Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (668)

Search Parameters:
Keywords = wheel load

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5256 KiB  
Article
In-Wheel Motor Fault Diagnosis Method Based on Two-Stream 2DCNNs with DCBA Module
by Junwei Zhu, Xupeng Ouyang, Zongkang Jiang, Yanlong Xu, Hongtao Xue, Huiyu Yue and Huayuan Feng
Sensors 2025, 25(15), 4617; https://doi.org/10.3390/s25154617 - 25 Jul 2025
Viewed by 102
Abstract
To address the challenge of fault diagnosis for in-wheel motors in four-wheel independent driving systems under variable driving conditions and harsh environments, this paper proposes a novel method based on two-stream 2DCNNs (two-dimensional convolutional neural networks) with a DCBA (depthwise convolution block attention) [...] Read more.
To address the challenge of fault diagnosis for in-wheel motors in four-wheel independent driving systems under variable driving conditions and harsh environments, this paper proposes a novel method based on two-stream 2DCNNs (two-dimensional convolutional neural networks) with a DCBA (depthwise convolution block attention) module. The main contributions are twofold: (1) A DCBA module is introduced to extract multi-scale features—including prominent, local, and average information—from grayscale images reconstructed from vibration signals across different domains; and (2) a two-stream network architecture is designed to learn complementary feature representations from time-domain and time–frequency-domain signals, which are fused through fully connected layers to improve diagnostic accuracy. Experimental results demonstrate that the proposed method achieves high recognition accuracy under various working speeds, loads, and road surfaces. Comparative studies with SENet, ECANet, CBAM, and single-stream 2DCNN models confirm its superior performance and robustness. The integration of DCBA with dual-domain feature learning effectively enhances fault feature extraction under complex operating conditions. Full article
(This article belongs to the Special Issue Intelligent Maintenance and Fault Diagnosis of Mobility Equipment)
Show Figures

Figure 1

17 pages, 4500 KiB  
Article
Finite Element Model-Based Behavior Evaluation of Pavement Stiffness Influence on Shallowly Buried Precast Arch Structures Subjected to Vehicle Load
by Van-Toan Nguyen and Jungwon Huh
Geotechnics 2025, 5(3), 50; https://doi.org/10.3390/geotechnics5030050 - 25 Jul 2025
Viewed by 90
Abstract
In this study, the behavior of a three-hinged buried precast arch structure under the impact of the design truck was studied and evaluated based on the finite element method. A three-dimensional finite element analysis model of the buried precast arch structure has been [...] Read more.
In this study, the behavior of a three-hinged buried precast arch structure under the impact of the design truck was studied and evaluated based on the finite element method. A three-dimensional finite element analysis model of the buried precast arch structure has been meticulously established, considering arch segments’ joining and surface contact and interaction between surrounding soil and concrete structures. The behavior of the arch structure was examined and compared with the influence of pavement types, number of lanes, and axle spacings. The crucial findings indicate that arch structure behavior differs depending on design truck layouts and pavement stiffness and less on multi-lane vehicle loading effects. Furthermore, the extent of pressure propagation under the wheel depends not only on the magnitude of the axle load but also on the stiffness of the pavement structures. Cement concrete pavement (CCP) allows better dispersion of wheel track pressure on the embankment than asphalt concrete pavement (ACP). Therefore, the degree of increase in arch displacement with ACP is higher than that of CCP. To enhance the coverage of the vehicle influence zone, an extension of the backfill material width should be considered from the bottom of the arch and with the prism plane created at a 45-degree transverse angle. Full article
Show Figures

Figure 1

22 pages, 5966 KiB  
Article
Road-Adaptive Precise Path Tracking Based on Reinforcement Learning Method
by Bingheng Han and Jinhong Sun
Sensors 2025, 25(15), 4533; https://doi.org/10.3390/s25154533 - 22 Jul 2025
Viewed by 211
Abstract
This paper proposes a speed-adaptive autonomous driving path-tracking framework based on the soft actor–critic (SAC) and pure pursuit (PP) methods, named the SACPP controller. The framework first analyzes the obstacles around the vehicle and plans an obstacle-free reference path with the minimum curvature [...] Read more.
This paper proposes a speed-adaptive autonomous driving path-tracking framework based on the soft actor–critic (SAC) and pure pursuit (PP) methods, named the SACPP controller. The framework first analyzes the obstacles around the vehicle and plans an obstacle-free reference path with the minimum curvature using the hybrid A* algorithm. Next, based on the generated reference path, the current state of the vehicle, and the vehicle motor energy efficiency diagram, the optimal speed is calculated in real time, and the vehicle dynamics preview point at the future moment—specifically, the look-ahead distance—is predicted. This process relies on the learning of the SAC network structure. Finally, PP is used to generate the front wheel angle control value by combining the current speed and the predicted preview point. In the second layer, we carefully designed the evaluation function in the tracking process based on the uncertainties and performance requirements that may occur during vehicle driving. This design ensures that the autonomous vehicle can not only quickly and accurately track the path, but also effectively avoid surrounding obstacles, while keeping the motor running in the high-efficiency range, thereby reducing energy loss. In addition, since the entire framework uses a lightweight network structure and a geometry-based method to generate the front wheel angle, the computational load is significantly reduced, and computing resources are saved. The actual running results on the i7 CPU show that the control cycle of the control framework exceeds 100 Hz. Full article
(This article belongs to the Special Issue AI-Driving for Autonomous Vehicles)
Show Figures

Figure 1

26 pages, 10071 KiB  
Article
Mechanisms of Adhesion Increase in Wet Sanded Wheel–Rail Contacts—A DEM-Based Analysis
by Bettina Suhr, William A. Skipper, Roger Lewis and Klaus Six
Lubricants 2025, 13(7), 314; https://doi.org/10.3390/lubricants13070314 - 18 Jul 2025
Viewed by 202
Abstract
In railways, problems in braking and traction can be caused by so-called low-adhesion conditions. Adhesion is increased by sanding, where sand grains are blasted towards the wheel–rail contact. Despite the successful use of sanding in practice and extensive experimental studies, the physical mechanisms [...] Read more.
In railways, problems in braking and traction can be caused by so-called low-adhesion conditions. Adhesion is increased by sanding, where sand grains are blasted towards the wheel–rail contact. Despite the successful use of sanding in practice and extensive experimental studies, the physical mechanisms of adhesion increase are poorly understood. This study combines experimental work with a DEM model to aim at a deeper understanding of adhesion increase during sanding. The experimentally observed processes during sanding involve repeated grain breakage, varying sand fragment spread, formation of clusters of crushed sand powders, plastic deformation of the steel surfaces due to the high load applied and shearing of the compressed sand fragments. The developed DEM model includes all these processes. Two types of rail sand are analysed, which differ in adhesion increase in High-Pressure Torsion tests under wet contact conditions. This study shows that higher adhesion is achieved when a larger proportion of the normal load is transferred through sand–steel contacts. This is strongly influenced by the coefficient of friction between sand and steel. Adhesion is higher for larger sand grains, higher sand fragment spread, and higher steel hardness, resulting in less indentation, all leading to larger areas covered by sand. Full article
Show Figures

Figure 1

33 pages, 6169 KiB  
Article
An Innovative Solution for Stair Climbing: A Conceptual Design and Analysis of a Tri-Wheeled Trolley with Motorized, Adjustable, and Foldable Features
by Howard Jun Hao Oh, Kia Wai Liew, Poh Kiat Ng, Boon Kian Lim, Chai Hua Tay and Chee Lin Khoh
Inventions 2025, 10(4), 57; https://doi.org/10.3390/inventions10040057 - 16 Jul 2025
Viewed by 301
Abstract
The objective of this study is to design, develop, and analyze a tri-wheeled trolley integrated with a motor that incorporates adjustable and foldable features. The purpose of a trolley is to allow users to easily transport items from one place to another. However, [...] Read more.
The objective of this study is to design, develop, and analyze a tri-wheeled trolley integrated with a motor that incorporates adjustable and foldable features. The purpose of a trolley is to allow users to easily transport items from one place to another. However, problems arise when transporting objects across challenging surfaces, such as up a flight of stairs, using a conventional cart. This innovation uses multiple engineering skills to determine and develop the best possible design for a stair-climbing trolley. A tri-wheel mechanism is integrated into its motorized design, meticulously engineered for adjustability, ensuring compatibility with a wide range of staircase dimensions. The designed trolley was constructed considering elements and processes such as a literature review, conceptual design, concept screening, concept scoring, 3D modelling, engineering design calculations, and simulations. The trolley was tested, and the measured pulling force data were compared with the theoretical calculations. A graph of the pulling force vs. load was plotted, in which both datasets showed similar increasing trends; hence, the designed trolley worked as expected. The development of this stair-climbing trolley can benefit people living in rural areas or low-cost buildings that are not equipped with elevators and can reduce injuries among the elderly. The designed stair-climbing trolley will not only minimize the user’s physical effort but also enhance safety. On top of that, the adjustable and foldable features of the stair-climbing trolley would benefit users living in areas with limited space. Full article
Show Figures

Figure 1

21 pages, 5154 KiB  
Article
Mechanical Response Analysis of Ultra-Thin Asphalt Wearing Course Pavement Under Non-Uniform Loading Pressure
by Wei Zhou, Yingying Dou, Chupeng Chen, Yi Yang, Xinquan Xu, Lintao Li, Jiangyin Xiao and Feng Chen
Materials 2025, 18(14), 3335; https://doi.org/10.3390/ma18143335 - 16 Jul 2025
Viewed by 262
Abstract
Traditional ultra-thin asphalt wearing course designs often oversimplify wheel loads as uniform pressures, neglecting critical non-uniform effects. This study establishes a 3D finite element model incorporating realistic non-uniform tire loading to reveal its mechanistic influence on pavement responses. Results demonstrate that non-uniform loading [...] Read more.
Traditional ultra-thin asphalt wearing course designs often oversimplify wheel loads as uniform pressures, neglecting critical non-uniform effects. This study establishes a 3D finite element model incorporating realistic non-uniform tire loading to reveal its mechanistic influence on pavement responses. Results demonstrate that non-uniform loading significantly alters stress states in ultra-thin layers, substantially elevating critical stresses compared to uniform assumptions. A novel Non-uniform Load Influence Factor (NLIF) accounting for thickness effects is developed to quantify these deviations. The analysis provides a foundation for revising material strength specifications and fatigue design criteria, contributing to improved performance and durability of ultra-thin pavement systems. Full article
Show Figures

Figure 1

18 pages, 10352 KiB  
Article
Optimizing Autonomous Wheel Loader Performance—An End-to-End Approach
by Koji Aoshima, Eddie Wadbro and Martin Servin
Automation 2025, 6(3), 31; https://doi.org/10.3390/automation6030031 - 12 Jul 2025
Viewed by 297
Abstract
Wheel loaders in mines and construction sites repeatedly load soil from a pile to load receivers. Automating this task presents a challenging planning problem since each loading’s performance depends on the pile state, which depends on previous loadings. We investigate an end-to-end optimization [...] Read more.
Wheel loaders in mines and construction sites repeatedly load soil from a pile to load receivers. Automating this task presents a challenging planning problem since each loading’s performance depends on the pile state, which depends on previous loadings. We investigate an end-to-end optimization approach considering future loading outcomes and transportation costs between the pile and load receivers. To predict the evolution of the pile state and the loading performance, we use world models that leverage deep neural networks trained on numerous simulated loading cycles. A look-ahead tree search optimizes the sequence of loading actions by evaluating the performance of thousands of action candidates, which expand into subsequent action candidates under the predicted pile states recursively. Test results demonstrate that, over a horizon of 15 sequential loadings, the look-ahead tree search is 6% more efficient than a greedy strategy, which always selects the action that maximizes the current single loading performance, and 14% more efficient than using a fixed loading controller optimized for the nominal case. Full article
(This article belongs to the Collection Smart Robotics for Automation)
Show Figures

Figure 1

18 pages, 4110 KiB  
Article
Characterization of Asphalt Binder and Mixture for Enhanced Railway Applications
by Ilho Na, Hyemin Park, Jihyeon Yun, Ju Dong Park and Hyunhwan Kim
Materials 2025, 18(14), 3265; https://doi.org/10.3390/ma18143265 - 10 Jul 2025
Viewed by 219
Abstract
Although asphalt mixtures can be applied to railway tracks due to their viscoelastic properties, caution is required, as their ductility and brittleness are highly sensitive to temperature variations. In recent years, interest in the application of asphalt in railway infrastructure has increased, driven [...] Read more.
Although asphalt mixtures can be applied to railway tracks due to their viscoelastic properties, caution is required, as their ductility and brittleness are highly sensitive to temperature variations. In recent years, interest in the application of asphalt in railway infrastructure has increased, driven by the development of modified mixtures and the broader availability of performance-enhancing additives. Additionally, evaluation methods for railway tracks should be adapted to account for the distinct loading mechanisms involved, which differ from those of conventional roadways. In this study, the comprehensive properties of asphalt binders, mixtures, and testing methods—including physical and engineering characteristics—were assessed to improve the performance of asphalt concrete layers for potential applications in railroad infrastructure. The results of this study indicate that (1) the higher the performance grade (PG), the higher the indirect tensile strength (ITS) value achieved by the 13 mm mixture using PG76-22, which is higher than that of the PG64-22 mixture. This indicates that higher PG grades and modification contribute to improved tensile strength, beneficial for upper layers subjected to dynamic railroad loads. (2) The tensile strength ratio (TSR) increased from the unmodified mixture to over 92% in mixtures containing crumb rubber modifier (CRM) and styrenic thermoplastic elastomer (STE), demonstrating enhanced durability under freeze–thaw conditions. (3) Wheel tracking test results showed that modified mixtures exhibited more than twice the rutting resistance compared to PG64-22. The 13 mm aggregate mixtures also generally performed better than the 19 mm mixtures, indicating reduced permanent deformation under repeated loading. (4) It was concluded that asphalt is a suitable material for railroads, as its overall characteristics comply with standard specifications. Full article
Show Figures

Figure 1

16 pages, 10934 KiB  
Article
Visualization Monitoring and Safety Evaluation of Turnout Wheel–Rail Forces Based on BIM for Sustainable Railway Management
by Xinyi Dong, Yuelei He and Hongyao Lu
Sensors 2025, 25(14), 4294; https://doi.org/10.3390/s25144294 - 10 Jul 2025
Viewed by 316
Abstract
With China’s high-speed rail network undergoing rapid expansion, turnouts constitute critical elements whose safety and stability are essential to railway operation. At present, the efficiency of wheel–rail force safety monitoring conducted in the small hours reserved for the construction and maintenance of operating [...] Read more.
With China’s high-speed rail network undergoing rapid expansion, turnouts constitute critical elements whose safety and stability are essential to railway operation. At present, the efficiency of wheel–rail force safety monitoring conducted in the small hours reserved for the construction and maintenance of operating lines without marking train operation lines is relatively low. To enhance the efficiency of turnout safety monitoring, in this study, a three-dimensional BIM model of the No. 42 turnout was established and a corresponding wheel–rail force monitoring scheme was devised. Collision detection for monitoring equipment placement and construction process simulation was conducted using Navisworks, such that the rationality of cable routing and the precision of construction sequence alignment were improved. A train wheel–rail force analysis program was developed in MATLAB R2022b to perform signal filtering, and static calibration was applied to calculate key safety evaluation indices—namely, the coefficient of derailment and the rate of wheel load reduction—which were subsequently analyzed. The safety of the No. 42 turnout and the effectiveness of the proposed monitoring scheme were validated, theoretical support was provided for train operational safety and turnout maintenance, and technical guidance was offered for whole-life-cycle management and green, sustainable development of railway infrastructure. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

11 pages, 3937 KiB  
Article
Dynamic Wheel Load Measurements by Optical Fiber Interferometry
by Daniel Kacik, Ivan Martincek and Peihong Cheng
Infrastructures 2025, 10(7), 175; https://doi.org/10.3390/infrastructures10070175 - 7 Jul 2025
Viewed by 186
Abstract
This study proposes a Fabry–Perot interferometric system and an associated evaluation method for measuring the weight of moving trains. An optical fiber sensor, comprising a sensing fiber and a supporting structure, is securely bonded to the rail foot. As a train traverses the [...] Read more.
This study proposes a Fabry–Perot interferometric system and an associated evaluation method for measuring the weight of moving trains. An optical fiber sensor, comprising a sensing fiber and a supporting structure, is securely bonded to the rail foot. As a train traverses the track, the resulting localized bending induces a change in the sensing fiber’s length, which manifests as a quantifiable phase shift in the interference signal. We developed a physical–mathematical model, based on three Gaussian functions, to describe the temporal change in sensing fiber length caused by the passage of a single bogie. This model enables the determination of a proportionality constant to accurately convert the measured phase change into train weight. Model validation was performed using a train set, including a locomotive and four variably loaded wagons, traveling at 15.47 km/h. This system offers a novel and effective approach for real-time train weight monitoring. Full article
Show Figures

Figure 1

24 pages, 11256 KiB  
Article
Indoor Measurement of Contact Stress Distributions for a Slick Tyre at Low Speed
by Gabriel Anghelache and Raluca Moisescu
Sensors 2025, 25(13), 4193; https://doi.org/10.3390/s25134193 - 5 Jul 2025
Viewed by 272
Abstract
The paper presents results of experimental research on tyre–road contact stress distributions, measured indoors for a motorsport slick tyre. The triaxial contact stress distributions have been measured using the complex transducer containing a transversal array of 30 sensing pins covering the entire contact [...] Read more.
The paper presents results of experimental research on tyre–road contact stress distributions, measured indoors for a motorsport slick tyre. The triaxial contact stress distributions have been measured using the complex transducer containing a transversal array of 30 sensing pins covering the entire contact patch width. Wheel displacement in the longitudinal direction was measured using a rotary encoder. The parameters allocated for the experimental programme have included different values of tyre inflation pressure, vertical load, camber angle and toe angle. All measurements were performed at low longitudinal speed in free-rolling conditions. The influence of tyre functional parameters on the contact patch shape and size has been discussed. The stress distributions on each orthogonal direction are presented in multiple formats, such as 2D graphs in which the curves show the stresses measured by each sensing element versus contact length; surfaces with stress values plotted as vertical coordinates versus contact patch length and width; and colour maps for stress distributions and orientations of shear stress vectors. The effects of different parameter types and values on stress distributions have been emphasised and analysed. Furthermore, the magnitude and position of local extreme values for each stress distribution have been investigated with respect to the above-mentioned tyre functional parameters. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

21 pages, 3327 KiB  
Review
Tread-Braked Wheels: Review and Recent Findings
by Gianluca Megna and Andrea Bracciali
Machines 2025, 13(7), 579; https://doi.org/10.3390/machines13070579 - 3 Jul 2025
Viewed by 254
Abstract
Tread braking is still extensively used on freight wagons due to lower purchasing and maintenance costs compared to disk braking. Cast iron brake blocks were replaced by composite materials (organic or sintered) that result in a lower wheel roughness, reducing rolling noise. Unfortunately, [...] Read more.
Tread braking is still extensively used on freight wagons due to lower purchasing and maintenance costs compared to disk braking. Cast iron brake blocks were replaced by composite materials (organic or sintered) that result in a lower wheel roughness, reducing rolling noise. Unfortunately, composite brake blocks have a lower thermal conductivity, negatively affecting the wheel mechanical behavior as the braking energy is almost entirely dissipated by the wheels, which are therefore subjected to higher temperatures. Mechanical properties of the wheel material, such as yield stress and Rolling Contact Fatigue (RCF) behavior, markedly decrease with temperature, resulting in higher wear rates and wheel tread damage. Contacted to analyze defects not clearly defined in the current regulations used for maintenance and inspections, the authors surveyed the literature and the technical documentation about tread-braked wheels. The paper provides an updated view about the state-of-the-art of the research on thermomechanical behavior of railway wheels and discusses the implication of the increased thermal stresses generated by composite brake blocks. Full article
(This article belongs to the Special Issue Wheel–Rail Contact: Mechanics, Wear and Analysis)
Show Figures

Figure 1

19 pages, 4066 KiB  
Article
Mechanical Response and Fatigue Life Analysis of Asphalt Pavements Under Temperature-Load Coupling Conditions
by Zhenzheng Liu, Le Zhang, Yuan Gao, Yanying Dong, Yuhang Liu and Bo Li
Appl. Sci. 2025, 15(13), 7441; https://doi.org/10.3390/app15137441 - 2 Jul 2025
Viewed by 196
Abstract
The effects of heavy traffic and complex natural environmental conditions have made the problem of the inadequate life expectancy of asphalt pavements increasingly pronounced. In this study, finite-element software was used to establish the three-dimensional analytical model of temperature-load coupling under different axial [...] Read more.
The effects of heavy traffic and complex natural environmental conditions have made the problem of the inadequate life expectancy of asphalt pavements increasingly pronounced. In this study, finite-element software was used to establish the three-dimensional analytical model of temperature-load coupling under different axial loads and calculate the distribution law of temperature-load coupling stress under the most unfavorable loading conditions. By comparing temperature and coupled stresses at different depths, the extent to which combined stress changes due to environmental factors affect different depths was determined. Finally, the fatigue life patterns of asphalt pavements under different seasons and axle loads were analyzed. The results showed that the temperature-load coupling stress varied periodically under different axial loads. Among them, the temperature stress had less influence on the coupling stress in spring and fall and more influence in winter. As the depth increases, the coupling stresses and their range of influence gradually decrease. Also, the farther away from the wheel load position, the smaller the traveling load disturbance and the closer the coupling stresses were to the temperature stresses. Under the most unfavorable loading conditions, the change rule of the degree of influence of environmental effects along the depth direction showed that the winter gradually decreased, the spring and fall seasons for the first time decreased and then increased, and the minimum influence on the road surface was at 9 cm. Overall, the degree of influence of environmental action at different axial loads was 70.53%, 41.90%, 27.13%, and 23.77% along the depth direction. Full article
Show Figures

Figure 1

16 pages, 2504 KiB  
Article
Thermal Field and High-Temperature Performance of Epoxy Resin System Steel Bridge Deck Pavement
by Rui Mao, Xingyu Gu, Jiwang Jiang, Zhu Zhang and Kaiwen Lei
Materials 2025, 18(13), 3109; https://doi.org/10.3390/ma18133109 - 1 Jul 2025
Viewed by 313
Abstract
Epoxy Resin System (ERS) steel bridge pavement, which comprises a resin asphalt (RA) base layer and a modified asphalt wearing course, offers cost efficiency and rapid installation. However, the combined effects of traffic loads and environmental conditions pose significant challenges, requiring greater high-temperature [...] Read more.
Epoxy Resin System (ERS) steel bridge pavement, which comprises a resin asphalt (RA) base layer and a modified asphalt wearing course, offers cost efficiency and rapid installation. However, the combined effects of traffic loads and environmental conditions pose significant challenges, requiring greater high-temperature stability than conventional pavements. The thermal sensitivity of resin materials and the use of conventional asphalt mixtures may weaken deformation resistance under elevated temperature conditions. This study investigates the thermal field distribution and high-temperature performance of ERS pavements under extreme conditions and explores temperature reduction strategies. A three-dimensional thermal field model developed using finite element analysis software analyzes interactions between the steel box girder and pavement layers. Based on simulation results, wheel tracking and dynamic creep tests confirm the superior performance of the RA05 mixture, with dynamic stability reaching 23,318 cycles/mm at 70 °C and a 2.1-fold improvement in rutting resistance in Stone Mastic Asphalt (SMA)-13 + RA05 composites. Model-driven optimization identifies that enhancing internal airflow within the steel box girder is possible without compromising its structural integrity. The cooling effect is particularly significant when the internal airflow aligns with ambient wind speeds (open-girder configuration). Surface peak temperatures can be reduced by up to 20 °C and high-temperature durations can be shortened by 3–7 h. Full article
Show Figures

Figure 1

14 pages, 3334 KiB  
Article
Quantitative Assessment of EV Energy Consumption: Applying Coast Down Testing to WLTP and EPA Protocols
by Teeraphon Phophongviwat, Piyawong Poopanya and Kanchana Sivalertporn
World Electr. Veh. J. 2025, 16(7), 360; https://doi.org/10.3390/wevj16070360 - 27 Jun 2025
Viewed by 280
Abstract
This study presents a comprehensive methodology for evaluating electric vehicle (EV) energy consumption by integrating coast down testing with standardized chassis dynamometer protocols under WLTP Class 3b and EPA driving cycles. Coast down tests were conducted to determine road load coefficients—critical for replicating [...] Read more.
This study presents a comprehensive methodology for evaluating electric vehicle (EV) energy consumption by integrating coast down testing with standardized chassis dynamometer protocols under WLTP Class 3b and EPA driving cycles. Coast down tests were conducted to determine road load coefficients—critical for replicating real-world resistance profiles on a dynamometer. Energy usage data were measured using On-Board Diagnostics II (OBD-II) and dynamometer measurements to assess power flow from the battery to the wheels. The results reveal that OBD-II consistently recorded higher cumulative energy usage, particularly under urban driving conditions, highlighting limitations in dynamometer responsiveness to transient loads and regenerative events. Notably, the WLTP low-speed cycle exhibited a significantly lower efficiency of 62.42%, with nearly half of the battery energy consumed by non-propulsion systems. In contrast, the EPA cycle demonstrated consistently higher efficiencies of 84.52% (low-speed) and 93.00% (high-speed). Interestingly, high-speed efficiencies between WLTP and EPA were nearly identical, despite differences in total energy consumption. These findings underscore the importance of aligning test protocols with actual driving conditions and demonstrate the effectiveness of combining coast down data with real-time diagnostics for robust EV performance assessments. Full article
Show Figures

Figure 1

Back to TopTop