms of level of processing. Conclusions: NOVA deems 90% of WGs as UPFs. Adding statements to dietary guidance to “Avoid UPFs”, while asking consumers to increase WG intakes, confuses. Further, it jeopardizes efforts to increase intake of fiber and WG foods because it excludes top sources of fiber and WG-based breads, rolls, tortillas, or cold cereals in Western diets. NOVA advice to avoid UPFs challenges principles for usable dietary guidance and the construction of culturally appropriate, healthy dietary patterns containing WG staples from all levels of processing. Full article
(This article belongs to the Special Issue Effects of Dietary Grains on Human Health)
Show Figures

Figure 1

23 pages, 3556 KiB  
Article
The Neglected Group: Cognitive Discourse Markers as Signposts of Prosodic Unit Boundaries
by Simona Majhenič, Mitja Beras and Janez Križaj
Languages 2025, 10(7), 159; https://doi.org/10.3390/languages10070159 - 27 Jun 2025
Viewed by 725
Abstract
The present paper examines and compares the role of cognitive discourse markers (DMs), such as uhm, like, or I mean, and a set of prosodic parameters as indicators of prosodic boundaries. Cognitive DMs traditionally are not studied as a separate [...] Read more.
The present paper examines and compares the role of cognitive discourse markers (DMs), such as uhm, like, or I mean, and a set of prosodic parameters as indicators of prosodic boundaries. Cognitive DMs traditionally are not studied as a separate DM group on par with the ideational, sequential, rhetorical, or interpersonal group. However, as they reflect the speaker’s mental processes during speech production, they offer an exceptional glimpse into how speakers construct their verbalisations. Along with the analysis of DMs, prosodic parameters, including pitch and intensity reset, speech rate change, and pauses, were automatically annotated to determine how well they overlapped with the manually annotated prosodic boundaries. To accommodate for the natural variability in speech, the parameters were evaluated using relative comparison methods. Among the prosodic parameters, pauses were found to overlap most often with the manually annotated prosodic boundaries. Cognitive DMs in the function of realising new information, restructuring, and emphasis indeed proved as relevant boundary indicators, however, the group of cognitive DMs as a whole fell behind the group of sequential and rhetorical DMs, which overlapped most frequently with the manually annotated prosodic boundaries. Full article
(This article belongs to the Special Issue Current Trends in Discourse Marker Research)
Show Figures

Figure 1

13 pages, 255 KiB  
Perspective
Codepoietic Generation of Meaningful Information in the Evolving Biosphere
by Abir U. Igamberdiev
Entropy 2025, 27(7), 672; https://doi.org/10.3390/e27070672 - 24 Jun 2025
Cited by 1 | Viewed by 427
Abstract
Meaningful information represents reality in its potential form, and its actualization increases the system’s negentropy. Biological evolution leads to the expansion of meaningful information by generating new coding systems (codepoiesis). Through this expansion, any evolutionary change obtains functional value when it receives an [...] Read more.
Meaningful information represents reality in its potential form, and its actualization increases the system’s negentropy. Biological evolution leads to the expansion of meaningful information by generating new coding systems (codepoiesis). Through this expansion, any evolutionary change obtains functional value when it receives an interpretation through which it gives rise to a meaningful function. Complexification in the evolutionary process corresponds to the generation of new meaningful information and, thus, to the development of new structures with corresponding functions. Any biological function has a meaning within the context of a particular environment, and the evolutionary search for new meanings results in the establishment of the state of sustainable non-equilibrium acting as an attractor, in which the developing system achieves the condition of maximization of its power via synergistic effects. At higher levels of the organization, evolutionary innovations emerge as niche constructions, behavioral choices, and, finally, the phenomenon of cognition. The evolutionary growth of meanings appears as a part of the expanding information system formed by the organisms inhabiting it. It acquires major expansion with the emergence of consciousness that incorporates the image of the whole world into the dynamic process of knowledge acquisition and creates the conditions for the development of global civilization. Full article
(This article belongs to the Special Issue Complexity and Evolution, 2nd Edition)
14 pages, 1274 KiB  
Article
State Observer-Based Sampled-Data Control for Path Tracking of Autonomous Agricultural Tractor
by Haozhe Li, Keqi Mei, Li Ma, Shihong Ding and Chen Ding
Actuators 2025, 14(6), 300; https://doi.org/10.3390/act14060300 - 19 Jun 2025
Viewed by 329
Abstract
This study develops a sampled-data controller for the path tracking system of an autonomous agricultural tractor (AAT) on the basis of a state observer. First of all, to solve the cost of the whole system, the state observer is constructed for estimating the [...] Read more.
This study develops a sampled-data controller for the path tracking system of an autonomous agricultural tractor (AAT) on the basis of a state observer. First of all, to solve the cost of the whole system, the state observer is constructed for estimating the heading offset and for accelerating the convergence process. Built on the observer, an advanced output feedback sampled-data controller is formulated, which tackles the problem of slow data freshness caused by the low signal frequency of the GPS-RTK system. Subsequently, a Lyapunov stability analysis is conducted to guarantee that the AAT system can be stabilized under the proposed control strategy. Finally, comparative simulation results are provided to illustrate the efficacy of the control strategy. Full article
(This article belongs to the Section Actuators for Surface Vehicles)
Show Figures

Figure 1

Back to TopTop